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Recently, we found a novel dwarf mutation in an
ICR closed colony. This mutation was governed by
a single autosomal recessive gene. In novel dwarf
mice, plasma levels of the thyroid hormones, T,
and T,, were reduced; however, TSH was elevated.
Their thyroid glands showed a diffuse goiter exhib-
iting colloid deficiency and abnormal follicle epi-
thelium. The dwarfism was improved by adding
thyroid hormone in the diet. Gene mapping re-
vealed that the dwarf mutation was closely linked
to the thyroid peroxidase (Tpo) gene on chromo-
some 12. Sequencing of the Tpo gene of the dwarf

mice demonstrated a C to T substitution at position
1508 causing an amino acid change from arginine
(Arg) to cysteine (Cys) at codon 479 (Arg479Cys).
Western blotting revealed that TPO protein of the
dwarf mice was detected in a microsomal fraction
of thyroid tissue, but peroxidase activity was not
detected. These findings suggested that the dwarf
mutation caused a primary congenital hypothy-
roidism by TPO deficiency, resulting in a defect of
thyroid hormone synthesis. (Molecular Endocrinol-
ogy 20: 2584-2590, 2006)

ANY SPONTANEOUS MUTATIONS have been

found in inbred strains derived from an ICR
closed colony of mice (1-3). Recently, we found that a
Jcl:ICR male mouse had an autosomal recessive mu-
tation in our colony, because some of the backcross
mice obtained using a DBA/2JJcl female mouse
showed dwarfism. Dwarf mice were noticeably smaller
than their normal littermates and showed primary con-
genital hypothyroidism (CH) with goiter.

Six autosomal recessive mutations related to dwarf-
ism have been found in mice, e.g. dw [dwarf, chromo-
some 16, 43.5 centimorgans (cM)] 4, 5), df (chromo-
some 11, 25.0 cM) (6, 7), /it (little, chromosome 6, 26.0
cM) (8), hyt (hypothyroid, chromosome 12, 37.0 cM)
(9), cog {congenital goiter, chromosome 15, 36.4 cM)
(10), and grt (growth-retarded, chromosome 5, 59.0
cM) (11, 12). The dw and df mutations are a primary
hypopituitarism, which does not produce prolactin,
TSH, and GH (13~15). The /it mutation has a GH defi-
ciency (16). In contrast, the hyt, cog, and grt mutations
have primary CH, which show low thyroid hormone (T,
and T,) and elevated plasma TSH levels. Recently,

First Published Online June 8, 2006
Abbreviations: CH, Congenital hypothyroidism; TPO, thy-
roid peroxidase.
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Pax8—/— created using a homologous recombination
technique showed congenital hypothyroidism (17).

In this study, we found a novel dwarf mutant mouse
that has different characters from other dwarf muta-
tions. We showed that the responsible gene in our
novel dwarf mice was mapped on a position close to
the thyroid peroxidase (Tpo) gene on chromosome 12
(18) and that sequence analysis demonstrated a mis-
sense mutation, Arg479Cys, of the Tpo gene. To date,
dwarfisms caused by any mutation of the Tpo gene
have not been reported in mice. The mouse dwarfism
reported in this study is the first one to be discovered
that is caused by Tpo gene mutation. We also showed
hormone therapy improved phenotypes of the
dwarfism.

RESULTS
Phenotype of Dwarf Mice

Typical phenotypes of adult dwarf mice were charac-
terized by a short trunk and prominent forehead and
eyes (Fig. 1). As shown in Fig. 2, dwarf mice (6.46 *+
0.36 g; n = 8) at 15 d after birth were significantly
smaller than the normal littermates (8.95 + 0.32 g; n =
8; P < 0.01). At 30 d after birth, dwarf mice (6.54 =
0.25 g) were extremely small compared with the nor-
mal littermates (20.96 = 0.68 g; P < 0.001). Their
mean life span was approximately 3 months.
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Fig. 1. A Dwarf (left) and a Normal (right) Mouse at 3 Months

The dwarf mouse is identified by the small body size. Eye
opening of the dwarf mouse was delayed for a few days more
than that (15 d old) of the normal mouse. Ossification activ-
ities in the digit joints of the dwarf mouse were lower than
those of the normal.

Bone and spleen, known as target organs of the
thyroid hormone, were observed. As shown in Fig. 1,
no ossification was observed in dwarf mice compared
with normal. Also, spleens of dwarf mice at 3 months
after birth were significantly smaller than those of nor-
mal mice (Table 1).

Genetics and Chromosomal Mapping of the
Dwarf Gene

Genetic crosses revealed that dwarfism was inherited
in a Mendelian fashion as an autosomal recessive
gene, because no dwarf mice were observed in Fi
progeny. The ratio of dwarf and normal mice in the F2

Mol Endocrinol, October 20086, 20(10):2584-2590 2585
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Fig. 2. Growth Curves of Dwarf, Normal, and Dwarf Mice
with Thyroid Therapy

generation was 24:74 (1:3). To identify the gene that
causes dwarfism, linkage analysis was performed us-
ing 24 dwarf mice of the F2 generation. A significant
linkage was observed between the dwarf gene and the
microsatellite markers on the proximal region approx-
imately 13 ¢cM of chromosome 12. As shown in Fig. 3,
no recombination between the dwarf gene and
D12Mit136 marker close to the Tpo gene was
observed.

