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anti-OVA antibodies (zg/ml)

immunization

1gG1 1gG2a
OV A-liposome 260.2+72.7 239.4+80.8
OV A-alum 252.8+70.4 32.6+54*
OVA-CFA 292=+11.5 132.7£21.7*
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immunization of
recipient mice

immunization of
T-cell donor

Anti-OVA antibodies

1gG (ug/ml) IgE ELISA titer
no OVA-liposome 12.3+8.7 N.D.
OVA-alum 177152 N.D.
OVA-liposome OVA-liposome 144.7£24.3 N.D.
OV A-alum 1243£12.8 105.6x10.7
OVA-alum OV A-liposome 178.0+£28.3 N.D.
OV A-alum 246.8:+29.4 139.3x12.3
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BIREBIAEE D 572 B ) RY — A HEE LTz OVA O—
HITHRECEE 5 Z Lovbhol, &5, Hba
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INSDERD S | RIS, 522 ) RY —
LFEE LTHURI, FREURE T i1t b b o
FTHERESHEBIZESWIMHCZ 2 2124 LT
CD8 [B1E T MHETIC cross-present 315 Z & HSHE S
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. we
Esa UVRY—-ACHEELI-OVAD~ 707 57—Vt Hsh URY—LAKEELOVADT a7y — ik

BT LEE B 5HEL

AN EFREBOERXTER L w7077 9D 77 AN ZREBOELTER L7077 —-YD

B, BAEOEETER L OVA L EafiigkmE BEd, HEEZT 5 LEHXEEHKT S OVA (DQ-

(Saturated) & %\ iEAEIFIFERAEE (Unsaturated) #» OVA) & EIFIIERSEE (Saturated) & % W IZABIFIEELS

55 VRY —L LD REMUT:, BEEEE % (Unsaturated) 5% 5 VRY —h L OFEEM TR

60 43712 BT 5 HESABOEBEMEGRERT, U Ve BEEERRIATEE 60 ST 38 1) B 28 S E TGS %
AR

3 OVAZ/SNVAL=707 7 —JIil k% CD4/CDS B T MO EEL
v 7 AL VS S N HERMHEE OVA 30U B Y — LS OVA TSR L
7218, OVA i~ v A MRk CD4/CD8 [ T {fE L B U BB LBy A b3
A REELRZ,

CD4 T-cells CD8 T-cells
in vitro Ag Liposomes
IL-5 IFN-y IL-5 IFN-y
none ND ND ND ND
OVA solution 96.2412.5 ND ND ND
OVA-liposome Saturated 910.2£23.0 88.7+£45.0 ND ND
OV A-liposome Unsaturated 1,065.5£31.9 115.1£28.6 163.3+99.1 149.9+83.8
(6)
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Human Cancer Biology

Identification of HLA-A2- or HLA-A24-Restricted CTL Epitopes
Possibly Useful for Glypican-3-Specific Immunotherapy of
Hepatocellular Carcinoma

Hiroyuki Komori,"? Tetsuya Nakatsura,' Satoru Senju, Yoshihiro Yoshitake," Yutaka Motomura,?
Yoshiaki lkuta, "2 Daiki Fukuma,' Kazunori Yokomine,! Michiko Harao,"? Toru Beppu,? Masanori Matsui,
Toshihiko Torigoe,* Noriyuki Sato,* Hideo Baba,? and Yasuharu Nishimura'

Abstract

Purpose and Experimental Design: We previously reported that glypican-3 (GPC3) was
overexpressed, specifically in hepatocellular carcinoma (HCC) and melanoma in humans, and
it was useful as a novel tumor marker. We also reported that. the preimmunization of BALB/c
mice with dendritic cells pulsed with the H-2K%restricted mouse GPC3355.305 (EYILSLEEL)
peptide prevented the growth of tumor-expressing:mouse GPC3. Because of :similarities in
the peptide binding motifs between H-2KY and HLA-A24 (A*2402), the GPC3295.305 Peptide
therefore seemed to be useful for the immunotherapy of HLA-A247 patients with HCC and
melanoma. In this report, we investigated whether the GPC3,9g5.305 peptide could induce
GPC3-reactive CTLs from the peripheral blood mononuclear cells (PBMC) of HLA-A24
(A*2402)" HCC patients.-In addition, we used HLA-A21 (HHD)- transgenic ‘mice to identify
the HLA-A2 (A* 0207)—restncted GPC3 epitopes to expand the apphcattons of GPC3-based
immunotherapy to the HLA-A2" HCC patients.

Results: We found that the GPC3444.152 (FVGEFFTDV) peptide could induce peptide-reactive
CTls in HLA-A21 (HHD) transgenic mice without inducing autoimmunity. In five out of eight
HLA-A2* GPC3* HCC patients, the GPC3144.152 peptide-reactive CTLs were generated from
PBMCs by. in vitro stimulation with the peptide and the GPC3,9g.306 peptide-reactive CTLs
were also generated from PBMCs in four of six HLA-A24% GPC3" HCC patients. The inocula-
tion of these CTLs reduced the human HCC tumor mass implanted into nonobese diabetic/
severe combined immunodeficiency mice.

Conclusion: Our study raises the possibility that these GPC3 peptides may therefore be

applicable to cancer immunotherapy for a large number of HCC patients.

Hepatocellular carcinoma (HCC) is now spreading rapidly,
especially in Asian and Western countries. It is clear that
patients with hepatitis B or C-based liver cirthosis are at high
risk for developing HCC (1), and patients with hepatitis
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treated surgically or by other therapies are also at high risk
for recurrence (2). Furthermore, the liver function of these
patients is often very poor, so further treatment for recurrence
is often restricted. As a result, the prognosis of HCC remains
poor, and new therapies for the prevention of cancer deve-
lopment and recurrence, i.e., adjuvant therapy, is urgently
needed. As for melanoma, the age-adjusted incidence rates
have been increasing in most fair-skinned populations in
recent decades (3). In 2005, it is estimated that 59,580 Ame-
ricans will be diagnosed to have melanoma, and 7,770 will
die from the disease (4).

We and others previously reported that glypican-3 (GPC3)
was overexpressed in most types of HCC (5-9) and melanoma
in humans (8), and we also previously reported that an H-2K%-
restricted antigenic peptide, the mouse GPC395305 (EYIL-
SLEEL) peptide, could be recognized by mouse CD8* CTLs. In
addition, these CTLs rejected tumor expressing mouse GPC3
both in vitro and in vivo (10). Because the structural motifs of
peptides bound to HLA-A24 (A*2402) and mouse H-2K? are
similar, we investigated whether the GPC3 peptide was also
useful as a cancer immunotherapy modality for HLA-A24" HCC
patients. The gene frequency of HLA-A24 (A*2402) is relatively
high in Asian populations, especially in the Japanese, whereas it
is low in Caucasians. On the other hand, The gene frequency of
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HLA-A2 (A*0201) is high among various ethic groups,
including both Asians and Caucasians (11). Therefore, it is
suggested that the HLA-A2-restricted and GPC3-derived CTL
epitopes might be very useful for the immunotherapy of many
patients with HCC and melanoma all over the world. In the
present study, we identified human GPC3-derived CTL epitopes
restricted by HLA-A2 using HLA-A2.1 (HHD) transgenic mice
(Tgm) and examined whether these HLA-A2 or HLA-A24-
restricted epitope peptides could induce GPC3-reactive CTLs
from peripheral blood mononuclear cells (PBMC) of patients
with HCC.

