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ABSTRACT

Cynomolgus monkey embryonic stem cell (cyESC)-derived
in vivo hematopoiesis was examined in an allogeneic trans-
plantation model. cyESCs were induced to differentiate into
the putative hematopoietic precursors in vitro, and the cells
were transplanted into the fetal cynomolgus liver at approx-
imately the end of the first trimester (n = 3). Although
cyESC-derived hematopoietic colony-forming cells were de-
tected in the newborns (4.1%-4.7%), a teratoma developed
in all newborns. The risk of tumor formation was high in
this allogeneic transplantation model, given that tumors
were hardly observed in immunodeficient mice or fetal
sheep that had been xeno-transplanted with the same cyESC

derivatives. It turned out that the cyESC-derived donor cells
included a residual undifferentiated fraction positive for
stage-specific embryonic antigen (SSEA)-4 (382% =
10.3%) despite the rigorous differentiation culture. When an
SSEA-4-negative fraction was transplanted (n = 6), the
teratoma was no longer observed, whereas the cyESC-de-
rived hematopoietic engraftment was unperturbed (2.3%-
5.0%). SSEA-4 is therefore a clinically relevant pluripotency
marker of primate embryonic stem cells (ESCs). Purging
pluripotent cells with this surface marker would be a prom-
ising method of producing clinical progenitor cell prepara-
tions using human ESCs. STEM CELLS 2006,24:1450—-1457

INTRODUCTION
Human embryonic stem cells (hESCs) hold great potential in the

treatment of a variety of diseases and injuries because embry-
onic stem cells (ESCs) have the ability to proliferate indefinitely
in culture and to differentiate into any cell type [1, 2]. Because
ESCs are able to form teratomas when transplanted into immu-
nodeficient mice, safety concerns would be raised against the
clinical application of hESCs [3, 4]. It will be necessary to test
the safety of these cells in animal transplantation models before
clinical application. Nonhuman primate transplantation models
would be desirable for this purpose; however, there have been
only a few reports on these models [5-7]. The successful en-
graftment of transplanted cells in primates will not be achieved
unless the immune rejection of transplanted cells is circum-
vented (e.g., through immunosuppressive treatment) [6]. The

early gestational fetus may be a good recipient with which to
circumvent immune rejection because the immune system is
premature [8]. In addition, in the animal fetus, transplanted cells
would engraft without conditioning of recipients such as irradi-
ation or immunosuppressive treatment [9-12]. We have previ-
ously established a system for allogeneic transplantation of
cynomolgus ESCs (cyESCs) using preimmune fetal monkeys as
recipients [5].

We have also reported a novel method for hematopoietic
engraftment from cyESCs in sheep [13]. The method is a
combination of three steps: (a) differentiation in vitro to
generate the putative hematopoietic precursors [14]; (b)
transplantation of the cells in utero [15]; and (c) development
into hematopoietic cells in vivo using the hematopoietic
microenvironment of the fetal liver [16]. In the present study,
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we have examined the safety as well as the efficacy of
hematopoietic engraftment of cells derived from cyESCs in
the allogeneic transplantation model.

MATERIALS AND METHODS

Animals
Pregnant cynomolgus monkeys (1622 years old) were obtained

by mating and were reared at the Tsukuba Primate Research
Center in accordance with Rules for Animals Care and Man-
agement set forth by the Research Center and Guiding Princi-
ples for Animal Experiments Using Nonhuman Primates formu-
lated by the Primate Society of Japan. Experimental procedures
were approved by the Animal Welfare and Animal Care Com-
mittee of the National Institute of Infectious Diseases. The
animals were free of intestinal parasites and were seronegative
for herpes virus B, varicella-zoster-like virus, measles virus, and
simian immunodeficiency virus.