Histology of the Thyroid Gland

Figure 4 shows typical thyroid glands of 3-month-old
dwarf (A1 and A2) and normal mice (B1 and B2). Thy-
roid glands of the dwarf mouse displayed hypertrophy
and diffuse goiter (A1) compared with thyroid glands of
the normal mouse (B1). Weights of the thyroid glands
of dwarf and normal mice were 45.0 = 6.8 mg (n = 4)
and 15.0 = 2.0 mg (n = 5), respectively.

Thyroid follicles of the dwarf mouse showed dimin-
ished and disordered colloids, because of hyperpro-
liferation and hypertrophy of the thyrofollicular cells
{(A2). No lymphoid infiltration was observed in the thy-
roid of the dwarf mouse.

Hematology and Endocrinology

Hematological data of dwarf and normal mice are
shown in Table 1. Hematocrit values and the number
of red blood cells of dwarf mice were significantly
lower than those of normal mice.

Because dwarf mice showed a typical goiter, con-
centrations of three thyroid-related hormones (T, Ty,
and TSH) in plasma were measured (Table 1). T; and
T, were extremely reduced in dwarf mice. However,
TSH of dwarf mice was approximately 20 times higher
than that of normal mice. These results strongly sug-
gested that TPO is an etiology of goitrous
hypothyroidism.

TPO protein and TPO oxidation activity were mea-
sured by Western blotting and guaiacol assay, respec-
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Table 1. Morphological, Hematological, and Endocrinological Values of the Normal and Dwarf Mice at 3 Months after Birth

TPO Activity (mU/mg)

TSH (ng/mil)
90.4 = 19.5% (n

T, {(ng/mi)

<10.00 {n

T4 (ng/mi)
0.22 = 0.027 (n = 5)
0.59+0.06 (n = 5)

REC (X 10%/m)
718 =367 =7)

89.6 3.4 (n =

Hematocrit (%)
385167 (n=7)

Spleen (mg)
227 £1.8(n

Mice
Dwarf

<2.0% (n = 3)

164.5 + 50 (n = 3)

=8)

:5)

= 4)

= 8)

4.8+ 08(n

174 +1.9(n = 5)

i

7

478 +1.4(n

831+ 7.6 =5)

Normal
RBC, Red blood cells.

2 Mean values for the dwarf mice are significantly different from those of the normal mice by t test at P < 0.01.
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Chromosome 12

oM B DS (64

13 M D12Mit]36 (0/48), Dwarfism
15 cM DI2Mit153 (3/48)

17 M DI2Mit154 (4/48)

19 M DI2Mit235 (6/48)

22 M DI12Mit172 (7/48)

Fig. 8. Map Position of the Gene Responsible for a Novel
Dwarfism on Chromosome 12

The number of recombinants between the responsible
gene and the microsatellite markers observed in dwarf mice
(n = 24) at the F2 generation is indicated.

tively. TPO protein was detected in the microsomal
fraction of both mice (Fig. 5). TPO oxidation activity in
the microsomal fraction of normal mice was detected,
but that of dwarf mice was undetectable (Table 1).

Sequencing of the Tpo Gene

The whole genomic Tpo gene length including 18 ex-
ons is approximately 150 kb. mRNA of the Tpo gene is
3281 bp long (19). In this study, Tpo cDNA of dwarf
and normal mice was amplified by RT-PCR, and nu-
cleotide sequences were compared. There was no
difference in the lengths of their fragments. Therefore,
this suggests that there are no gross changes of nu-
cleotide seguence in the mutant allele such as inser-
tion or deletion.

Sequence analyses revealed that the Tpo gene of
the dwarf mouse has a nucleotide change fromCto T
at position 1508 in exon 9. This missense mutation
leads to an amino acid exchange from Arg to Cys at
amino acid residue 479 (Fig. 6, middle). The male ICR
no. 8 mouse, which is the founder, was heterozygous
for the Tpo gene (Fig. 6, right).

Hormone Therapy in Dwarf Mice

Dwarf mice were given a thyroid powder-supple-
mented diet at 30 d after birth. After 1 wk, the body
weight of dwarf mice was significantly increased, as
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Fig. 4. Thyroid Glands of Dwarf (A1 and A2) and Normal Mice (B1 and B2)
Enlarged thyroid glands due to a diffuse goiter were observed in the dwarf mice. The asterisks show colloids.

shown in Fig. 2. Body weight of dwarf mice with the diet
was 11.25 + 0.06 g (n = 4), whereas that of untreated
dwarf mice was significantly lower (7.03 £ 0.35g,n = 3;
P < 0.01). Body weights of untreated dwarf mice, treated
dwarf mice, and normal mice, 30 d after the beginning of
hormone therapy, were 10.73 = 0.52 g (n = 4), 19.75 =
0.06 g (n = 4), and 24.76 = 0.35 g (h = 5), respectively.
Improved dwarf mice showed normal fertility.