Materials and Methods

Mouse. HLA-A2.1 (HHD) Tgm; H-2D"/~p2m™/~ double knockout
mice introduced with human B2m-HLA-A2.1 (o1 @2)-H-2D® (a3
transmembrane cytoplasmic) (HHD) monochain construct gene were
generated in the Department SIDA-Retrovirus, Unite d' Immunite
Cellulaire Antivirale, Institut Pasteur, France (12, 13) and kindly
provided by Dr. F.A. Lemonnier. Nonobese diabetic {(NOD)/severe
combined immunodeficiency (SCID) female mice at 6 weeks of age
were purchased from CLEA Japan (Tokyo, Japan).

Patients, blood samples, and cell lines. Blood samples from patients
with HCC were obtained during routine diagnostic procedures after
obtaining a formal agreement signed by‘the patients in Kumamoto
University Hospital from April to September 2005. Human liver cancer
cell lines, SK-Hep-1 and T2-A0201 {a TAP-deficient and HLA-A*0201-
positive cell line; refs. 14, 15), were provided by Kyogo Ito of Kurume
University. Human liver cancer cell lines HepG2 and HuH-7
endogenously expressing GPC3, and GPC3™ colon cancer cell line
SW620, were kindly provided by the Cell Resource Center for
Biomedical Research Institute of Development, Aging, and Cancer
(Tohoku University, Sendai, Japan). CI1R-A*2402 (an HLA-A*2402
transfectant of C1R cells expressing a trace amount of HLA class I
molecule; ref. 15) were generous gifts from Dr. Masafumi Takiguchi.
The expression of HLA-A2 and HLA-A24 in these cell lines were
examined using flow cytometry with an anti-HLA-A2 monoclonal
antibody (mAb), BB7.2 and ant-HLA-A24 mAb (One Lambda, Inc,
Canoga Park, CA), respectively, in order to select target cell lines for CTL
assays. The origins and HLA genotypes of these cell lines have been
described elsewhere (16, 17). These cells were maintained in vitro in
RPMI 1640 or DMEM supplemented with 10% FCS.

Induction of GPC3-reactive mouse CTLs and IEN-y enzyme-linked
immunospot assay. Human GPC3-derived peptides (purity >90%)
sharing the amino acid sequences with mouse GPC3 and carrying

binding motifs for HLA-A*0201 -encoded molecules, were identified
using BIMAS software (Biolnformatics and Molecular Analysis
Section, Center for Information Technology, NIH, Bethesda, MD)
and we purchased a total of nine peptides carrying HLA-A2
(A*0201) binding motifs (Table 1) from Biologica (Tokyo, Japan).
The immunizations of mice with peptides were done as previously
described (7). In brief, bone marrow (BM) cells {2 x 10°) from
HLA-A2.1 (HHD) Tgm were cultured in RPMI 1640 supplemented
with 10% FCS, together with granulocyte macrophage colony-
stimulating factor (5 ng/mL) and 2ME (0.8 ng/mL) for 7 days in
10-cm plastic dishes, and these BM-dendritic cells {DC) were pulsed
with the mixture of GPC3 peptides carrying HLA-A2 binding motifs
(1 pmol/L for each peptide) at 37°C for 2 hours. We primed the
HLA-A2.1 (HHD) Tgm with this syngeneic BM-DC vaccine (5 x 105/
mouse) into the peritoneal cavity once a week for two weeks. Seven
days after the last immunization, the spleens were collected and
CD4™ spleen cells were isolated by negative selection with anti-CD4
microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) to
exclude any nonspecific IFN-y production by CD4" spleen cells
cocultured with the BM-DC. The CD4™ spleen cells (2 x 10%/well)
were stimulated with syngeneic BM-DC (2 x 10%/well) pulsed with
each peptide in vitro. Then, 6 days later, the frequency of cells
produding IFN-y/2 x 10* CD4™ spleen cells upon stimulation with
syngeneic BM-DC (1 x 10%well), pulsed with or without each
peptide, was assayed in an enzyme-linked immunospot (ELISPOT)
assay as previously described (18).

Induction of GPC3-reactive human CTLs. We isolated PBMCs from
the heparinized blood of HLA-A24" and/or HLA-A2* Japanese patients
with HCC or healthy donors by means of Ficoll-Conray density
gradient centrifugation, and peripheral monocyte-derived DCs were
generated as described previously (19, 20). CD8™ T cells were isolated
using CD8 microbeads (Miltenyi Biotec) from the PBMC of the same
donors, and thereafter, peptide-reactive CD8" CTLs were generated
(19, 20). Five days after the last stimulation, the cytotoxic activities of
the CTLs were measured by a *'Cr release assay.

CTL responses against cancer cell lines. CILs were cocultured with
each cancer cell line as a target cell (5 x 10%/well) at the indicated
effector/target ratio and **Cr release assay was done as descibed (21).
The blocking of HLA-dass I or HLA-DR, was done as follows. Before the
coculture of CTLs with a cancer cell line in a ®!Cr release assay or
ELISPOT assay, target cancer cells were incubated for 1 hour with 10 ng/
ml anti~class I mAb W6/32 or 10 ug/mL anti- HLA-DR mAb, H-DR-1,
and then the effects of mAbs on either the cytotoxic activity or production
of IFN-y by CT'Ls were examined as reported previously (22).

Histologic and immunohistochemical analysis. Immunohistochemi-
cal staining of CD8 or CD4 in tissue specimens of HLA-A2.1 (HHD)
Tgm immunized with the GPC3y44.15; peptides and the staining of

Table 1. GPC3-derived peptid}es‘ cbn'séf\’/‘ed‘bét'wegnhuman and mouse GPC3 and predicted to be bound to HLA-A2

(A%0207) f

A2-binding peptide Position Subsequence residue listing HLA-A2 binding score*
GPC3A2-1 44-52 RLAQPGLKWYV 879
GPC3A2-2 102-110 FLIQNAAV 319
GPC3A2-3 144-152 FVGEFFTDV 828
GPC3A2-4 155-163 YILGSDINV 162
GPC3A2-5 169-177 ELFDSLFPV 1055
GPC3A2-6 254-268 RMLTRMWYC 1259
GPC3A2-7 281-289 VMQGCMAGY 196
GPC3A2-8 326-334 THDSIQYV 496
GPC3A2-9 522-560 FLAELAYDL 402

“Binding scores were estimated by using BIMAS software (http://bimas.dcrt.nih.gov/cgi-bin/molbio/ken_parker.comboform).
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apoptotic cells with terminal deoxynucleotidy!l transferase - mediated
nick end labeling methods (ApopTag fluorescein in situ apoptosis
detection Kkits; Serologicals Corporation, Norcross, GA} in tumor
specimens of patients with HCC were done as described previously
(23, 24). In addition, immunohistochemical staining of HLA-class I in
HCC tumor tissue specimens were done by using anti-HLA-class 1 mAb,
EMR 8-5.°

Detection by ELISA of the serum-soluble GPC3 protein. Detection of
the serum-soluble GPC3 protein was done by an indirect ELISA using
the rabbit anti-GPC3 polydonal antibody (Santa Cruz Biotechnology,
Santa Cruz, CA) as described previously (7). We used recombinant
human GPC3 protein (R&D Systems Inc, Minneapolis, MN) as a
standard, and the presence of >106 ng/mL of serum GPC3 protein was
considered to be positive.