Cell Preparation
A cyESC line (CMK6G) stably expressing green fluorescent
protein (GFP) was established after transfection of the parental
cyESC line (CMK6) with the enhanced GFP gene (Clontech,
Palo Alto, CA, http://www.clontech.com) [17]. cyESCs were
maintained on a feeder layer of mitomycin C (Kyowa, Tokyo,
http://www.kyowa.co.jp)-treated mouse (ICR or BALB/c; Clea
Japan, Tokyo, http://www.clea-japan.com) embryonic fibro-
blasts as previously described [18]. The mouse bone marrow
stromal cell line OP9 was maintained in o-minimum essential
medium (Invitrogen, Carlsbad, CA, http://www.invitrogen.com)
supplemented with 20% fetal calf serum (FCS; Invitrogen) [19].
cyESCs were induced to differentiate into the putative he-
matopoietic precursors as previously described [13]. Briefly,
undifferentiated cyESCs were transferred onto mitomycin C-
treated confluent OP9 cells and cultured for 6 days in Iscove’s
modified Dulbecco’s medium (Invitrogen) supplemented with
8% FCS, 8% horse serum (Invitrogen), 5 X 1075 M hydrocor-
tisone (Sigma, St. Louis, http://www.sigmaaldrich.com), and
multiple cytokines, including 20 ng/ml recombinant human (rh)
bone morphogenetic protein-4 (R&D Systems, Minneapolis,
http://www.mdsystems.com), 20 ng/ml rh stem cell factor (Bio-
source, Camarillo, CA, http://www.biosource.com), 20 ng/ml th
vascular endothelial growth factor (VEGF; R&D Systems), 20
ng/ml rh Flt-3 ligand (PeproTech, Rocky Hill, NJ, http://www.
peprotech.com), 20 ng/ml rh interleukin-3 (PeproTech), 10
ng/ml rh interleukin-6 (PeproTech), 20 ng/ml rh granulocyte
colony-stimulating factor (PeproTech), and 2 IU/ml rh erythro-
poietin (Roche, Basel, Switzerland, http://www.roche.com). The
cells were resuspended in 0.1% human serum albumin (Sigma)/
Hanks’ balanced saline solution (Sigma) for transplantation.

Flow Cytometry

Primary antibodies (Abs) used in the present study were anti-
human CD34 monoclonal Ab (mAb; BD Pharmingen, San Di-
ego, http://www .bdbiosciences.com/pharmingen), anti-human
CD31 mAb (Pharmingen), anti-human CD45 mAb (Pharmin-
gen), anti-human vascular endothelial (VE) cadherin mAb
(Pharmingen), rabbit anti-human VEGF receptor (VEGFR)-2
Ab (Santa Cruz Biotechnology, Santa Cruz, CA, http://www.
scbt.com), and anti-stage-specific embryonic antigen (SSEA)-4

www.StemCells.com

mAb (Chemicon, Temecula, CA, http://www.chemicon.com).
All of them cross-reacted to cynomolgus counterparts as previ-
ously demonstrated [18, 20-22]. Secondary Abs were phyco-
erythrin (PE)-conjugated rabbit anti-mouse immunoglobulins
(Ig) Ab (DakoCytomation, Glostrup, Denmark, http://www.dako.
com) and Alexa Fluor 647-conjugated goat anti-mouse IgG Ab
(Molecular Probes, Eugene, OR, http:/probes.invitrogen.com).
Cells stained with unlabeled primary Abs were incubated with
fluorescence-labeled secondary Abs. Cells were incubated with
either primary or secondary Ab for 20-60 minutes at 4°C.
Regarding staining with the anti-VEGFR-2 Ab, the cells were
incubated with biotin-conjugated goat anti-rabbit IgG Ab (Beck-
man Coulter, Miami, http://www.beckmancoulter.com), fol-
lowed by PE-conjugated streptavidin (Beckman Coulter). Fluo-
rescence-labeled cells were analyzed with a FACS Calibur flow
cytometer (Becton, Dickinson and Company, Franklin Lakes,
NI, http://www.bd.com). Data analysis was performed using the
CellQuest software (Becton, Dickinson and Company). Isotype-
matched, irrelevant mAbs (DakoCytomation or Beckman
Coulter) served as negative controls. Nonviable cells were ex-
cluded from analysis by propidium iodide (Sigma) costaining.

Cell Sorting

Cell sorting was performed to purge SSEA-4™ cells from among
the cultured cyESCs in vitro. Cells were incubated with the
anti-SSEA-4 mAb for 1 hour at 4°C and washed twice with
Dulbecco’s modified Eagle’s medium supplemented with 10%
FCS. The cells were then incubated with the PE-conjugated
anti-mouse Ig Ab for 1 hour at 4°C and washed twice again.
GFP-positive and SSEA-4-negative cells were sorted using an
Epics Elite cell sorter (Beckman Coulter). Data acquisition was
performed using the Expo2 software (Beckman Coulter).

