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Development of mirror manipulator for hard-x-ray nanofocusing

at sub-50-nm level
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X-ray focusing using Kirkpatrick-Baez (KB) mirrors is promising owing to their capability of highly
efficient and energy-tunable focusing. We report the development of a mirror manipulator which
enables KB mirror alignment with a high degree of accuracy. Mirror alignment tolerances were
estimated using two types of simulators. On the basis of the simulation results, the mirror
manipulator was developed to achieve an optimum KB mirror setup. As a result of focusing tests at
BL29XUL of SPring-8, the beam size of 48 X 36 nm? (V X H) was achieved in the full width at half
maximum at an x-ray energy of 15 keV. Spatial resolution tests showed that a scanning x-ray
microscope equipped with the KB focusing system could resolve line-and-space patterns of 80 nm

linewidth in a high visibility of 60%. © 2006 American Institute of Physics.

[DOIL: 10.1063/1.2349594]

1. INTRODUCTION

The use of x-ray microscopy using a synchrotron radia-
tion source has expanded in the fields of medical, biological,
and material sciences owing to its capability of nondestruc-
tive, high-resolution, and highly sensitivity analysis. Fresnel
zone platesl and Kirkpatrick-Baez (KB) mirrors®™ are gen-
erally employed as x-ray focusing optical devices in x-ray
microscopy. KB mirrors, utilizing the total reflection phe-
nomenon, are known to be promising devices for an achro-
matic and highly efficient focusing system. This optical sys-
tem consists of two total reflection elliptical mirrors having
two focal points of a light source and a collecting point. One
mirror is used for vertical focusing and the other for horizon-
tal focusing. To realize an ideal focusing state, both
nanometer-level figure accuracy on mirror surfaces and mir-
ror alignments with a high degree of accuracy are required.g‘9

In this study, we developed a hard-x-ray nanofocusing
system using KB mirror optics for a scanning hard-x-ray

0034-6748/2006/77(9)/093107/5/$23.00

77, 093107-1

microscope with a spatial resolution better than 50 nm. A
paper regarding the fabrication of ultraprecise mirrors for
hard-x-ray nanofocusing has already been published.m This
article focuses on the development of a mirror manipulator to
align KB mirrors accurately. Since a pair of mirrors has mul-
tiple degrees of freedom, it is difficult to adjust the alignment
of the two mirrors precisely in a short time'' without knowl-
edge of the relationship between mirror-positioning errors
and focal sizes. The required alignment accuracy for ideal
focusing was investigated using both a conventional ray-
tracing simulator and a wave-optical simulator.'? The latter
can simulate accurate intensity profiles under the nearly
diffraction-limited condition. The mirror manipulator was
compactly designed and developed on the basis of the simu-
lation results. Using the manipulator, hard-x-ray diffraction-
limited focusing with a size less than 50 nm was realized at
an x-ray energy of 15 keV.

© 2006 American Institute of Physics
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TABLE 1. Parameters of the designed elliptical mirrors.

First Mirror Second Mirror

Glancing angle (mrad) 3.65 4.15
Focal length (mm) 253 150
Mirror length (mm) 100 100
Length of ellipse (m) 1000.150 1000.253
Breadth of ellipse {mm) 89.406 132.019
Substrate material Cz-(111)Si single Cz-(111)Si single
crystal crystal
Surface material Pt Pt
Coating thickness (nm) 50 50

Ii. DESIGN OF ELLIPTICAL MIRRORS

Parameters of the elliptical mirrors shown in Table I are
designed to realize a focal size of less than 50 nm under the
diffraction-limited condition (shown in Fig. 1). A major fea-
ture of our system is that relatively long work distances of
100 mm are selected in consideration of the practical use of
an x-ray microscope system. To realize sub-50-nm focusing,
these mirrors are designed to have glancing angles of ap-
proximately 4 mrad. The mirror surfaces are coated with
platinum to give high reflectivity at an x-ray energy of
15 keV. In this case, the focal size was estimated using the
wave-optical simulator to be 36 nm(V) X 48 nm(H) for the
full width at half maximum (FWHM).