Transfer of CTLs to the NOD/SCID mice implanted with a human HCC
cell line. The transfer of GPC3-reactive CTLs to the immunodeficient
mice implanted with a human HCC cell line was done as described
previously (7). Briefly, we s.c. inoculated SK-Hep1/GPC3 cells (1 x 107)
positive for both HLA-A2 and HLA-A24 at the right flank of NOD/SCID
mice. When the diameter of these tumors reached 5 X 5 mm on day 9
after tumor inoculation into mice, we intravenously injected the
mixture of GPC3 peptide-reactive CTL lines or irrelevant HIV peptides;
HLA-A2-restricted SLYNTYATL peptide and HLA-A24-restricted
RYLRDQQLL peptide, stimulated CD8* T cells (3 x 10°) established
from four HLA-A24-positive or two HLA-A2-positive HCC patients, or
saline alone. T cells were i.v. injected one more times on day 14. The
CD8* T cells stimulated with HLA-A24-restricted GPC3,95.306 Peptide
or HIV (RYLRDQQLL) peptide and derived from two independent
HLA-A24" HCC patients were mixed, and injected into three NOD/
SCID mice on day 9, and the mixture -of peptide-stimulated CD8" T
cells from two other HLA-A24* HCC patients distinct from the T cell
donors at the first injection, were injected into the mice on day 14. The
HLA-A2-restricted peptide-stimulated CD8"* T cells from one HLA-A2"
HCC patient were also injected into a NOD/SCID mouse on day 9,
followed by the injection on day 14 with the peptide-stimulated CD8* T
cells derived from another HLA-A2" HCC patient.

Statistical analysis. The two-tailed Student’s ¢ test was used to
evaluate the statistical significance of differences in the data obtained by
ELISPOT assay. The statistical significance of the differences in several
factors between patients showing a successful CTL induction and other
patients was assessed by a x? test. P < 0.05 was considered to be
significant. Statistical analyses were made using the StatView 5.0
software package (Abacus Concepts, Calabasas, CA).

Results

Identification of HLA-A2-restricted CTL epitopes by using HLA-
A2.1 (HHD) Tgm. To identify HLA-A2-restricted epitopes by
using HLA-A2.1 (HHD) Tgm, we selected nine kinds of
peptides having amino acid sequences conserved between
human and mouse GPC3 and having high predicted binding
scores to HLA-A2 (A*0201; Table 1). CD4™ spleen cells from
HILA-A2.1 (HHD) Tgm immunized ip. twice with BM-DCs
pulsed with the mixture of these nine peptides were again
stimulated in vitro with BM-DCs pulsed with each peptide, and
we found that CD4™ spleen cells stimulated in vitro with the
GPC3144.152 peptide produced the largest amount of IFN-y in a
peptide-specific manner in ELISPOT assays. These CD4™ spleen
cells (2 x 10%/well), showed 36 * 2.85 spot counts/well, in
response to the BM-DCs pulsed with the GPC3144.15, peptide,

5 T.Torigoe, et al. Immunohistochemical analysis of HLA class | expression in tumor
tissues revealed unusually high frequency of down-regulation in breast cancer
tissues submitted.
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whereas they showed 23 * 1.84 spot counts/well in the
presence of BM-DCs without peptide loading (P < 0.005)
indicating that about (36-23) / 2 X 10* = 0.065% of CD4~
spleen cells were reactive to the GPC3 peptide. When we used
syngeneic BM-DCs pulsed with a HLA-A2-binding HIV-derived
peptide; SLYNTYATL as a control, no significant response (8.84
4+ 1.73) was observed. The summation of the diameter of the
IEN-y ELISPOT observed in CD4~ spleen cells stimulated with
the GPC3144.152 peptide pulsed BM-DCs was 1,878 * 131 pm,
that stimulated with the HIV-derived SLYNTYATL peptide
pulsed BM-DCs was 437 + 77 pm, and that observed in the
presence of BM-DC without peptide loading was 762 + 131 pm
(P < 0.001). These assays were done thrice with similar results.
As shown in Fig. 1B, the differences in the spot counts (left) or
spot diameters (right) between stimulations with peptide
pulsed BM-DC and BM-DC without peptide loading clearly
revealed the GPC3144.15, peptide-specific response of CD4™
spleen cells. As for other peptides, no significant peptide-
specific response was observed. These results suggest that the
GPC3144.152 peptide could be a CTL epitope peptide in HLA-
A2.1 (HHD) Tgm, and we also expected this GPC3144.152
peptide to be an epitope for human CTLs.

The immunization of the HLA-A2-restricted peptide,
GPC3144.152, did not induce autoimmunity in HLA-A2.1
(HHD) Tgm. It is well known that melanocyte-differentiation
antigens such as MART-1 or gpl00 are very useful for
immunotherapy of melanoma patients, but they sometimes
cause autoimmunity, such as vitiligo or uveitis, following
vaccination. We previously reported that the immunization of

the GPC3,05.305 peptide did not cause autoimmunity in BALB/c

mouse (9). To investigate whether the immunization of mice
with HLA-A2-restricted GPC3-derived peptides causes autoim-
munity, the immunohistochemical staining of several organs
with anti-CD4 and anti-CD8 mAb was done in HLA-A2.1
(HHD) Tgm immunized with a mixture of nine GPC3 peptides
7 days before the analysis. As shown in Fig. 2, we could not find
any pathologic changes, such as lymphocyte infiltration or
tissue destruction and repair in skin, lung, brain, heart, liver,
and kidney of HLA-A2.1 (HHD) Tgm. The same result was also
observed when mice were vaccinated with the GPC3144.152
peptide alone (n = 3; data not shown). These results indicate
that the GPC3,44.152 peptide-reactive CD8" CTLs do not attack
the normal tissue specimens that we investigated.