Normal

DISCUSSION

Flamant et al. (17) reported that Pax8—/minus] mice
show congenital hypothyroid and that the develop-
ment of bone, spleen, and brain, which are target
organs of thyroid hormone, was not observed in these
mice. We observed that our dwarf mice lacking T, and
T, showed the same phenotypes in bone and spleen.

Founder
(ICR 8)

Dwarf

i b g

GCCTTTCGC GCCTTTTGC GCCTTTYGC
Ala  Phe Arg Ala Cys Ala  Phe Cys/Arg
477 478 479 477 478 479 477 478 479

Fig. 5. Detection of TPO Protein in Thyroid Microsomal Fractions Using Western Blotting with Antihuman TPO Antibody
Lane 1, Positive control (Chinese hamster ovary-K1 cells transfected with human TPO cDNA); lane 2, the novel dwarf mouse;

lane 3, control (normal mouse)
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Da 1 2 3
250>

150~

75>

Fig. 6. Nucleotide Sequence (1502-1510) of the Tpo Gene in
the Novel Dwarf Mouse, Normal Mice, and Their Founder
(ICR no. 8)

Arrows in chromatograms show the nucleotide substitu-
tion of G to T at the codon.

TPO is a member of the peroxidase superfamily and
a key protein in the biosynthesis of thyroid hormone.
TPO, which is located on the apical membrane surface
of the thyroid follicular cell, mainly catalyzes tyrosine
jodination and the coupling of iodotyrosine on trans-
Golgi network to form T, and T3 (20). TPO functions as
a membrane enzyme containing a heme protein, which
is essential for the catalytic site. Ambrugger et al. (21)
reported that exon 9 of the TPO gene plays an impor-
tant role for the proper structure and function of the
TPO enzyme in humans. Many missense mutations of
exon 9 have been reported in human CH patients
(21-23). The first CH mouse, reported in this study,
had a missense Arg4d79Cys mutation of the Tpo gene.
In the peroxidase superfamily, the amino acid se-
quence from Arg 479 to His 482 is completely con-
served. A substitution from Arg to Cys at 479 could
lead to a change of tertiary structure of TPO that does
not bind heme and does not have enzyme activity.
Generally, Cys plays an important role in the tertiary
structure of protein through a disulfide bond. The ma-
jor extracellular portion of the TPO molecule corre-
sponds to amino acid residues 1-745 in humans and
1-733 in mice. The sequence from 473Phe to 484Thr
in mice is conserved in humans, rats, pigs, and dogs.
The codon Arg479 in mice corresponds to the codon
Arg491 in humans. In human CH patients, a missense
mutation at codon 491 (Arg491His) has been reported
(21), and mutations in the coding region of the TPO
gene have been also described (24-26).

Primary CH in the human is a well-documented
syndrome that is a common endocrine disease in ne-
onates and leads to reduced growth and mental re-
tardation. Newborn screening data in humans re-
vealed that 1 in 4000 neonates has CH and 15-20% of
CH patients show functional disorders in hormone
synthesis (27). In human CH patients, thyroid hormone
therapy is given to improve their disease symptoms.
We attempted this therapy using dwarf mice. As a
result, dwarf mice gained almost normal body weight
(80% of normal mice) and sexual maturity. This mutant
mouse could be useful for future studies such as gene
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therapy and thyrocyte transplantation that should be
undertaken for improvement of a patient’'s quality of
life.

MATERIALS AND METHODS

Genetic Crosses and Gene Mapping

ICR, DBA/2JJcl, and C57BL/6JJcl mice were purchased from
CLEA Japan (Tokyo, Japan). Genetic crosses were per-
formed to find spontaneous recessive mutations existing in
ICR closed colony mice. Dwarf mice were segregated from
the normal mice in litters of backcrossing of F1 (DBA/2JJcl X
ICR no. 8) X ICR no. 8.

Linkage analysis between the dwarf gene and microsatel-
lite markers on autosomes was performed using the F2 prog-
eny derived from the cross ICR no. 8 with C57BL/6JJcl. The
F2 progeny were produced by intercrossing of F1 (C57BL/
6JJcl X ICR no. 8) mice. Eighty-three markers on chromo-
some 1 to chromosome 19 showing genetic polymorphisms
between ICR no.8 and C57BL/6JJcl were selected (Table 2).
Microsatellite DNA markers were amplified by PCR followed
by agarose gel electrophoresis. The procedures were de-
scribed elsewhere (3). Primer sets for microsatellite markers
were purchased from invitrogen (Carisbad, CA).

Anatomical and Histological Phenotyping

Body and tissue weights of dwarf and normal mice were
measured using an electronic balance. Thyroid tissues were
removed and fixed in Bouin’s solution for 24 h. They were
embedded in paraffin and were sectioned 5 um in thickness.
After staining in hematoxylin and eosin solution, histological
diagnosis was performed.

The removed skin and all organs and tissues of dwarf and
normal mice were fixed in 95% ethanol overnight and then
stained by alcian blue followed by alizarin red. After destain-
ing for 72 h in 1% KOH, samples were subsequently treated
in 20%, 40%, 60%, and 80% {vol/vol) glycerol solutions
prepared in 1% KOH for 48-72 h before soaking in 100%
glycerol.