Ill. ANGLE ERROR TOLERANCES REQUIRED FOR
DIFFRACTION-LIMITED FOCUSING

We estimated the tolerance limits of mirror-positioning
errors required to obtain ideal focal sizes. As is well known,
glancing angle rotations, in-plane rotations, and perpendicu-
larity between mirrors have to be finely adjusted in KB mir-
ror alignment {shown in Fig. 2). First, the tolerance limits of
these rotations were investigated using a ray-tracing simula-
tor. The tolerances were estimated on the basis of compari-
son between the calculated focus size and diffraction-limited

Incident slit
100 100pm 1* Mirror 2™ Mirror Screen
(Vertical focusing) (Horizontal focusing) Q’%%
1. 100mm e
< 3' Focal point
I —— ~ S
—— 160mm ’ s
!\ 950m ! 163mm l 150mm 57‘{ .
| I r

FIG. 1. Optical system using KB mirrors.

1* Mirror 1 2" Mirror

Front View Side View

FIG. 2. Angle parameters for KB arrangement. Glancing angle rotation 6.
in-plane rotation ¢, and perpendicularity ¢.
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size. The obtained results are shown in Figs. 3(a)-3(c). Hori-
zontal lines in the graphs indicate the diffraction limits pre-
dicted by the wave-optical simulator. Here, they are defined
as the distance between the first minima instead of the
FWHM to compare the obtained results with the diffraction
limits accurately. The tolerance is defined as the range indi-
cated by the arrows. Error tolerances required for diffraction-
limited focusing are summarized in Table IL.

Since the tolerance limits of glancing angle rotations
were found to be severe, they were investigated in detail
using the wave-optical simulator (shown in Fig. 4). Figure
4(b) shows the relationship between glancing angle errors
and FWHM. In the wave-optical simulation, the tolerance
limit is defined as the angle at which the focus size increases
to 120% of the smallest FWHM.

On the basis of these results, a special control system for
the adjustment of glancing angles and perpendicularity be-
tween the two mirrors was designed and developed.

TABLE II. Angle error tolerances required for diffraction-limited focusing.

Alignment axis Vertical focusing mirror Horizontal focusing mirror

Glancing angle® (urad) +1.5 +0.9
Glancing angle® (urad) +0.6 +0.4
Perpendicularity (urad) +40 +40
In-plane rotation (mrad) +13 x16

“Wave-optical simulator.
hszy-tracing simulator.
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FIG. 4. Simulation results using wave-optical simulator for glancing angle
alignments. (a) Series of beam profiles at every 2 urad error from optimum
glancing angle at x-ray energy of 15 keV. (b) Relationship between glancing
angle errors and FWHM.

IV. DEVELOPMENT OF MIRROR MANIPULATOR

A. Adjustment system for glancing angles

A glancing angle adjustment system having a controlla-
bility of 0.04 urad and no backlash was developed using a
combined system of flexure hinges and a linear actuator (Fig.
5). In this system, the distance between the rotation center
and the supporting point of the linear actuator is 100 mm; a
100 nm step of the linear actuator leads to a 1 urad step of
the glancing angle. The flexure hinges were designed to have
a spring constant of 3343 N/rad to provide the linear actua-
tor with a moderate force (approximately 3 kgf) when the
glancing angle is equal to 4 mrad. Two flexure hinges were
mounted on both sides of the mirrors to avoid abnormal ro-
tation errors such as twist errors. Figure 5(b) shows the result
of the performance test, in which displacement angles were
measured with a microlaser interferometer (DS-80, Canon
Co., Ltd.). The result shows that the system can control the

Rev. Sci. Instrum. 77, 093107 (2006)
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FIG. 5. {(a) Adjustment system for glancing angle and (b) a result of perfor-
mance test.

glancing angle without backlash over an angle range of at
least 0.2 urad.