Induction of GPC3-reactive CTLs from PBMCs of HLA-A2- or
HLA-A24-positive HCC patients. We evaluated the cytotoxic
activity of CTLs that were induced with the GPC3298.306 OT
GPC3144.152 peptide from PBMCs isolated from HCC patients.
PBMCs were isolated from HCC patients positive for HLA-A24
and/or HLA-A2, and CD8" T cells sorted from the PBMCs were
cocultured with autologous monocyte-derived DCs pulsed with
each peptide as described in Materials and Methods. CTLs
from PBMCs of HLA-A2* HCC patients stimulated with the
GPC344.152 peptide or CTLs from PBMCs of HLA-A24™ HCC
patients stimulated with the GPC349530s peptide exhibited
cytotoxicity against peptide-pulsed target cells. The representa-
tive data of CTLs restricted by HLA-A2 or HLA-A24 were shown
in Fig. 3A. The CTLs induced from PBMCs of patient A2-
8 showed cytotoxic activity to T2-A0201 cells (HLA-A2+) pulsed
with the GPC3y44.15. peptide, but not to T2-A0201 cells
without peptide loading by ®!Cr release assay. The CTLs
induced from PBMCs of patient A24-12 exliibited cytotoxic
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Fig.1. Identification of HLA-A2-restricted
CTL epitopes of GPC3 by using HLA-A2.1
(HHD) Tgm. A, protocol for identification of
GPC3-derived and HLA-A2-restricted CTL
epitopes. We primed the HLA-A2.1 (HHD)
Tgm with BM-DCs (5 x 105) pulsed with
the mixture of GPC3-derived peptides
carrying HLA-A2 (4"0207) binding motif
into the peritoneal cavity once a week for
two weeks. Seven days after the last DC
vaccination, spleens were collected and
CD4 spleen cells (2 x 10%/well) were
stimulated with syngeneic BM-DCs

(2 x 10%/well) pulsed with each peptide
jn vitro for 6 days. We used these cultured
CD4~ spleen cells as responder cells in
ELISPOTassay to evaluate GPC3-specific
response of CTLs. B, bar graph, IFN-y
ELISPOTcounts/2 X 10* CD4™ spleen cells
cocultured with peptide pulsed BM-DCs
subtracted with those cocultured with
BM-DCs without peptide loading {feft).
Bar graph, summation of IFN-y ELISPOT
diameters/2 x 10* CD4~ spleen cells
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BM-DCs without peptide loading (right).
Columns, mean of triplicate assays; bars,
SE. All assays were done thrice with

similar results.

activity to the C1R-A*2402 cells (HLA-A24+) pulsed with the
GPC3298.306 peptide, but not to CIR-A*2402 cells without
peptide loading. These results indicate that these CILs had
peptide-specific cytotoxicity. Other CTLs induced from the nine
patients A2-1, A2-2, A2-3, A2-4, A24-1, A24-3, A24-4, A24-6,
and A24-7 similatly exhibited peptide-specific cytotoxicity
against peptide-pulsed target cells {(data not shown).
Furthermore, we used GPC3 transfectants, SK-Hep1/GPC3
(GPC3+, HLA-A2+, HLA-A24+) or SW620/GPC3 (GPC3+, HLA-
A2+, HLA-A24+) as target cells and examined whether we could
find GPC3-specific cytotoxic activity of CTLs. As shown in Fig.
3B, the CTLs induced from PBMCs of patient A2-3 by
stimulation with the GPC3.4415; peptide showed specific
cytotoxicity against SK-Hepl/GPC3, but not against GPC3-
negative SK-Hep1. Similarly, the GPC3395.306 peptide—induced
CTLs showed specific cytotoxicity against SW620/GPC3 in

by the CTLs.

shown in Fig. 3C, we
stimulation with the

skin kidney

spleen

jurig _ hrain heart %ver 7

cia

cos

Clin Cancer Res 2006;12(9) May 1, 2006 2692

patient A24-7 or against SK-Hep1/GPC3 in patient A24-12,
but not against SK-Hepl or SW620, respectively, which did
not endogenously express GPC3. These findings indicate that
these peptides can be processed naturally in cancer cells, and
the peptides in the context of HLA-A2 or HLA-A24 can be
expressed on the cell surface of cancer cells to be recognized

When we think about the application of GPC3 to cancer
immunotherapy, the most important point is that these GPC3-
reactive CTLs can exhibit specific cytotoxicity to the tumors
endogenously expressing GPC3. We thus investigated whether
these CTLs could kill human HCC cell lines expressing both
endogenous GPC3 and the restriction HLA class | molecules. As

could generate GPC3-reactive CILs by
GPC3144.152 peptide and these CTLs

exhibited cytotoxic activity to HepG2 (GPC3+, HLA-A2+, and

Fig. 2. Immunohistochemical staining with
anti-CD4 or anti-CD8 mAb in tissue specimens

of HLA-A2.1 (HHD) Tgm immunized with the
GPC3 144.152 peptides. These tissue specimens
were removed and analyzed 7 days after the second
DC vaccination (original magnification, X200).
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Fig. 3. CTL induction from PBMCs of HLA-A2- or HLA-A24 -positive HCC patients. A and B, GPC3 peptide-reactive CTLs were generated from CD8" Tcells of HLA-A2T
and/or HLA-A24" HCC patients. After three or four stimulations with autologous monocyte-derived DCs pulsed with the GPC3144.152 or GPC3293.306 Peptide, the CTLs were
subjected to a standard ®'Cr release assay at the indicated effector/target ratio. Their cytotoxicity against the GPC3,¢s.306 peptide pulsed CIR-A2402 cells orT2-A0201 cells,
and each unpulsed cells (4), or GPC3~ HLA-A2*, HLA-A24* HCC cell line SK-Hep-1, GPC3~ HLA-A2", HLA-A24%*colon cancer cell line SW620, and those cell lines
transfected with the human GPC3 gene; SK-Hep-1/GPC3 or SW620/GPC3 (8) were examined by a 51Cr release assay. C and D, GPC3™ HLA-A2*, HLA-A24* HCC cell line
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calculated based on the mean values of a triplicate assay. 0, inhibition of cytotoxicity by anti-HLA class  mAb (right). After the target HepG2 cells were incubated with
anti-HLA class I mAb (W86/32, 1gG,,) or anti-HLA DR mAb (H-DR-1, IgG,,), respectively, for 1 hour, the CTLs generated from PBMCs of patient A2-8 by stimulation with
GPC3144.152 Peptide (fop) or CTLs generated from patient A24-6 using the GPC3ga.306 Peptide (bottorn) were added. IFN-y production (top; IFN-y ELISPOTassay)} and

cytotoxicity (bottom; 51Ct release assay) were markedly inhibited by W6/32, but not by H-DR-1.

HLA-A24+), but not to HuH-7 {GPC3+, HLA-A2—, and HLA-
A24-) or SW620 (GPC3~, HLA-A2+, and HLA-A24+) in
patients A2-1, A2-3, and A2-4. Similarly, we could generate
GPC3-reactive CTLs by stimulation of PBMCs with the
GPC3,95.306 peptide and these CTLs exhibited cytotoxic activity
to HepG2, but not to HuH-7 or SK-Hep-1 (GPC3~, HLA-A2+,
HLA-A24+) in patients A24-4, A24-7, and A24-12.