Measurement of Hormones

Heparinized blood samples were collected from 3-month-old
dwarf and normal mice to measure plasma TSH and thyroid
hormones. The plasma was stored at —30 C until use. Plasma
levels of T,, T,, and TSH were measured using RIA kits
purchased from Abbott Japan Corp. (Tokyo, Japan), Diag-
nostic Products Corp. (Los Angeles, CA) and Amersham Bio-
sciences (Piscataway, NJ), respectively. TPO activity was
measured using 30 mmol/liter Guaiacol and 0.1 mmol/liter
HB,gOB,g in 0.1 mol/liter potassium phosphate buffer (pH
7.4) at 30 C. Guaiacol oxidation of 1 pmol/min was defined as
one unit (28).

Sequencing of the Tpo Gene

Entire coding regions corresponding to exons 2-18 of the
Tpo gene of dwarf and normal mice were amplified using the
five following primer pairs: Tpo-F1/R1, caaaggctggaaccctaa/
tggacacagtagggttca; Tpo-F2/R2, tacaaccccactgtgaac/gea-
caaagttcccattgtee; Tpo-F3/R3, gecticegtatiggaaag/cacatga-
gatggaagctac; Tpo-F4/F4, cctectgtgegaatagaggt/gtgactgga-
ccgtaacgaga; and Tpo-F8/R8, gcictagaatgagaacacttgg/
gecgtggtataagaaattaggg. Nucleotide sequences of these
primers were obtained from NCBI/GenBank accession no.
X60703.
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Table 2. Microsatellite Markers Used for Gene Mapping

Chromosome cM Markers Chromosome cM Markers Chromosome cM Markers

1 15.0 Di1mit 211 7 15.0 D7Mit155 28.0 D12Mit190
34.8 D1Mit303 52.4 D7Mit220 29.0 D12Mit33
43.1 D1Mit46 8 37.0 D8Mit249 37.0 D12Mit14
64.1 D1Mit217 43.0 D8Mit248 37.0 D12Mit157
96.3 D1Mit36 9 18.0 D9Mit205 50.0 D12Mit277

2 41.4 D2Mit92 28.0 DOMit229 53.0 D12Mit262
52.5 D2Mit274 61.0 DIMit212 13 75.0 D13Mit78
86.0 D2Mit285 10 44.0 D10Mit42 14 15.0 D14Mit141
91.8 D2Mit346 51.0 D10Mit95 28.3 D14Mit203

3 0.0 D3Mit60 11 1.1 D11Mit71 44.4 D14Mit194
45.8 D3Mit100 20.0 D11Mit236 15 23.0 D15Mit184
64.1 D3Mit110 11 28.0 D11Mit86 54.5 D15Mit171

4 20.8 D4Mit12 50.0 D11Mit212 16 3.4 D16Mit154
60.0 D4Mit203 59.5 D11Mit99 27.3 D16Mit4
66.0 D4Mit251 12 11.0 D12Mit185 66.8 D16Mit51

5 54.0 D5Mit10 11.0 D12Mit283 17 6.5 D17Mit113
68.0 D5Mitg5 13.0 D12Mit171 17.7 + D17Mit175
72.0 D5Mit30 13.0 D12Mit136 18 57.0 D18Mit4
81.0 D5Mit101 15.0 D12Mit153 19 6.0 D19Mit68

6 15.0 D6MIt86 17.0 D12Mit154 41.0 D19Mit89
35.2 D6MIt8 19.0 D12Mit235 47.0 D19Mit31
74.0 D6Mit15 22.0 D12Mit172

Marker’s position was taken from the Mouse Genome database.
Nucleotide sequences were determined by the dideoxy Acknowledgments

chain terminating method with a BigDye Terminator v3.1
Cycle Sequencing kit (Applied Biosystems, Foster City, CA),
-and then applied to an automated DNA sequencer ABI
PRISM 3100 (Applied Biosystems).

Measurement of TPO Activity in Thyroid Tissue

Microsomal and supernatant fractions of thyroid tissues of
3-month-old dwarf and normal mice were prepared by the
method of Hosoya and Morrison (29) as modified by Naka-
gawa et al. (30). Concentration of protein in the fractions was
measured using the Bradford method with bovine serum as a
standard (31).

Western Blots

Thyroid microsomes and Chinese hamster ovary-K1 cells
expressing recombinant human TPO (32) were electropho-
resed using a 7.5% sodium dodecy! sulfate polyacrylamide
gel. The gel was transferred to a Hybond-P polyvinylidene
difluoride membrane (Amersham Biosciences). After blocking
with 5% skim milk, the membrane was incubated in a solution
containing affinity-purified rabbit antihuman TPO antibody (5
ng/ml) and then reacted with 1:5000 diluted antirabbit IgG
antibody conjugated with alkaline phosphatase (Promega
Corp., Madison, Wi (33). Antihuman TPO antibody (primary
antibody) showed cross-reaction with murine and porcine
TPOs (data not shown).