B. Adjustment system for perpendicularity between
mirrors

The perpendicularity can be preadjusted within the re-
quired accuracy because it can be determined only by the
relative rollings between the two mirrors. The schematic dia-
gram of the system is shown in Fig. 6. This system consists
of two autocollimators (KT-7000, Katsura Opto Systems Co.,
Ltd.), a pentaprism, and tilt stages. A pentaprism, having a

Auto-collimator .

Tilt stage..

s

Rotation ax:s 2

Micrometer head

FIG. 6. Adjustment system for perpendicularity between two mirrors.
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Auto collimator
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1

Flexure hinge

X-ray

Pertaprism - Linear actuator

X-Y stage

FIG. 7. Schematic diagram of developed mirror manipulator.

90° deviation tolerance of 36.4 urad, is employed to irradi-
ate the laser beam of the autocollimator onto the surface of
the horizontal focusing mirror. The parallelism between the
two autocollimators was adjusted with a sufficiently flat mir-
ror. The most important point is that accurate perpendicular-
ity adjustment can be achieved easily and rapidly as long as
the optical axes of the two autocollimators are parallel. This
system enables perpendicularity adjustment with an angle
resolution of 36.4 urad.

C. Mirror manipulator

Figure 7 shows a schematic diagram of the developed
manipulator equipped with the adjustment systems. For in-
plane rotation adjustment, only micrometer heads are em-
ployed, because the acceptable range is more than +10 mrad.

V. EXPERIMENTS ON FOCUSING PROPERTIES
A. Experimental setup

Focusing tests at an x-ray energy of 15 keV were per-
formed at the I-km-long beamline (BL29XUL) of
SPring-8.]3 The mirror manipulator was placed at the third
experimental hutch, which was 950 m downstream of a
double crystal monochromator (shown in Fig. 8). The in-
plane rotations and perpendicularity were adjusted with the

Tncident slit ADSIt Ton chamber Avalanche Photodiode (APD)

{100um x 100um)
= mirz:or 2™ mirror
& SR A fm

Cross wire

Doubde-Crystal Monochromater (DCM) BL29XUL

FIG. 8. Experimental setup for focusing tests.
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required accuracies in advance. The glancing angle align-
ments were finely tuned while measuring the intensity
profiles.

A wire-scanning method with a gold wire of 200 um in
diameter was employed to measure the intensity profiles at
the focal plane. A linear-encoder-based feedback X-Y stage
having a positioning resolution of 1 nm (Sigma Tech Co.,
Ltd.) was utilized to scan the wire two dimensionally.

We also demonstrated the use of a scanning x-ray micro-
scope with a test pattern mounted on the X-Y stage close to
the wire. The test pattern has periodic lines and spaces of
various linewidths to investigate the best spatial resolution.
In this experiment, scanning pitches are 16, 18, and
20 nm/pixel for the patterns having linewidths of 80, 90, and
100 nm, respectively. Exposure time is 1 s/pixel for each
scan.

B. Experimental resulis

The beam intensity profiles were obtained by differenti-
ating the curves of the intensity data measured using the
wire-scanning method. As a result of focusing tests, a
FWHM of 48 X 36 nm? (V X H) was achieved (shown in Fig.
9). The measured profiles agree well with the wave-optically
simulated profiles. This result suggests that the mirror align-
ments were carried out with sufficient accuracy, realizing
diffraction-limited focusing.