In an HLA-class I blocking experiment, anti-HLA class I mAb
W6/32 markedly inhibited the IFN-y production stimulated
with HepG2 cells in ELISPOT assay of CTLs generated from
patient A2-8 by stimulation with the GPC3144.15, peptide (Fig.
3D, top), and inhibited cytotoxic activity against HepG2 cells in
51Cr release assay of CTLs generated from patient A24-6 by
stimulation with the GPC3,9s.306 peptide (Fig. 3D, bottom),
but anti-HLA-DR mAb, H-DR-1 did not inhibit the response of
CTLs. These results clearly indicate that these CILs recognized
HepG2 in a HLA-class I-restricted manner.

www.aacrjournals.org

2693

As shown in Table 2, we could induce GPC3-reactive CTLs
from PBMCs in ~50% of either the HLA-A2— or HLA-A24-
positive HCC patients. In patients A2-6, A24-5, A24-9, and A24-
11 who did not express GPC3 in tumor tissues, GPC3-reactive
CTLs could not be induced from their PBMCs. Among eight
HLA-A2-positive HCC patients who expressed GPC3 in HCC
tissue or produced soluble GPC3 in sera, patients A2-1, A2-2,
A2-3, A2-4, A2-6, A2-7, A2-9, and A2-10, GPC3-reactive CTLs
could be generated from the PBMCs of only four patients
(50%). In patient A2-6, GPC3 was detected only in the serum
but not in HCC tumor tissue. It was thought to be possible that
the majority of GPC3 protein was secreted away in this type of
HCC cell as described previously (7). Among six HLA-A24-
positive patients who expressed GPC3 in tumor tissue, patients
A24-1, A24-2, A24-3, A24-6, A24-10, and A24-12, GPC3-
reactive CTLs could be generated from the PBMCs of only four
patients (67%). We also examined whether it was possible to

Clin Cancer Res 2006;12(9) May 1, 2006



Human Cancer Biology

induce GPC3-specific CTLs from PBMCs isolated from healthy
donors (each HLA type, 1 = 3), but we failed to generate GPC3-
specific and HLA-A2- or HLA-A24-restricted CTLs even though
PBMCs were stimulated with the peptides thrice in vitro {data
not shown). These results suggest that GPC3-reactive CTLs
could only be induced in patients who expressed GPC3 in
tumor tissue, thus, indicating the existence of GPC3-reactive
CTL precursors in patients with GPC3* HCC. We also examined
whether GPC3-reactive CTLs could be generated more fre-
quently from PBMCs isolated from HCC patients positive for
serum-soluble GPC3. As shown in Table 2, the presence of
serum-soluble GPC3 did not correlate statistically with the
successful induction of GPC3-reactive CTLs. As a result, we
could not observe the enhancement of CTL induction efficiency
via possible antigen presentation of soluble serum GPC3
through HLA-class II pathways to CD4* T cells or cross-
presentation through the HLA class [ pathway to CD8" T cells
(25, 26} in patients positive for serum GPC3.

Inoculation of the GPC3 peptide-induced CTLs reduced growth
of a GPC3" human HCC tumor cell line implanted into NOD/
SCID mouse. To investigate the effects of GPC3 peptide-
reactive CTL inoculation into the mice implanted with the
GPC3" human HCC cell line, we s.c. inoculated SK-Hep1/GPC3

cell lines positive for both HLA-A2 and HLA-A24 into NOD/
SCID mice, and i.v. injected the mixture of CTLs generated from
several HCC patients positive for HLA-A2 or HLA-A24 into
mice implanted with SK-Hepl/GPC3 when the diameter of
these tumors reached 5 X 5 mm in size as described in
Materials and Methods. The CILs injected into mice were
prepared by stimulating peripheral blood CD8" T cells with
HLA-A2- or HLA-A24-restricted GPC3-epitope peptides or
control-irrelevant HIV peptides as described in Materials and
Methods. The tumor sizes of four individual mice in each group
(Fig. 4A) and mean + SD of tumor sizes in each group (Fig. 4B)
were evaluated. After 5 days from the second inoculation of
GPC3 peptide-reactive CTLs, the tumor size of SK-Hep1/GPC3
was apparently reduced in comparison to the size of tumor
mass implanted into NOD/SCID mice injected with control T
cells or saline alone {P < 0.01). These results clearly indicate the
efficacy of adoptive GPC3 peptide-reactive CTL transfer therapy
for GPC3* tumor in mice.

Discussion

In this article, we identified HLA-A24-restricted or HLA-
A2-restricted GPC3 CTL epitope peptides, and found that

Table 2. Expression of GPC3 in HCC tissue, quantification of serum-soluble GPC3, and GPC3-specific CTL induction
in HCC patients T '
Age Gender  State of tumor*® GPC3 expression’ Serum GPC3* HLA expression® CTL induction!

HLA-A2 (A°0207) - positive patients
Pt-A2-1 80 F llla + + + +
Pt-A2-2 72 M It + + + +
Pt-A2-3 87 F Il ND + ND +
Pt-A2-4 54 M I + - + +
Pt-A2-5 57 M | ND - ND -
Pt-A2-6 66 M I - + - -
Pt-A2-7 54 M llla + - + -
Pt-A2-8 73 M It ND - ND +
Pt-A2-9 68 F Hla + - + -
Pt-A2-10 54 M It + + + -

HLA-A24 (A°2402)-positive patients
Pt-A24-1 60 M Va + + + +
Pt-A24-2 57 M IVa + + + -
Pt-A24-3 75 F lila + + + +
Pt-A24-4 59 M Ha ND - ND +
Pt-A24-5 52 M Vb - - + -
Pt-A24-6 65 M | ND + ND +
Pt-A24-7 61 M I ND - ND +
Pt-A24-8 74 M ] ND - ND -
Pt-A24-9 59 M Vb - - - -
Pt-A24-10 69 M Va + + + -
Pt-A24-11 72 M [ - - + -
Pt-A24-12 61 M llia + + + +

Abbreviations: F, female; M, male; ND, not determined.

“Tumor-node-metastasis classification.

tPositive (+) or negative (—) staining of tumor cells in contrast with peritumor normal tissue as background staining.

1Serum levels >106 ng/mL were evaluated as positive.

§Immunohistochemical staining of the membrane of tumor cells was evaluated as positive.

1Specific lytic activity (220%) at ETratio = 20 against HepG2 target cells was evaluated as positive by 5'Cr release assay.
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A
) . 1251 GpcaCTLlines(n=4) 1257  Control T cells (n=4) 1251 Saline (n=4)
Fig. 4. Marked inhibition of growth of a
GPC3-transfected human HCC cancer cell &E\ 100 1 100 - 100
line, SK-Hep1/GPC3, engrafted into NOD/ £
SCID mice after adoptive transfer of human o 751 CTLadoptive 754  CTL adoptive 754
CTLs induced by the GPC3 peptides. 4, N i.v. transfer i.v. transfer
when tumor size reached 256 mm? on day 9 f 50 504
after s.c. tumor implantation, human CTLs g
(3 % 10 reactive to HLA-A2-restricted S 254 251
(8) GPC3 peptide and generated from -
one HLLA-A2* donor, or those reactive to 0 gy O S SE— S
HLA-A24-restricted () GPC3 peptide 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
and pooled from two HLA-A24* donors . — Days
were i.v. inoculated. On day 14, the —&- —&~ derived from HLA-A2™ patients Y
inoculation of CTLs generated from ~~ O derived from HLA-A247 patients
the donors distinct from those at the B
first injection was repeated. The _ . _
control CD8" Tcells stimulated with 125 i GPC3 CTL lines (n=4)
irrelevant HLA-A2-restricted (A ) or COl:Ierl T cells (n=4)
HLA-A24-restricted (A) HIV peptides & 1004  —O— Saline (n=4)
were also injected into mice as a control. g
Tumor volumes in NOD/SCID mice given ~ 754 CTL adoptive
twice on days 9 and 14 with GPC3 epitope [ Lv. transfer
peptide - induced CTL lines (n = 4), control I
CD8* Tcells (n = 4), or saline alone (n = 4). 5§ S0
Tumor size was expressed in square g P <0.05
millimeters. B, points, mean tumor sizes in = 254 | ]
each group of mice; bars, +SD (n =4).
Statistical significance was evaluated using i
t test. 0 5 10 15 20 25 30 35
Days

