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FIGURE 5. Induction of CTL by peptide-liposome conjugates inocu-
lated in combination with CpG and anti-IL-10. CD8-gated cells were an-
alyzed with a tetramer-detecting OVA,s;_oq, plus H-2KP-specific T cells.
Spleen cells of normal mice (Control), tumor-bearing mice without treat-
ment (no treatment), or tumor-bearing mice that received inoculation with
peptide-liposome conjugates in combination with CpG and anti-IL-10 (af-
ter treatment) were stained with PE-conjugated, tetramer-detecting
OVA,sy_564 plus H-2K®-specific T cells and FITC-conjugated anti-CD8
Ab. The experiment was repeated three times with similar results.

combined inoculation with peptide-liposome conjugates, CpG, and
anti-IL-10 Abs.

We have investigated (25, 39) the potential ability of surface-
linked liposomal Ags for the application to vaccine development,
whereas most of the investigations regarding liposomes as a drug-
delivery system have been done by encapsulating Ags into lipo-
somes. During the course of this investigation, several advantages
of the liposome-coupled Ags over the liposome-encapsulated Ags
became apparent. First, a predominant coupling efficiency of Ags
to liposomes: following our previously reported procedure (20) for
coupling Ags to liposomes, ~50% of the Ags bound to the surface
of liposomes, whereas in the Ag encapsulation, a 60-fold higher
volume of Ags was required to obtain the same amount of conju-
gates (our unpublished observation). Second, Ag-specific and IgE-
selective unresponsiveness induced by surface-linked liposomal
Ags: Ags chemically coupled to the surface of liposomes induced
Ag-specific IgG but not IgE Ab production in mice (19) and also
in monkeys (40), suggesting the potential ability of surface-linked
liposomal Ags for application to the development of vaccines with
minimal allergic side effects. In addition, during the course of an
investigation intended to clarify the mechanism of IgE-selective
unresponsiveness induced by surface-linked liposomal Ag, we
found the existence of an alternative mechanism, not involving T
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cells, in the regulation of IgE synthesis (41). Third, an enhanced
recognition of liposomal Ags by APCs: because liposomes basi-
cally consist of immunologically inert fatty acid, they are hardly
recognized by APCs. Therefore, some contrivance, such as the
introduction of mannose on the surface of liposomes (42), is re-
quired in Ag-encapsulated liposomes to enhance the recognition of
liposomes by APCs. In contrast, in surface-linked liposomal Ags,
Ags expressed on the surface of liposomes might be recognized
more efficiently by APCs, which might result in an enhanced pre-
sentation to T cells. In fact, surface-linked liposomal Ags induced
a significantly higher level of Ag-specific IgG production than that
by liposome-encapsulated Ags in mice (our unpublished observa-
tion). In addition, a significant difference, which correlated closely
with the adjuvant activity of liposomes, was observed in the rec-
ognition of liposomal Ags by APCs between liposomes with dif-
ferent lipid components; more Ags coupled to the unsaturated li-
posomes were engulfed by macrophages in vitro and a higher level
of Ag-specific Ab production was induced in vivo than when sat-
urated liposomes were used, suggesting that the adjuvant effects of
liposomes are exerted at the beginning of the immune response,
i.e,, recognition of Ag by APCs (43). In addition to this quantita-
tive difference between liposomes with differential lipid compo-
nents, in the present study, a qualitative difference (i.e., the differ-
ential ability to induce cross-presentation) was observed between
saturated and unsaturated liposomes. Although the precise mech-
anism underlying this difference is currently unclear, the signifi-
cant difference in membrane mobility observed between these
liposomes (23) might affect their ability to induce cross-
presentation.

Because a detailed characterization of many tumor cell surface
molecules that act as TAAs is now available (44), immunotherapy
has become an increasingly essential component of cancer thera-
pies (7). Emphasis to date has been placed on the development of
cancer vaccines to enhance the immunogenicity of weak TAAs. In
this context, surface-linked liposomal Ag might potentially serve
as a candidate protocol for tumor vaccine preparation to present
tumor Ags to APCs and induce effective antitumor responses.
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