Figure 10 shows the relationships between x-ray fluores-
cence intensity (tantalum La line) and the beam position
when the line-and-space patterns were vertically scanned
with the focused beam to evaluate the spatial resolution. The
peaks and valleys in the graph show tantalum lines and
spaces, respectively. The subscripts in the graph correspond
to the visibility between the peak and the valley. The tanta-
lum lines of 80 nm in width were resolved with a high vis-
ibility of 60% by vertically scanning the patterns. Similarly,
by horizontally scanning the patterns of 80 nm linewidth, a
visibility of 55% was obtained (data not shown). The reso-
lution evaluation with patterns of less than 80 nm linewidth
was impossible, owing to the poor quality of the patterns of
less than 80 nm linewidth. However, we expect that our fo-
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s Measured profila & Measured profile
100 - T 100
80 - 80
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g £
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g 80 - P 80 +
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B 40 F % 40 - i
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a l‘ ‘ i.
%
o smdrsesl Wliosmr o et Mo
e s ® "
-20 - : .20
400 200 O 200 400 400 200 0 200 - 400
Position {nm) Position {nm)

(a) Vertical focusing (b) Horizontal focusing

FIG. 9. Two-dimensional intensity profiles experimentally obtained. where
scanning pitch is 10 nm. (a) Vertical focusing. (b) Horizontal focusing.
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FIG. 10. Evaluation of spatial resolution in vertical direction using test
patterns of various linewidths.

cusing system is capable of resolving the pattern of less than
50 nm linewidth, considering the results shown in Fig. 9.
Additionally, we could not achieve better resolution in hori-
zontal direction than that in vertical direction. The reason is
that the smallest beam could not be kept for a couple of
hours. If the incident angles of two mirrors changed from the
best angle to have a 1.5 urad error, the FWHM in the hori-

Rev. Sci. Instrum. 77, 093107 (2006)

zontal direction is broadened to more than 50 nm, but the
FWHM in vertical direction hardly changes [see Fig. 4(b)].
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We developed a high-spatial-resolution scanning x-ray fluorescence microscope (SXFM) using
Kirkpatrick-Baez mirrors. As a result of two-dimensional focusing tests at BL29XUL of SPring-8,
the full width at half maximum of the focused beam was achieved to be 50 X 30 nm? (V X H) under
the best focusing conditions. The measured beam profiles were in good agreement with simulated
results. Moreover, beam size was controllable within the wide range of 30—1400 nm by changing
the virtual source size, although photon flux and size were in a trade-off relationship. To demonstrate
SXFM performance, a fine test chart fabricated using focused ion beam system was observed to
determine the best spatial resolution. The element distribution inside a logo mark of SPring-8 in the
test chart, which has a minimum linewidth of approximately 50—60 nm, was visualized with a
spatial resolution better than 30 nm using the smallest focused x-ray beam. © 2006 American

Institute of Physics. [DOI: 10.1063/1.2358699]

I. INTRODUCTION

In the hard x-ray region, x rays having beam sizes of less
than 100 nm have already been realized using optical devices
such as Fresnel zone plates,l refractive x-ray lenses,” and
Kirkpatrick and Baez (KB) mirrors.”” Hard x-ray micro-
scopes equipped with these focusing devices are currently
hot topics of research and development. Actually, the appli-
cations of x-ray microscopes have expanded to various fields
of material," medical and biological sciences.”™"!

A scanning x-ray fluorescence microscope (SXFM) is an
imaging tool with which the element distribution of a sample
can be visualized using x-ray fluorescence generated by the
focused hard x-ray irradiation of the sample. Because the
excitation beam consists of hard x rays, there is no need to
install samples under vacuum.

In this microscopy, spatial resolution and sensitivity de-
pend on, respectively, beam size and photon flux. From the
viewpoint of sensitivity, the combination of a synchrotron
radiation source, which can generate the brightest x ray, and
KB mirrors, which have high focusing efficiency, is one of
the most powerful focusing systems for a SXFM. In terms of
spatial resolution, the previous report4 regarding hard x-ray
nanofocusing suggests that KB mirrors enable us to obtain a

0034-6748/2006/77(10)/103102/5/$23.00

77, 103102-1

nanobeam having a full width at half maximum (FWHM) of
better than 40 nm. Owing to achromatic focusing using total
reflection on a mirror surface, we can select the most effi-
cient energy of x rays for various samples and experimental
conditions.