GPC3-reactive CTLs could be generated from PBMCs stimulated
with. these peptides in ~50% of HCC patients. Vaccination
based on these peptides did not induce autoimmunity in HLA-
A2.1 {HHD) Tgm of a B57Bl/6 background. We previously
identified the GPC3,95.30¢ peptide to be a CIL epitope in BALB/c
mouse, and we expected that this GPC3 peptide might also be
present in human CTL in a HLA-A24-restricted manner. As
expected, we could generate HLA-A24-restricted and the
GPC3,95 306 peptide-reactive human CILs in this study. As a
result, BALB/c mice may be useful for identifying HLA-A24-
restricted CTL epitopes. HLA-A2.1 (HHD) Tgm was reported to
be a versatile animal model for the preclinical evaluation of
peptide-based immunotherapy (12, 13). We could also find its
usefulness for the identification of HLA-A2-restricted antigenic
epitope in this study.

In this study, we wanted to identify the most effective major
CTL epitopes derived from GPC3. As a result, we used BM-DCs
derived from HLA-A2.1 (HHD) Tgm and pulsed BM-DCs with
the mixture of GPC3 peptides for the vaccination of mice. Some
of the peptides tested stimulated the weak response of CTLs in
an ELISPOT assay, and these peptides might also be useful for
future analysis. It was recently reported that peptides having
a weak affinity to MHC, which could not be predicted by a
BIMAS system, could induce peptide-reactive CTLs with a
cytotoxic activity (27). To search for more peptides that can be
applicable for immunotherapy, it may be necessary to check
these minor CTL epitopes in the future. In this study, the GPC3-
derived peptides predicted to have high binding affinity to
HLA-A2 molecules and having the amino acid sequences
conserved between human and mouse GPCs were selected for
the analysis. When we analyzed the amino acid sequence of
human GPC3 protein, all of the top 28 human GPC3 peptides
having high binding scores (>100) to HLA-A2 molecules shared

www.aacrjournals.org
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the same amino acid sequences with mouse GPC3. Therefore, it
is unlikely that we excluded many candidates of human GPC3-
derived and HLA-A2-restricted CIL epitopes from the analysis
by selecting the peptides having amino acid sequences shared
between human and mouse GPC3. Furthermore, we have to
consider the differences in the T cell repertoire in mice and
humans. Thereby, we may miss GPC3 peptides recognized by
human CILs but not by mouse CTLs.

Considering ideal immunogenic target molecules for cancer
immunotherapy, it is important to select a tumor antigen
that could not be lost by tumor cells through immunoediting
(28, 29). Recently, Capurro et al. reported that GPC3 is
involved in the carcinogenesis and proliferation of HCC via
regulation of noncanonical Wnt signals (30). Therefore, it may
be possible that tumor cells cannot lose the GPC3 expression in
order to continue to grow. Furthermore, according to an
immunohistochemical analysis of the expression of HLA-class I
molecules using newly developed specific mAb, EMR 8-5,° we
found that almost all HCC cells expressed HLA-class I as far as
we could examine (Table 2). For these reasons, we think that
GPC3 is a very useful candidate as a target tumor antigen for the
immunotherapy of HCC. We and others previously reported
that the expression of GPC3 in HCC was detected from an eatly
stage and the quantification of the soluble GPC3 protein in sera
was useful for a diagnosis of HCC at an early stage
(5, 7). As a result, GPC3-based immunotherapy might be able
to prevent the appearance of HCC in patients with hepatitis B
or C-based liver cirthosis.

In this study, we found that it is possible to induce GPC3-
reactive CTLs by the stimulation of PBMCs with the two major
GPC3 epitopes in vitro in 50% of the HCC patients having an
appropriate HLA-class I allele. However, it is necessary to
investigate more patients to estimate the probability of a
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successful induction of GPC3-reactive CTLs in HCC patients.
We intended to know whether there was any correlation
between successful induction of GPC3 peptide-reactive CTLs
and prognosis or CIL infiltration into tumor tissue of these
patients, therefore, we investigated the seven index cases;
patients A2-10, A24-1, A24-2, A24-4, A24-9, A24-11, and
A24-12, to see whether there was any correlation between
successful induction of GPC3 peptide-reactive CTLs and
prognosis or CIL infiltration into the tumor tissue of these
patients. In three patients, A24-1, A24-4, and A24-12, who
could generate GPC3 peptide-reactive CTLs, patient A24-12
recurred at 6 months after operation. In four patients, A2-10,
A24-2, A24-9, and A24-11, who failed to induce GPC3-peptide-
reactive CTLs, patient A24-9, whose HCC did not express
GPC3, recurred at 6 months after operation, and patient A24-2
recurred at 3 months after operation and died 3 months after
recurrence. These three recurred patients had extremely strong
tumor invasion to the vasculature. Therefore, it was difficult to
evaluate the correlation between the positive CTL response and
clinical improvement at the present stage, and we have to
increase the number of patients investigated and to do further
statistical analyses on these relationships. In patients who could
be examined for the infiltration of CD8-positive cells into their
tumor specimens and for the existence of terminal deoxynu-
cleotidy] transferase— mediated nick end labeling - positive cells
in tumor tissue, patients A2-10, A24-1, A24-2, and A24-9, there
was no strong correlation between the positive GPC3 peptide-
reactive CTL response and for the existence of CD8-positive or
terminal deoxynucleotidyl transferase-mediated nick end
labeling - positive cells in the tumor tissues (data not shown).
As shown in Fig. 4, we observed a regression of the tumor
masses in NOD/SCID mice implanted with SK-Hep1/GPC3
and transferred iv. with the GPC3 peptide-reactive CTLs in
comparison to the mice injected with control CD8" T cells or
saline alone. Although the regression of tumor growth was
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Immunogenic Variation between Multiple HLA-A*0201-
Restricted, Hepatitis C Virus-Derived Epitopes for
Cytotoxic T Lymphocytes

SATOSHI OHNO,? 0SAMU MORIYA,! TAKAYUKI YOSHIMOTO,3
HIDENORI HAYASHI,> TOSHITAKA AKATSUKA,! and MASANORI MATSUL

ABSTRACT

CD8™* cytotoxic T lymphocytes (CTLs) play a critical role in the immune control of Hepatitis C
Virus (HCV) infection. In the current study, a number of HLA-A*0201-restricted CTL epitopes de-
rived from HCV were evaluated by examining the peptide-binding affinity for major histocompat-
ibility complex (MHC) class I molecules, the stability of peptide-MHC complexes, killing activities
of peptide-induced CTLs, and frequencies of intracellular interferon (IFN)-y-positive CD$* T cells.
Among 24 peptides tested, 15 peptides induced high or medium killing activities of peptide-specific
CTLs. Thirteen of the 15 peptides exhibited high or medium binding affinities for HLA-A*0201
molecules, indicating that the high binding affinity for MHC class I molecules is an important fac-
tor for immunogenicity. In contrast, the stability of peptide-MHC class I complexes was not corre-
lated with killing activities of peptide-induced CTLs. Furthermore, only a limited number of pep-
tides could induce high or medium frequencies of IFN-y-producing CD8* T cells, which were
generally considered to play a crucial role for the clearance of HCV. Analyses of the immunogenicity
of CTL epitopes such as in the current study should provide important information about the de-
sign of an efficient HCV vaccine that induces vigorous, sustained, and broad HCV-specific CTL re-
sponses.