Thyroid Hormone Therapy

To observe effects of thyroid hormone on dwarf mice, the
animals were given a diet containing 0.01% thyroid powder
(Sigma-Aldrich, St. Louis, MO) for 30 d after weaning accord-
ing to the method of Beamers et al. (9, 10). Body weights
were recorded for 30 d after the beginning of the therapy.
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Recently, we found a novel dwarf mutation in an
ICR closed colony. This mutation was governed by
a single autosomal recessive gene. In novel dwarf
mice, plasma levels of the thyroid hormones, T,
and T,, were reduced; however, TSH was elevated.
Their thyroid glands showed a diffuse goiter exhib-
iting colloid deficiency and abnormal follicle epi-
thelium. The dwarfism was improved by adding
thyroid hormone in the diet. Gene mapping re-
vealed that the dwarf mutation was closely linked
to the thyroid peroxidase (Tpo) gene on chromo-
some 12. Sequencing of the Tpo gene of the dwarf

mice demonstrated a C to T substitution at position
1508 causing an amino acid change from arginine
(Arg) to cysteine (Cys) at codon 479 (Arg479Cys).
Western blotting revealed that TPO protein of the
dwarf mice was detected in a microsomal fraction
of thyroid tissue, but peroxidase activity was not
detected. These findings suggested that the dwarf
mutation caused a primary congenital hypothy-
roidism by TPO deficiency, resulting in a defect of
thyroid hormone synthesis. (Molecular Endocrinol-
ogy 20: 25842590, 2006)

ANY SPONTANEOUS MUTATIONS have been

found in inbred strains derived from an ICR
closed colony of mice (1-3). Recently, we found that a
Jcl:ICR male mouse had an autosomal recessive mu-
tation in our colony, because some of the backcross
mice obtained using a DBA/2JJcl female mouse
showed dwarfism. Dwarf mice were noticeably smaller
than their normal littermates and showed primary con-
genital hypothyroidism (CH) with goiter.

Six autosomal recessive mutations related to dwarf-
ism have been found in mice, e.g. dw [dwarf, chromo-
some 16, 43.5 centimorgans (cM)] (4, 5), df (chromo-
some 11, 25.0 cM) (8, 7), /it (little, chromosome 6, 26.0
cM) (8), hyt (hypothyroid, chromosome 12, 37.0 cM)
(9), cog (congenital goiter, chromosome 15, 36.4 cM)
(10), and grt (growth-retarded, chromosome 5, 59.0
cM) (11, 12). The dw and df mutations are a primary
hypopituitarism, which does not produce prolactin,
TSH, and GH (13-15). The /it mutation has a GH defi-
ciency (16). In contrast, the hyt, cog, and grt mutations
have primary CH, which show low thyroid hormone (T,
and T,) and elevated plasma TSH levels. Recently,

First Published Online June 8, 2006
Abbreviations: CH, Congenital hypothyroidism; TPO, thy-
roid peroxidase.
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Pax8—/— created using a homologous recombination
technigue showed congenital hypothyroidism (17).

In this study, we found a novel dwarf mutant mouse
that has different characters from other dwarf muta-
tions. We showed that the responsible gene in our
novel dwarf mice was mapped on a position close to
the thyroid peroxidase (Tpo) gene on chromosome 12
(18) and that sequence analysis demonstrated a mis-
sense mutation, Arg479Cys, of the Tpo gene. To date,
dwarfisms caused by any mutation of the Tpo gene
have not been reported in mice. The mouse dwarfism
reported in this study is the first one to be discovered
that is caused by Tpo gene mutation. We also showed
hormone therapy improved phenotypes of the
dwarfism.

RESULTS
Phenotype of Dwarf Mice

Typical phenotypes of aduit dwarf mice were charac-
terized by a short trunk and prominent forehead and
eyes (Fig. 1). As shown in Fig. 2, dwarf mice (6.46 *=
0.36 g; n = 8) at 15 d after birth were significantly
smaller than the normal littermates (8.95 = 0.32g; n =
6; P < 0.01). At 30 d after birth, dwarf mice (6.54 =
0.25 g) were extremely small compared with the nor-
mal littermates (20.96 = 0.68 g; P < 0.001). Their
mean life span was approximately 3 months.
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Fig. 1. A Dwarf (left) and a Normal {right) Mouse at 3 Months

The dwarf mouse is identified by the small body size. Eye
opening of the dwarf mouse was delayed for a few days more
than that (15 d old) of the normal mouse. Ossification activ-
ities in the digit joints of the dwarf mouse were lower than
those of the normal.

Bone and spleen, known as target organs of the
thyroid hormone, were observed. As shown in Fig. 1,
no ossification was observed in dwarf mice compared
with normal. Also, spleens of dwarf mice at 3 months
after birth were significantly smaller than those of nor-
mal mice (Table 1).

Genetics and Chromosomal Mapping of the
Dwarf Gene

Genetic crosses revealed that dwarfism was inherited
in a Mendelian fashion as an autosomal recessive
gene, because no dwarf mice were observed in F1
prageny. The ratio of dwarf and normal mice in the F2
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Dwarf with a therapy.

Tbyroid therapy

Dwarf

Body weight (g)
G
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Age (days)
Fig. 2. Growth Curves of Dwarf, Normal, and Dwarf Mice
with Thyroid Therapy

generation was 24:74 (1:3). To identify the gene that
causes dwarfism, linkage analysis was performed us-
ing 24 dwarf mice of the F2 generation. A significant
linkage was observed between the dwarf gene and the
microsatellite markers on the proximal region approx-
imately 13 ¢M of chromosome 12. As shown in Fig. 3,
no recombination between the dwarf gene and
D12Mit136 marker close to the Tpo gene was
observed.