In this study, we developed a SXFM which makes it
possible to visualize the element distribution inside a sample
at a high spatial resolution better than 30 nm using both KB
mirrors focusing system and an energy-dispersive spectrom-
eter as an x-ray fluorescence detector. The most important
feature is that the mirrors employed in this study were opti-
mally designed and fabricated to achieve diffraction-limited
focusing at 45 m downstream of a virtual light source pro-
duced by a slit. Owing to the distance of 45 m, x-ray beam
size is controllable over a wide range by merely adjusting a
virtual light source size.

Focusing tests and demonstration of the SXFM were
performed at the new second experimental hutch (EH2) of
BL29XUL" (SPring-8). As a result of focusing tests, a beam
size of 30X 50 nm® was achieved under the diffraction-
limited condition by selecting a light source size of less than
10 pum. Moreover, beam size could be controlled over a wide
range from 30 to 1400 nm (at FWHM) by changing light

© 2006 American Institute of Physics
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FIG. 1. Optical system designed for hard x-ray nanofocusing.

source size from 10 to 1000 pm. These results are in good
agreement with simulated beam profiles. It was confirmed
that the focusing system has good controllability for the
SXEM. As a result of observation of a SPring-8 logo mark
having a size of approximately 3 X 0.7 um> on a test chart,
the SXFM enabled us to visualize the element distribution of
the logo mark at a spatial resolution better than 30 nm.

il. SCANNING X-RAY FLUORESCENCE
MICROSCOPE

A. X-ray focusing optical system using KB mirrors

The new EH2 at BL29XUL of SPring-8 was newly built
in May 2005 to study hard x-ray nanofocusing and hard
x-ray microscopy. This hutch is placed 98 m downstream of
an undulator. To utilize this hutch as efficiently as possible,
KB mirrors designed specially for the hutch were fabricated
with a figure accuracy of subnanometer order in Osaka
University.”"5 Available x-ray energy was selected to be
less than 19 keV to be able to detect all elements using x-ray
fluorescence (available within the range of 4.4-19 keV at
BL29XUL). Working distance was designed to be relatively
long (as long as 100 mm) considering the practical use of the
x-ray microscope system, so that we keep the room where
users can apply x-ray nanobeams in various experiments by
only replacing a sample-scanning unit just downstream of
the focusing system. A TC1 slit'® located just downstream of
a double-crystal monochromator (DCM) is used to control
virtual light source size. The optical system and parameters
of elliptical mirrors employed in the SXFM system are
shown in Fig. | and Table L. '

In the case of a relatively short distance of 45 m from a
virtual light source to mirrors, the lower limit of beam size
does not depend on only mirror aperture and focal length but
also largely on light source size. However, under the condi-

TABLE 1. Parameters of elliptical mirrors.

First mirror Second mirror
Glancing angle (mrad)® 3.80 3.60
Mirror length (mm) 100 100
Mirror aperture (um) 382 365
Focal length (mm) 252 150
Numerical aperture 0.75% 1073 1.20x 1073
Coefficient a of elliptic 23.876 X 10° 23.825% 10°
function (mm)
Coefficient b of elliptic 13.147 9.609
function (mm)
Diffraction limited focal size 48 29

{nm, FWHM)

“Glancing angle at the center of the mirror.
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FIG. 2. Relationship between slit size and FWHMs predicated by wave-
optical calculation.

tion of an adequately small source size, the smallest focus
size is limited by mirror aperture size and focal length, i.e.,
the diffraction limit. In this case, photon flux and beam size
are in a trade-off relationship. Figure 2 shows relationships
between TCI slit size and beam size predicted by wave-
optical calculations. Under the conditions of a slit size of
smaller than 10 wm, it is expected that diffraction-limited
focusing can be realized. The slit can be no longer opened
beyond a size of | mm because the beam broadening at the
position of the slit is approximately 900 X 600 um? (FWHM,
H X V). As a result of this calculation, it was expected that
the beam size could be easily controlled within the range
from 29 nm to micron order merely by changing the slit size
from 10 to 1000 pm.