INTRODUCTION

CHRONIC INFECTION with Hepatitis C Virus (HCV) is
a serious issue because this infection often leads to
the development of cirrhosis and hepatocellular carci-
noma {25). However, any treatment of HCV infection is
not successful in most cases, and an effective HCV vac-
cine is not available so far. Therefore, it is urgent to de-
velop an efficient and safe HCV vaccine.

It is well documented that major histocompatibility
complex (MHC) class I-restricted, CD8* cytotoxic T

lymphocytes (CTLs) play a major role in the immune
control of various virus infections. In the case of HCV
infection, spontaneous resolution of acute HCV infection
was associated with vigorous HCV-specific CTL re-
sponses in chimpanzees (5) and humans (10,14,30).
Hence, HCV-specific CTLs are likely to be crucial to
eradicate HCV. However, in most cases, the cellular im-
mune response fails to clear HCV and, eventually, more
than 60% of infected individuals develop chronic hep-
atitis. This viral persistence might be explained by im-
paired functions of cellular immunity, including T cells

1Department of Microbiology, Saitama Medical School, Saitama, Japan.
2Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan.
SIntractable Immune System Disease Research Center, Tokyo Medical University, Tokyo, Japan.
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and dendritic cells (1,13,30,33), and viral escape arising
from mutation of key epitopes recognized by T cells
(6,7,22,29,31). Furthermore, in chronic HCV infection,
the precursor frequency of HCV-specific CTLs is ex-
tremely low although HCV-specific CTLs are detectable
in both peripheral blood and liver (14,23,24). Therefore,
one may support an idea that an HCV vaccine should ef-
ficiently elicit HCV-specific CTL responses that are qual-
itatively and/or quantitatively sufficient for viral clear-
ance.

To date, a number of CTL epitopes derived from
HCV have been identified (2,4,10,27,28,32,34). How-
ever, for most of them their immunogenicity has not
been well characterized. Only one previous study pro-
vided extensive analyses of the immunogenicity of
HCV-derived CTL epitopes (11). In the current study,
24 HLA-A*0201-restricted, HCV-derived epitopes
were evaluated by examining peptide-binding affinity
for HLA-A*0201 molecules, the stability of pep-
tide~HLA-A¥0201 complexes, killing activities of
peptide-induced CTLs, and frequencies of intracellu-
lar interferon (IFN)-y-positive CD8* T cells. Identifi-
cation of highly immunogenic, immunodominant epi-
topes should be useful for the design of an efficient
HCV vaccine that induces vigorous, sustained, and
broad HCV-specific CTL responses.

MATERIALS AND METHODS

Mice

HHD mice express a transgenic HLA-A*0201 mono-
chain, designated HHD, in which human B,-microglob-
ulin (82m) is covalently linked to a chimeric heavy chain
composed of HLA-A*0201 (a; and a, domains) and
H-2Db (@5, transmembrane, and cytoplasmic domains)
(17,20). Because the innate H-2D? and mouse 32m genes
have been disrupted by homologous recombination, the
only MHC class I molecule on the cell surface, HHD, is
efficiently used by HLA-A*0201-restricted CTLs. Eight-
to 12-week old mice were used for all experiments. Mice
were housed in appropriate animal care facilities at
Saitama Medical School (Saitama, Japan) and handled
according to international guidelines for experiments
with animals.

Synthetic peptides

As shown in Table 1, 24 HLA-A*0201-restricted pep-
tides derived from HCV Core, E1, E2, NS3, NS4, or NS5
were synthesized by Qiagen (Tokyo, Japan). All the pep-
tides had previously been defined as epitopes for HCV-
specific CTLs (Table 1) (2,4,10,27,28,32,34).
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Cell lines

The HHD gene-transfected mouse lymphoma cell line
RMA-HHD (H-2b) was previously described (20). The
HLA-A*0201" human lymphoblastoid cell line T2 (26),
in which the transporter associated with antigen process-
ing (TAP)-1 and TAP-2 genes are deficient, and the hu-
man kidney cell line 293 (8) were obtained from the
American Type Culture Collection (ATCC, Manassas,
VA). T2 cells were maintained in RPMI 1640 supple-
mented with 10% fetal calf serum (FCS) (R-10). 293 and
RMA-HHD cells were cultured in Dulbecco’s modified
Eagle’s medium with 10% FCS (D-10) and D-10 con-
taining G418 (500 pg/ml) (Sigma, St. Louis, MO), re-
spectively.

Plasmid and adenoviruses

The interleukin (IL)-12 expression plasmid, designated
p3XFLAG-IL-12, was previously described (17). Plas-
mid DNA was purified by ultracentrifugation to equilib-
rium in cesium chloride—ethidium bromide gradients.
Replication-defective recombinant adenoviruses express-
ing HCV structural proteins including Core, El, and E2
(Adex1SR3ST) and HCV nonstructural proteins includ-
ing NS3, NS4, and NS5A (Adex1CA3269) were de-
scribed previously (15,17,32). Wild-type adenovirus
(Adex1w) was used as a control. Virus was amplified in
293 cells and titered in standard plaque assays.

Peptide-binding assay

The peptide-binding assay was performed as described
(21). Briefly, T2 cells were suspended in AIM-V serum-
free medium (Invitrogen Life Technologies, Rockville,
MD) supplemented with 100 nM human B82m (Sigma)
and were incubated with synthetic peptide at various con-
centrations overnight at 37°C. Cells were stained with the
conformationally sensitive, anti-HLA-A*0201 mono-
clonal antibody (mAb) BB7.2 (19), followed by fluores-
cein isothiocyanate (FITC)-labeled goat anti-mouse IgG
antibody (Sigma). Mean fluorescence intensity (MFI)
was measured by flow cytometry (FACScan; BD Bio-
sciences Immunocytometry Systems, Mountain View,
CA). The concentration of each peptide that yields the
half-maximal MFI of T2 cells pulsed with a control pep-
tide, NS3-1585 (Table 1), was calculated as the half-max-
imal binding level (BLsg) (12). For most peptides, ex-
periments were performed three times, and data are given
as mean values * standard error of the mean (SEM).