Histology of the Thyroid Gland

Figure 4 shows typical thyroid glands of 3-month-old
dwarf (A1 and A2) and normal mice (B1 and B2). Thy-
roid glands of the dwarf mouse displayed hypertrophy
and diffuse goiter (A1) compared with thyroid glands of
the normal mouse (B1). Weights of the thyroid glands
of dwarf and normal mice were 45.0 = 6.8 mg (n = 4)
and 15.0 = 2.0 mg (n = 5), respectively.

Thyroid follicles of the dwarf mouse showed dimin-
ished and disordered colloids, because of hyperpro-
liferation and hypertrophy of the thyrofollicular cells
(A2). No lymphoid infiltration was observed in the thy-
roid of the dwarf mouse.

Hematology and Endocrinology

Hematological data of dwarf and normal mice are
shown in Table 1. Hematocrit values and the number
of red blood cells of dwarf mice were significantly
lower than those of normal mice.

Because dwarf mice showed a typical goiter, con-
centrations of three thyroid-related hormones (T3, T,
and TSH) in plasma were measured (Table 1). T; and
T, were extremely reduced in dwarf mice. However,
TSH of dwarf mice was approximately 20 times higher
than that of normal mice. These results strongly sug-
gested that TPO is an etiology of goitrous
hypothyroidism.

TPO protein and TPO oxidation activity were mea-
sured by Western blotting and guaiacol assay, respec-
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Table 1. Morphological, Hematological, and Endocrinological Vaiues of the Normal and Dwarf Mice at 3 Months after Birth

TPO Activity (mU/mg)

TSH {(ng/mi)

90.4 = 19.5% (n

T4 (ng/mi)

<10.00 (n
171 +£19(n =5

T3 (ng/ml)
0.22 = 0.022 (n

RBC (x 108/ml)
718367 (n=7)

89.6 = 3.4 (n

Hematocrit (%)

385 + 1.6% (n

Spleen (mg)
227182 (n=4)
83.1+76(n=05)

RBC, Red blood cells.

Mice
Dwarf

<2.08(n = 3)
164.5 £ 50 (n = 3)

= 8)

= 5)

5)

7)

0.8(n = 8)

4.8 *

0.59:0.06 (n = 5)

=7

478+14(n=7)

Normal

2 Mean values for the dwarf mice are significantly different from those of the normal mice by t test at P < 0.01.
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Chromosome 12

N

13 M DI2Mit136 (0/48), Dwarfism
15 cM DI2Mit153 (3/48)

17 M DI2Mit]54 (4/48)

19 M DI2Mi1235 (6/48)

2 M DI2Mitl72 (7/48)

Fig. 3. Map Position of the Gene Responsible for a Novel
Dwarfism on Chromosome 12

The number of recombinants between the responsible
gene and the microsatellite markers observed in dwarf mice
(n = 24) at the F2 generation is indicated.

tively. TPO protein was detected in the microsomal
fraction of both mice (Fig. 5). TPO oxidation activity in
the microsomal fraction of normal mice was detected,
but that of dwarf mice was undetectable (Table 1).

Sequencing of the Tpo Gene

The whole genomic Tpo gene length including 18 ex-
ons is approximately 150 kb. mRNA of the Tpo gene is
3281 bp long (19). In this study, Tpo cDNA of dwarf
and normal mice was amplified by RT-PCR, and nu-
cleotide sequences were compared. There was no
difference in the lengths of their fragments. Therefore,
this suggests that there are no gross changes of nu-
cleotide sequence in the mutant allele such as inser-
tion or deletion.

Sequence analyses revealed that the Tpo gene of
the dwarf mouse has a nucleotide change fromCto T
at position 1508 in exon 9. This missense mutation
leads to an amino acid exchange from Arg to Cys at
amino acid residue 479 (Fig. 6, middle). The male ICR
no. 8 mouse, which is the founder, was heterozygous
for the Tpo gene (Fig. 6, right).

Hormone Therapy in Dwarf Mice

Dwarf mice were given a thyroid powder-supple-
mented diet at 30 d after birth. After 1 wk, the body
weight of dwarf mice was significantly increased, as
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i

Fig. 4. Thyroid Glands of Dwarf

(A1 and A2) and Normal Mice (B1
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and B2)

Enlarged thyroid glands due to a diffuse goiter were observed in the dwarf mice. The asterisks show colloids.

shown in Fig. 2. Body weight of dwarf mice with the diet
was 11.25 = 0.06 g (n = 4), whereas that of untreated
dwarf mice was significantly lower (7.03 £ 0.35g,n = 3;
P < 0.01). Body weights of untreated dwarf mice, treated
dwarf mice, and normal mice, 30 d after the beginning of
hormone therapy, were 10.73 = 0.52 g (n = 4), 19.75 =
0.06 g (n = 4), and 24.76 = 0.35 g (n = 5), respectively.
Improved dwarf mice showed normal fertility.

Normal

DISCUSSION

Flamant et al. (17) reported that Pax8-/minus] mice
show congenital hypothyroid and that the develop-
ment of bone, spleen, and brain, which are target
organs of thyroid hormone, was not observed in these
mice. We observed that our dwarf mice lacking T, and
T, showed the same phenotypes in bone and spleen.