B. SXFM system

Figure 3 shows a schematic drawing of the SXFM sys-
tem. A mirror manipulator,”’ which was developed specially
for high-accuracy positioning of KB mirrors, enables adjust-
ment of mirror angle with the alignment accuracy required
for diffraction-limited focusing. To detect x-ray fluorescence
and transmitted x rays, respectively, a silicon drift detector
(SDD, Rontec, Co., Ltd.) and a p-i-n photodiode were em-

Sample scanmer
& Sample holder ‘@

K-B mirrors

MCA to analyze pulse
signals from the SDD

4D slit PC 1o conral SXPM system

(TC1 Skit) and analyze data

FIG. 3. Schematic drawing of scanning x-ray fluorescence microscope sys-
tem.
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FIG. 4. Focused beam profiles obtained with KB mirrors. Subscripts at the
top right show virtual source size.

ployed. An ion chamber just upstream of the mirrors is
placed to normalize output data obtained with the SDD and
p-i-n photodiode. A sample and a linear-encoder-based feed-
back X-Y stage having a positioning resolution of 1 nm
(Sigma Tech, Co., Ltd.) are inclined at a 60° angle to the
incident x-ray beam to set up the SDD near the sample. A
cross wire is mounted on the X-Y stage near the sample to
measure the intensity profiles at the focal plane by a wire
scanning method with a gold wire of 200 um in diameter.

lil. FOCUSING TEST

Focusing tests were performed at the EH2 of BL29XUL
at an x-ray energy of 15 keV. After finely tuning mirror po-
sitional alignments, beam profiles were measured by a wire
scanning method, changing the virtual light source size. Ex-
perimentally obtained profiles and  wave-optically
simulated'® ones are drawn, respectively, with dots and solid
lines in Fig. 4. As a result of focusing tests, we could achieve
two-dimensional diffraction-limited focusing having a
FWHM of 30X 50 nm? under the condition of a TC1 slit size
less than 10 um. Moreover, it was confirmed that beam size
was controllable within the range of 30-1400 nm (at
FWHM) by changing the slit size of a virtual source, al-
though beam size and photon flux were in a trade-off rela-
tionship. To estimate the photon flux of focused beams, the
number of x-ray photons collected by mirrors was calculated

Rev. Sci. Instrum. 77, 103102 (2006)

TABLE II. Relationship between estimated beam size and measured photon
fluxes.

Virtual source size Beam size Photon flux
(HX V) (um?) (HXV) (nm?) (photons/s)
10x 10 29X 48* 6x 10Y
50X 50 131%232 3x 101
200 X 200 571 X984 4% 10"
1000 X 1000 ~1400 X ~ 1000 g% 10"
(Fully open)

*Diffraction limit.

using the value counted by the p-i-n photodiode. The rela-
tionship between measured photon flux and estimated beam
size is summarized in Table I1. As can be seen from the table,
the focused beams having a photon flux from 8
X 10'* photons/s (beam size: 1400X 1000 nm?) to 6
% 10° photons/s (beam size: 30 X 50 nm?) were available in
the optical system.

IV. PERFORMANCE TEST FOR SXFM SYSTEM
A. Evaluation of spatial resolution

A fine test chart was observed to evaluate the zoom func-
tion and the best spatial resolution of the SXFM. The test
chart (shown in Fig. 5) was microfabricated on a SizN, sub-
strate (200 nm thickness, NTT-AT, Co., Ltd.) using a focused
ion beam (FIB) system (Hitachi, Co., Ltd., FB-2100). Figure
5 shows an image of secondary electrons emitted by FIB.
White and black areas correspond to tungsten (W) deposition
and the substrate, respectively. In this case, the smallest logo
mark has 50-60 nm linewidths.