Transplantation and Delivery

Transplant procedures were previously described [5]. Briefly,
animals were anesthetized via an intramuscular administration
of ketamine hydrochloride (Ketalar, 10 mg/kg; Sankyo, Tokyo,
http://www.sankyo.co.jp) and received 0.5%-1.0% isoflurane
by inhalation by means of an endotracheal tube. Cells (0.16-
46 X 10° cells per fetus; Table 1) were injected into the fetal
liver through a 23-gauge needle using an ultrasound-guided
technique at approximately the end of the first trimester. The
fetuses were delivered by cesarean section at 2-3 months after
transplant (gestation 120-157 days, full term 165 days).

Colony Polymerase Chain Reaction

Cynomolgus clonogenic hematopoietic colonies were produced
as previously described {20]. After cells were cultured in meth-
ylcellulose medium for 10—14 days, well-separated individual
colonies were plucked into 50 ul of distilled water and digested
with 20 pg/ml proteinase K (Takara, Shiga, Japan, http://www.
takara-bio.com) at 55°C for 1 hour, followed by 99°C for 10
minutes. Each sample (5 wl) was used for a nested polymerase
chain reaction (PCR) to detect the GFP gene sequence. The
outer primer set was 5-AAGGACGACGGCAACTACAA-3'
and 5-ACTGGGTGCTCAGGTAGTGG-3', and the inner
primer set was 5'-GCATCGACTTCAAGGAGGAC-3" and 5'-
GTTGTGGCGGATCTTGAAGT-3'. Amplification conditions
for both the outer and inner PCR were 30 cycles of 95°C for 30
seconds, 65°C for 30 seconds, and 72°C for 30 seconds. The



1452

Tumor Prevention After Cultured ESC Transplantation

Table 1. ESC-derived hematopoiesis and tumor formation

Donor-derived CFU

Purging  Cell number in recipients® at
Animal Transplanted SSEA-4* per fetus birth (donor/total Tumor Observation period
Animals no. cells cells (x10% colony number) formation (months)
Monkeys 0031 Undifferentiated - 3.90 n.d. + 3
2311 ESCs - 0.16 n.d., Dead + 2
0321 - 0.21 n.d., Dead + 2
0841 Day-6 ESC- - 10 4.1% (2/49) + 3
1551 derived cells - 46 n.d., Dead + 2.5
0021 - 46 4.7% (4/85) + 3
0691 Day-6 ESC- + 0.16 3.2% (2/62) - 3
0381 derived cells + 1.40 5.0% (4/80) - 3
0022 + 0.17 2.3% (2/86) - 3
0981 + 0.31 4.1% (3/73) - 3
0051 + 031 n.d., Dead® -~ 3
1552 + 0.75 4.4% (2/45) - 4
Sheep® 57 Day-6 ESC- - 50 1.1% (1/91) - 18
55 derived cells - 50 1.1% (1/91) - 26
141 - 78 1.1% (1/91) - 26
182 - 14 1.6% (1/63) - 21

2Percentage of donor-derived CFU was calculated by dividing the number of CFU positive for the green fluorescent protein gene
sequence by the number of CFU positive for the B-actin gene sequence. Donor-derived CFU were analyzed at delivery.
®Death due to ablation of placentae. Other deaths were presumably tumor-related.

As published by Sasaki et al. [13].

Abbreviations: CFU, colony-forming units; ESC, embryonic stem cell; n.d., not done; SSEA, stage-specific embryonic antigen.

outer PCR products were purified using a QIA quick PCR
purification kit (Qiagen, Valencia, CA, http://www.qgiagen.
com). Simultaneous PCR for the B-actin sequence was also
performed to ensure DNA amplification of the sample in each
colony. The primer set for B-actin was 5'-CATTGTCATG-
GACTCTGGCGACGG-3' and 5'-CATCTCCTGCTCGAAG-
TCTAGGGC-3’. Amplification conditions for B-actin PCR
were 40 cycles of 95°C for 30 seconds, 65°C for 30 seconds, and
72°C for 30 seconds. Amplified GFP (131 bp) and B-actin (234
bp) products were resolved on 2% agarose gel (Sigma) and
visualized by ethidium bromide (Invitrogen) staining.