Founder
(ICR 8)

i g

GCCTTTCGC GCCTTTTGC GCCTTTYGC
Ala Phe Arg Ala Cys Ala  Phe Cys/Arg
477 478 479 477 478 479 477 478 479

Fig. 5. Detection of TPO Protein in Thyroid Microsomal Fractions Using Western Blotting with Antihuman TPO Antibody
Lane 1, Positive control {Chinese hamster ovary-K1 cells transfected with human TPO cDNA); lane 2, the novel dwarf mouse;

lane 3, control (normal mouse)
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Da 1 2 3
250 =
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100 = |t & 3| <

75»

Fig. 6. Nucleotide Sequence (1502-1510) of the Tpo Genein
the Novel Dwarf Mouse, Normal Mice, and Their Founder
({CR no. 8)

Arrows in chromatograms show the nucleotide substitu-
tion of C to T at the codon.

TPO is a member of the peroxidase superfamily and
a key protein in the biosynthesis of thyroid hormone.
TPO, which is located on the apical membrane surface
of the thyroid follicular cell, mainly catalyzes tyrosine
iodination and the coupling of iodotyrosine on trans-
Golgi network to form T, and T; (20). TPO functions as
a membrane enzyme containing a heme protein, which
is essential for the catalytic site. Ambrugger et al. (21)
reported that exon 9 of the TPO gene plays an impor-
tant role for the proper structure and function of the
TPO enzyme in humans. Many missense mutations of
exon 9 have been reported in human CH patients
(21-23). The first CH mouse, reported in this study,
had a missense Arg479Cys mutation of the Tpo gene.
In the peroxidase superfamily, the amino acid se-
quence from Arg 479 to His 482 is completely con-
served. A substitution from Arg to Cys at 479 could
lead to a change of tertiary structure of TPO that does
not bind heme and does not have enzyme activity.
Generally, Cys plays an important role in the tertiary
structure of protein through a disulfide bond. The ma-
jor extracellular portion of the TPO molecule corre-
sponds to amino acid residues 1-745 in humans and
1-733 in mice. The sequence from 473Phe to 484Thr
in mice is conserved in humans, rats, pigs, and dogs.
The codon Arg479 in mice corresponds to the codon
Arg491 in humans. In human CH patients, a missense
mutation at codon 491 (Arg491His) has been reported
(21), and mutations in the coding region of the TPO
gene have been also described (24-26).

Primary CH in the human is a well-documented
syndrome that is a common endocrine disease in ne-
onates and leads to reduced growth and mental re-
tardation. Newborn screening data in humans re-
vealed that 1 in 4000 neonates has CH and 15-20% of
CH patients show functional disorders in hormone
synthesis (27). In human CH patients, thyroid hormone
therapy is given to improve their disease symptoms.
We attempted this therapy using dwarf mice. As a
result, dwarf mice gained almost normal body weight
(80% of normal mice) and sexual maturity. This mutant
mouse could be useful for future studies such as gene

Takabayashi et al. ¢ A Novel Mouse Dwarfism

therapy and thyrocyte transplantation that should be
undertaken for improvement of a patient’s quality of
life.

MATERIALS AND METHODS

Genetic Crosses and Gene Mapping

ICR, DBA/2JJcl, and C57BL/6JJcl mice were purchased from
CLEA Japan (Tokyo, Japan). Genetic crosses were per-
formed to find spontaneous recessive mutations existing in
ICR closed colony mice. Dwarf mice were segregated from
the normal mice in litters of backcrossing of F1 (DBA/2JJcl X
ICR no. 8) X ICR no. 8.

Linkage analysis between the dwarf gene and microsatel-
lite markers on autosomes was performed using the F2 prog-
eny derived from the cross ICR no. 8 with C57BL/6JJcl. The
F2 progeny were produced by intercrossing of F1 (C57BL/
6JJcl X ICR no. 8) mice. Eighty-three markers on chromo-
some 1 to chromosome 19 showing genetic polymorphisms
between ICR no.8 and C57BL/6JJct were selected (Table 2).
Microsatellite DNA markers were amplified by PCR followed
by agarose gel electrophoresis. The procedures were de-
scribed elsewhere (3). Primer sets for microsatellite markers
were purchased from Invitrogen (Carisbad, CA).

Anatomical and Histological Phenotyping

Body and tissue weights of dwarf and normal mice were
measured using an electronic balance. Thyroid tissues were
removed and fixed in Bouin’s solution for 24 h. They were
embedded in paraffin and were sectioned 5 pm in thickness.
After staining in hematoxylin and eosin solution, histological
diagnosis was performed.

The removed skin and all organs and tissues of dwarf and
normal mice were fixed in 95% ethanol overnight and then
stained by alcian blue followed by alizarin red. After destain-
ing for 72 hin 1% KOH, samples were subsequently treated
in 20%, 40%, 60%, and 80% (vol/vol) glycerol solutions
prepared in 1% KOH for 48-72 h before soaking in 100%
glycerol.