We observed the pattern using the SXFM, gradually be-
ing magnified with the beam having a size from
500 to 30 nm. Figures 6(1)-(4) show gallium (Ga) and W
distribution maps visualized using the SXFM. Map (2) cor-
responds to the magnified image of the area marked by a
white line in map (1), and maps (3) and (4) correspond to a
logo mark of SPring-8 enclosed by the dashed square in map
(2). Additionally, maps (5) and (6), which were visualized at
a scanning pitch of 15 nm, are magnified images of only
characters in map (3) and (4). Graphs in maps (5) and (6),
which are line profiles along the dashed line in the W and Ga
distribution maps, are plotted with a step of 15 nm. Table 11
shows the scan parameters of the SXFM observations. In this
test chart, gallium remains in the regions where the ion beam
was irradiated because liquid gallium was employed as an

FIG. 5. Test pattern fabricated using FIB system.
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Position (pixel}

(6) Ga 0.04

FIG. 6. Observation results of test chart using SXFM. Scan parameters are
shown in Table I1l. Graphs of (5) and (6) show line profiles along the dash
line in the W and Ga distribution maps.

ion source. As can be seen from the line profile in (6), it is
found that the Ga distribution image acquired with the step
of 15 nm/pixel could be visualized at a spatial resolution of
2 pixels, corresponding to 30 nm. Unlike the sharp pattern in
the Ga distribution map, we cannot see sharp edges of the
characters in the W distribution map in (5) because sidewall
of characters patterned on the W deposition has a tapered
shape. In contrast to the good results, the artifacts such as
stripes and distortions are seen in Figs. 6(3)-6(6). They seem
to be caused by thermal drifts of the sample, the sample
scanning system, and the optical system. In this experience,
the thermal stability of the whole SXFM system was within
+0.1 °C.

TABLE IIl. Scan parameters of SXFM. Exposure time: 1 s/pixel for each
scan.

TC1 Slit size Scanning pitch Scan area
Map No. (VX H)Y {um®) (nm/pixel) (VX H) (um?)
n 150X 90 1000 80X 40
2) 30x18 100 9.7X9.3
(3). (&) 10X 10 30 2.25%4.02
(5), (6) 10X 10 15 0.84% 351
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FIG. 7. Beam profiles before and after long scanning shown in Figs. 6(5)
and 6(6). The time difference between the profiles is § h.

B. Stability of focused x-ray beam

The time required to acquire an image using a scanning
x-ray microscope is 1—-10 h generally, so it is important to
keep the nanobeam stable during long periods of scanning.
The stability of the nanobeam was evaluated by comparing
beam profiles before and after high-resolution observation,
as shown in Fig. 6(5) and (6) under the same condition. It
took approximately 8 h to prepare the observation of the
logo mark and acquire the high-resolution map. Figure 7
shows beam profiles before and after the observation. As a
result of measurements of beam profiles, it was found that
FWHM in horizontal focusing was broadened from
34 to 55 nm (where the beam profiles were measured at a
60° angle to the optical axis.). However, there was no change
in FWHM in the vertical direction. We show results of mea-
surements of temperature on the mirror manipulator and

03
Near sample

02 | ——Near 1st mirror
o = Near 2nid mircor
)
3
5]
@
=
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3
foX
£
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02 Observation of test chart

-03 +
7 £} 11 13 15

Time (h)

FIG. 8. Thermal stability of mirror manipulator and sample holder.
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FIG. 9. Relationship between FWHM broadening and incident angle errors
of the mirror. The vertical axis indicates the ratio to the best FWHM.

sample holder using thermocouples (type K) in Fig. 8. Ow-
ing to the absence of active thermal control over the whole
SXFM system to avoid the vibration of the optical system,
the temperature of the whole SXFM system gradually in-
creased by 0.1-0.2 °C in 8 h. If the incident angles of two
mirrors changed from the best angle to have a 1.2 urad error
in 8 h, the beam broadening caused by the misalignment is
consistent with the wave-optically calculated results, show-
ing the relationship between beam broadening and incident
angle errors (shown in Fig. 9).
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