RNA PCR

Total RNA was extracted from cells of interest using the EZ1
RNA universal tissue kit (Qiagen). RNA was reverse-tran-
scribed at 50°C for 30 minutes using the RNA LA PCR kit
(Takara) with oligo dT primer. The resulting cDNA was then
subjected to PCR. Regarding PCR for Oct-4, the primer set was
5'-GGACACCTGGCTTCGGATT-3" and S"-TTCGCTTTCTC-
TTTCGGGC-3'. The PCR conditions were 35 cycles of 95°C
for 30 seconds, 67°C for 45 seconds, and 68°C for 1.5 minutes.
Regarding PCR for Scl, the primer set was 5'-GGGCG-
GAAAGCTGTTTGCGATT-3' and 5'-TCGCTGAGAGGCCT-
GCAGTT-3'. The PCR conditions were 35 cycles of 95°C for
30 seconds, 63°C for 1 minute, and 72°C for 1 minute. A
simultaneous PCR for B-actin was also conducted on each
c¢DNA sample as an internal control as described above. Am-
plified Oct-4 (697 bp), Scl (201 bp), and B-actin (234 bp)
products were resolved on 2% agarose gel and visualized by
ethidium bromide staining.

RESULTS

In Utero Transplantation and Delivery

cyESCs stably expressing GFP were used in this study [17].
In the setting of allogeneic transplantation, GFP was used as
a genetic tag to track transplanted cell progeny. We employed
the OP9 stromal cell coculture method instead of the embry-
oid body formation method to facilitate the hematopoietic
differentiation [19, 23, 24] (Fig. 1A, 1B). According to the
flow cytometric analysis, CD34, CD31 (platelet/endothelial
cell adhesion molecule-1 [PECAM-1]), CD144 (VE-cad-
herin), and VEGFR-2 (Flk-1) were all upregulated on day 6
but decreased thereafter (Fig. 1C-1E, 1G). Among the mark-
ers examined, CD34 is a widely used surface marker of
hematopoietic stem cells in both human and monkey subjects
[25-27]. The others are key markers of hemangioblasts
(which generate endothelial and hematopoietic lineages) in
both mice and humans [14, 28]. Cells positive for both
VEGFR-2 and VE-cadherin emerged on day 6 (Fig. 1H).
CD45, however, was not detected until day 12 (Fig. 1F).
Despite the hemangioblast marker expression on day 6, the
hematopoietic Sc/ gene was upregulated at this time point as
assessed by RNA PCR (Fig. 11), implying that the hemato-
poietic commitment might have already occurred on day 6
[29, 30]. We therefore designated the day 6 cyESC-derived
progenitor cells as putative hematopoietic precursors. The
time course profiles presented here were similar to those of
hESCs [14, 24]. The GFP expression was stable during the
6-day culture (Fig. 1A, 1B) and afterward (data not shown).

Stem CruLs
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Figure 1. Flow cytometric analysis during the in vitro differentiation of cyESCs. Undifferentiated cyESCs expressing green fluorescent protein were
cultured on OP9 cells with multiple cytokines (see Materials and Methods). (A): Cells on day O are shown in bright (left) and dark (right) fields. (B):
Cells on day 6 are shown in bright (left) and dark (right) fields. (C): Cells on days 0, 4, 6, 12, and 18 were stained for CD34. (D): Cells on days 0,
4,6, 12, and 18 were stained for CD31. (E): Celis on days 0, 4, 6, 12, and 18 were stained for VE-cadherin. (F): Cells on days 0, 4, 6, 12, and 18
were stained for CD45. The vertical axis shows the fraction (percentage) of cells that were stained positive. (C—F): Results of two or three independent
experiments are shown. (G): Although cells on day 0 already express low levels of VEGFR-2, a VEGFR-2"%#" population did not emerge until day
6. (H): Dot-plot profiles for VEGFR-2 and VE-cadherin expression indicate that cells positive for both VEGFR-2 and VE-cadherin emerged until day
6. (G, H): Representative results from three independent experiments are shown. (I): The Sc/ gene expression was upregulated on day 6 to a level
similar to that in the cynomolgus fetal liver as assessed by RNA polymerase chain reaction. Day-6 cells (putative hematopoietic precursors) were used
for transplantation. Abbreviations: cyESC, cynomolgus embryonic stem cell; cyFL, cynomolgus fetal liver; DW, distilled water; VE, vascular
endothelial; VEGFR, vascular endothelial growth factor receptor.
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Figure 2. Tumor formation after the transplantation of cynomolgus
embryonic stem cell (cyESC)-derived progenitor cells. Tumors formed
in all three monkey fetuses transplanted with the day-6 cyESC-derived
progenitor cells (putative hematopoietic precursors). (A): A representa-
tive tumor in the thoracic cavity at 3 months after transplantation
(monkey no. 0841). (B): The tumor was observed in bright (left) and
dark (right) fields under a fluorescence microscope.