Measurement of Hormones

Heparinized blood samples were collected from 3-month-old
dwarf and normal mice to measure plasma TSH and thyroid
hormones. The plasma was stored at —30 C until use. Plasma
levels of T;, T,, and TSH were measured using RIA kits
purchased from Abbott Japan Corp. (Tokyo, Japan), Diag-
nostic Products Gorp. (Los Angeles, CA) and Amersham Bio-
sciences (Piscataway, NJ), respectively. TPO activity was
measured using 30 mmol/liter Guaiacol and 0.1 mmol/liter
HB,z0B,5 in 0.1 mol/liter potassium phosphate buffer (pH
7.4) at 30 C. Guaiacol oxidation of 1 umol/min was defined as
one unit (28).

Sequencing of the Tpo Gene

Entire coding regions corresponding to exons 2-18 of the
Tpo gene of dwarf and normal mice were amplified using the
five following primer pairs: Tpo-F1/R1, caaaggctggaaccctaa/
tggacacagtagggtica; Tpo-F2/R2, tacaaccccactgtgaac/gca-
caaagttcceattgtee; Tpo-F3/R3, gecttccgtattggaaag/cacatga-
gatggaagctac; Tpo-F4/F4, cctectgtgcgaatagaggt/gtgactgga-
ccgtaacgaga; and Tpo-F8/R8, gctctagaatgagaacactigg/
gccgtggtataagaaattaggg. Nucleotide sequences of these
primers were obtained from NCBI/GenBank accession no.
X60703.
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Table 2. Microsatellite Markers Used for Gene Mapping

Chromosome cM Markers Chromosome cM Markers Chromosome cM Markers
1 15.0 D1Mit 211 7 15.0 D7Mit155 28.0 D12Mit190
34.8 D1Mit303 52.4 D7Mit220 29.0 D12Mit33
43.1 D1Mit46 8 37.0 D8Mit249 37.0 D12Mit14
64.1 D1Mit217 43.0 D8Mit248 37.0 D12Mit157
96.3 D1Mit36 9 18.0 DIMIit205 50.0 D12Mit277
2 41.4 D2Mit92 28.0 DaMit229 53.0 D12Mit262
52.5 D2Mit274 61.0 DIMit212 13 75.0 D13Mit78
86.0 D2Mit285 10 44.0 D10Mit42 14 15.0 D14Mit141
91.8 D2Mit346 51.0 D10Mit95 28.3 D14Mit203
3 0.0 D3Mit60 11 1.1 D11Mit71 44 4 D14Mit194
45.8 D3Mit100 20.0 D11Mit236 15 23.0 D15Mit184
64.1 D3Mit110 11 28.0 D11Mit86 54.5 D15Mit171
4 20.8 D4MIt12 50.0 D11Mit212 16 3.4 D16Mit154
60.0 D4MIt203 59.5 D11Mit99 27.3 D16Mit4
66.0 D4Mit251 12 11.0 D12Mit185 66.8 D16Mit51
5 54.0 D5Mit10 11.0 D12Mit283 17 6.5 D17Mit113
68.0 D5Mit95 13.0 D12Mit171 17.7 D17Mit175
72.0 D5Mit30 13.0 D12Mit136 18 57.0 D18Mit4
81.0 D5Mit101 15.0 D12Mit153 19 6.0 D19Mit68
6 15.0 D6MIt86 17.0 D12Mit154 41.0 D139Mit89
35.2 D6MIt8 19.0 D12Mit235 47.0 D19Mit91
74.0 D6Mit15 22.0 D12Mit172

Marker’s position was taken from the Mouse Genome database.

Nucleotide sequences were determined by the dideoxy
chain terminating method with a BigDye Terminator v3.1
Cycle Sequencing kit (Applied Biosystems, Foster City, CA),
‘and then applied to an automated DNA sequencer ABI
PRISM 3100 (Applied Biosystems).

Measurement of TPO Activity in Thyroid Tissue

Microsomal and supernatant fractions of thyroid tissues of
3-month-old dwarf and normal mice were prepared by the
method of Hosoya and Morrison (29) as modified by Naka-
gawa et al. (30). Concentration of protein in the fractions was
measured using the Bradford method with bovine serum as a
standard (31).

Western Blots

Thyroid microsomes and Chinese hamster ovary-K1 cells
expressing recombinant hurman TPO (32) were electropho-
resed using a 7.5% sodium dodecyl sulfate polyacrylamide
gel. The gel was transferred to a Hybond-P polyvinylidene
difluoride membrane (Amersham Biosciences). After blocking
with 5% skim milk, the membrane was incubated in a solution
containing affinity-purified rabbit antihuman TPO antibody (5
ng/mi) and then reacted with 1:5000 diluted antirabbit IgG
antibody conjugated with alkaline phosphatase (Promega
Corp., Madison, W) (33). Antthuman TPO antibody (primary
antibody) showed cross-reaction with murine and porcine
TPOs (data not shown).

Thyroid Hormone Therapy

To observe effects of thyroid hormone on dwarf mice, the
animals were given a diet containing 0.01% thyroid powder
(Sigma-Aldrich, St. Louis, MO) for 30 d after weaning accord-
ing to the method of Beamers et al. (9, 10). Body weights
were recorded for 30 d after the beginning of the therapy.
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