Complex stability assay

Peptides that showed a BLsp of less than 100 uM in
the peptide-binding assay were evaluated for their half-
lives as peptide-MHC class I complexes at 37°C by com-
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TaBLE 1. BINDING oF HCV-DERIVED PEPTIDES TO HLA-A*0201 MOLECULES
AND STABILITY OF PePTIDE-HLA-A*0201 COMPLEXES
Name Residues Sequence (Ref.) BLso (uM)* Stability (h)P
NS3-2252 22522260 ILDSFDPLV (4) 19.8 = 6.9 11.9 = 3.6
Core-178 178-187 LLALLSCLTV (2) 23.0 =+ 2.3 177 & 2.7
NS4-1666 1666--1674 VLVGGVLAA (27) 27.0 £ 73 2.9 + 0.3
Core-132 132-140 DLMGYIPLV (2) 27.5 + 3.6 3.6 £ 04
NS4-1769 1769-1777 HMWNEFISGI (27) 283 * 6.9 134 = 1.7
NS5-1992 19922000 VLSDFKTWL (32) 37.8 = 2.5 10.2 = 0.9
Core-35 35-44 YLLPRRGPRL (2) 42.5 + 3.8 24<
NS4-1789 1789-1797 SLMAFTAAV (4) 453 = 2.5 24<
NS3-1585 1585-1593 YLVAYQATV (34) 49.6 = 0.9 24<
NS5-2145 2145-2154 LLREEVSFRV (32) 51.2 £ 143 2.5 + 0.1
NS4-1920 19201928 WMNRLIAFA (27) 57.1 = 9.1 27 *+ 02
NS3-1169 1169-1177 LLCPAGHAV (4) 60.0 9.7 £ 1.8
NS3-1131 1131-1139 YLVTRHADV (27) 60.3 + 6.3 55+ 0.5
NS3-1073 1073-1081 CINGVCWTV (4) 66.9 + 17.0 8.1 0.5
NS4-1851 1851-1859 ILAGYGAGV (2) 68.8 = 23.8 48 = 1.1
NS3-1406 1406-1415 KILVALGINAV (4) 76.7 £ 15.4 24<C
NS4-1671 1671-1680 VLAALAAYCL (34) 104.3 NT
E1-363 363371 SMVGNWAKV (10) 130.7 % 26.1 NT
E2-686 686-694 ALSTGLIHL (2) 156.9 + 7.8 NT
E1-220 220-227 ILHTPGCV (10) 166.6 = 34.0 NT
NS4-1807 1807-1816 LLENILGGWYV (2) 172.5 NT
E2-728 728-736 FLLLADARAY (27) 204.5 NT
E1-257 257266 QLRRHIDLLYV (28) 416.4 NT
E2-726 726-734 LLFLLLADA (27) 607.7 NT

Abbreviations: 24<<, more than 24; NT, not tested.

3Data of peptide-binding assays are shown as BLs, indicating a concentration of each peptide that yields the half-maximal MFI
of T2 cells pulsed with NS3-1585. For most peptides, data are given as mean values = SEM of three independent experiments. For
several peptides, data are shown as mean values of two independent experiments.

bPeptides that showed a BLsg less than 100 #M in the peptide-binding assay were evaluated for their half-lives (hours) as pep-
tide—class I complexes at 37°C by complex stability assay. For each peptide, experiments were performed three times, and data are

given as mean values = SEM.

plex stability assay as described previously (21). In brief,
T2 cells were incubated with 100 uM peptide and 100
nM human B2m (Sigma) overnight at 37°C, and were
then incubated for 1 h at 37°C in R-10 containing
brefeldin A (Sigma) at 10 wg/ml to block the egress of
new MHC class I molecules. At the indicated time points,
an aliquot was stained with BB7.2 (19), followed by
FITC-labeled anti-mouse IgG antibody. For each peptide,
experiments were performed three times, and data are
given as mean values = SEM.

Immunization

Mice were immunized as described previously (16,17).
Briefly, mice were intramuscularly injected twice via the
tibialis muscles with 30 ug of p3XFLAG-IL-12, and then
immunized intraperitoneally with 5 X 107 plaque-form-

ing units (PFU) of either Adex1SR3ST, Adex1CA3269,
or Adexlw. The interval between immunizations was 2
weeks.

Cytotoxic assay

CTL assays were carried out as described previously
(17). In brief, 2 to 3 weeks after immunization, mice were
killed. Spleen cells were then cultured for 1 week with
irradiated (30 Gy), syngeneic naive spleen cells prepulsed
with synthetic peptide at 10 uM, and employed as ef-
fector cells in standard 3'Cr release assays. RMA-HHD
cells were pulsed with or without an appropriate peptide
at 10 uM for 1 h, labeled with 100 uCi of Nay51CrO,,
and used as target cells. After a 4-h incubation of effec-
tor cells together with target cells, the supernatant of each
well was harvested and radioactivity was counted. Re-
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sults were calculated as the mean of a triplicate assay.
Percent specific lysis was calculated according to the for-
mula: % SpeCiﬁC lySiS = [(Cpmsample - Cpmspontaneous)/
(CPMimaximum — CPMspomtancous)] X 100. Spontaneous re-
lease represents the radioactivity released by target cells
in the absence of effectors, and maximum release repre-
sents the radioactivity released by target cells lysed with
5% Triton X-100. At least three mice per group were used
in each experiment. Each experiment was repeated three
times. Statistical analyses were performed by Student 7
test. p < 0.05 was considered statistically significant.

Intracellular IFN-vy staining

Intracellular cytokine staining (ICS) was performed
as described (17,18). Briefly, spleen cells of three to
five immunized mice per group were pooled and re-
suspended in R-10. In each well of a 96-well round-
bottom plate, 2 X 106 spleen cells were incubated with

100

461

brefeldin A (GolgiPlug, 0.2 uL/well; BD Biosciences
Pharmingen, San Diego, CA) for 5 h at 37°C in the
presence or absence of a peptide at a final concentra-
tion of 10 pM. Cells were then washed once with ice-
cold phosphate-buffered saline (PBS) containing 1%
FCS and 15 mM sodium azide (fluorescence-activated
cell-sorting [FACS] buffer), and incubated for 10 min
at 4°C with rat anti-mouse CD16/CD32 mAb (Fc
Block; BD Biosciences Pharmingen). After incubation,
the cell surface was stained with FITC-conjugated rat
anti-mouse CD8a mAb (clone 53-6.7; BD Biosciences
Pharmingen) for 30 min at 4°C. After washing twice
with FACS buffer, cells were fixed and permeabilized
with a Cytofix/Cytoperm kit (BD Biosciences
Pharmingen), and stained with phycoerythrin (PE)-
conjugated rat anti-mouse IFN-y mAb (clone
XMG1.2; BD Biosciences Pharmingen). After wash-
ing with 1X Perm/Wash solution (provided with the
kit), flow cytometric analyses were performed.
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FIG. 1. CTL activities specific for 24 HCV-derived peptides. Mice were injected with p3XFLAG-IL-12, and then immu-
nized intraperitoneally with 5 X 107 PFU of either Adex1SR3ST or Adex1CA3269. Two to 3 weeks after immunization, spleen
cells of Adex1SR3ST-immunized mice and Adex1CA3269-immunized mice were prepared and stimulated in vitro for 1 week
with each peptide derived from the HCV structural proteins (Core, E1, and E2), and nonstructural proteins (NS3, NS4, and NS35),
respectively. After 1 week, *!Cr release assays were performed at various E:7 ratios with RMA-HHD cells pulsed with (open
symbols) or without (solid symbols) a relevant peptide as target. Data are representative of one of three independent experiments
and are shown as the means & SEM of triplicate wells. At least three mice per group were used in each experiment. Percentages
of specific lysis of target cells pulsed with each peptide were compared with percentages of lysis of target cells pulsed with no

peptide by Student ¢ test (*p > 0.05; *¥p < 0.05).
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