Teratoma Formation

The undifferentiated cyESCs (n = 3) or cyESC-derived putative
hematopoietic precursors (n = 3) were transplanted in utero into
allogeneic fetuses in the liver under ultrasound guidance at
approximately the end of the first trimester (49-66 days, full
term 165 days) (Table 1). Regardless of whether the undiffer-
entiated cyESCs or putative hematopoietic precursors were
transplanted, tumors were found in the thoracic or abdominal
cavities in all the six animals at 2-3 months after transplant
(Table 1; Fig. 2A). The tumors fluoresced (Fig. 2B) and con-
sisted of three germ layer cells. Thus, they were teratomas
derived from transplanted cells. However, tumors were hardly
observed in fetal sheep (1/10; [13] and our unpublished data)
(Table 1) and immunodeficient (nonobese diabetic/severe com-
bined immunodeficient) mice (3/10; our unpublished data) after
the same putative hematopoietic precursors were transplanted.

In Vivo cyESC-Derived Hematopoiesis

Regarding the newborn monkeys that had been transplanted
with the putative hematopoietic precursors, we harvested cells
from the femur, cord blood, and liver and plated the cells in
methylcellulose medium to produce clonogenic hematopoietic
colonies (colony-forming units [CFU]) (Fig. 3A). The monkey
cells generated colonies of clear hematopoietic morphology in
this assay (Fig. 3B). To detect transplanted cell-derived, GFP-
positive colonies, we tried to observe GFP fluorescence of
colonies under a fluorescent microscope but were hampered by
the high autofluorescence. We then conducted PCR for the GFP
gene sequence in DNA isolated from each colony (colony PCR)
(Fig. 3C). The transplanted cell-derived CFU were clearly de-
tected in the animals (4.1% and 4.7%; Table 1). We repeated the
colony PCR and confirmed that the results were reproducible.

B

No. 0021 (at defivery) 4.7% (4/85 colonies})

Figure 3. cyESC-derived hematopoiesis in vivo. {A): Bone marrow,
cord blood, and liver cells were harvested from newborn monkeys and
placed in methylcellulose medium to produce clonogenic hematopoietic
colonies. (B): A cytospin specimen (stained with the May-Giemsa
method) of plucked colonies reveals mature neutrophils. To identify
cyESC-derived colonies, well-separated individual colonies were
plucked and examined for the GFP sequence by PCR. Plucked MeC
alone (not containing colonies) served as a negative control. PCR of the
B-actin sequence in the same colonies was simultaneously performed as
an internal control. Colony PCR was repeated at least twice. (C):
Representative colony PCR results for monkey no. 0021. Asterisk
indicates bands positive for the GFP sequence. Abbreviations: CMK6G,
positive control green fluorescent protein-expressing cynomolgus cells;
cyESC, cynomolgus embryonic stem cell; DW, distilled water; GFP,
green fluorescent protein; M, molecular weight marker; MeC, methyl-
cellulose; PCR, polymerase chain reaction.

‘We detected both granulocytic and erythroid cynomolgus CFU.
In the peripheral blood, however, we were not able to detect
cells expressing GFP by flow cytometry. It turned out that, as
assessed by quantitative PCR, the fractions of GFP-positive
cells in the peripheral blood were very small (<0.1%). Low
peripheral “chimerism” has been reported more than once in
other in utero transplantations of ESCs or hematopoietic stem
cells such as in mice, sheep, and pigs [13, 31-33].

Purging SSEA-4" Cells of the Putative
Hematopoietic Precursors

We examined the expression of an undifferentiated primate
ESC marker, SSEA-4, in the undifferentiated cyESCs (day 0)
and putative hematopoietic precursors (day 6). The propor-
tion of SSEA-4" cells was 93.4% * 8.1% and 38.2% *
10.3% among the day-0 and -6 cells, respectively (Fig. 4A).
A substantial number of cells were still positive for SSEA-4
after the rigorous differentiation culture. In addition, a con-
siderable number of cells expressing another undifferentiated
marker, Oct-4, remained among the day-6 population as
assessed by RNA-PCR (Fig. 4B). Those residual undifferen-
tiated cells might be responsible for the formation of terato-
mas in the recipients.

To prevent teratomas from forming in recipients, we
purged SSEA-4™ cells of the putative hematopoietic precur-
sors and transplanted the SSEA-47 population into the fetal
monkey liver (n = 6) (Fig. 4C). At delivery, tumors were no
longer observed in the six animals that had been transplanted
with the sorted SSEA-47 cells (Fig. 4D). The transplanted
cell-derived CFU were clearly detected in the newborns, and
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