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Abstract Chitosan is a biodegradable and
biocompatible polymer and is useful as a non-viral
vector for gene delivery. In order to deliver
pDNA/chitosan complex into macrophages
expressing a mannose receptor, mannose-modi-
fied chitosan (man-chitosan) was employed. The
cellular uptake of pPDNA/man-chitosan complexes
through mannose recognition was then observed.
The pDNA/man-chitosan complexes showed no
significant cytotoxicity in mouse peritoneal mac-
rophages, while pDNA/man-PEI complexes
showed strong cytotoxicity. The pDNA/man-
chitosan complexes showed much higher trans-
fection efficiency than pDNA/chitosan complexes
in mouse peritoneal macrophages. Observation
with a confocal laser microscope suggested dif-
ferences in the cellular uptake mechanism be-
tween pDNA/chitosan complexes and pDNA/
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man-chitosan complexes. Mannose receptor-
mediated gene transfer.thus enhances the trans-
fection efficiency of pDNA/chitosan complexes.
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Introduction

Macrophages play an important role as effector
cells in inflammation and antigen presentation.
Macrophages accumulate at pathological sites,
including tumors, atherosclerotic plaques, ar-
thritic joints and sites of infection (Kelly et al.
1988). Activated macrophages can release cyto-
kines such as interleukin-1 (IL-1), tumor necrosis
factor-alpha (TNF-«) and reactive oxygen inter-
mediates to defend against microbial infection
and lyse tumor cells (Higuchi et al. 1990).
Therefore, gene transfer to macrophages can be
applied to not only genetic disease, but also to
DNA vaccination and cancer therapy (Griffiths
et al. 2000).

Recently, several non-viral gene delivery
systems have been developed. Chitosan is a nat-
urally occurring polysaccharide consisting of p-
glucosamine and N-acetyl-p-glucosamine linked
by a {1 — 4)-glycosidic bond. It has the potential
to condense anionic DNA to a compact structure
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through electrostatic interaction. Since chitosan
has been proved to be non-toxic, biodegradable
and biocompatible (Hirano et al. 1988), chitosan
is considered to be a promising DNA carrier.
DNA/chitosan complexes have shown high trans-
fection efficiency in several cell lines (Sato et al.
1996; Thanou et al. 2002; Corsi et al. 2003).
However, they did not show uptake into white
blood cells (Sato et al. 2001) and, to our knowl-
edge, transfection of DNA/chitosan complexes to
macrophages has not been reported yet.

Receptor-mediated endocytosis offers the po-
tential to target specific cells and enhances their
uptake. Active targeting using receptor-mediated
interaction has been effective in gene delivery
(Varga et al. 2000). For example, macrophages
express a mannose receptor that is used for
endocytosis and phagocytosis of a variety of
antigens (Stahl et al. 1980). Mannose-mediated
drug delivery systems have often been employed
to target macrophages (Sato and Sunamoto 1992).
For gene delivery systems, mannosylated PEI,
PLL and liposomes have been employed to de-
liver genes into dendritic cells and macrophages
(Ferkol et al. 1996; Kawakami et al. 2000).
However, PEI has strong cytotoxicity (Moghimi
et al. 2005), and PLL requires chloroquine to in-
duce transfection (Midoux et al. 1993). In this
study we have employed mannosylated chitosan
as a gene carrier with high transfection efficiency
and low cytotoxicity, and the uptake of pDNA/
man-chitosan complexes and their transfection
efficiency in mouse peritoneal macrophages was
investigated.

Materials and methods

Preparation of mannose-modified
(man-chitosan)

Chitosan (average molecular weight, 53 kDa;
degree of deacetylation, 93%) was obtained from
Koyo Chemical Co. Ltd. Mannosylated chitosan
(man-chitosan) was synthesized according to the
literature (Holme and Hall 1992). Briefly, after
allyl mannoside was reductively ozonolyzed to
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provide formylmethyl mannoside, chitosan
dissolved in 1% aqueous acetic acid was cou-
pled with formylmethyl mannoside by reductive
alkylation in the presence of sodium cyanoboro-
hydride. The degree of substitution (DS) was
calculated to be 5 and 21% from elementary
analysis. Calc. for 5% man-chitosan ([(CgHis
NOs)o.03 (CsH11NOg)o.92 (C14HzsNO10)0.05] 1 HZ0):
C,40.82; H, 7.25; N, 7.28. Found: C, 42.8; H, 7.597,
N, 7.422. Calc. for 21% man-chitosan ([(CgHis
NOs)o.03 (CsH11NO4)o76 (C1aH25NO10)o21] 1 Hz0):
C,41.67;H,7.19; N, 6.21. Found: C, 43.98; H, 7.59;
N, 6.024.

Plasmid DNA

Plasmid DNA (pDNA), pGL3-Luc, encoding
luciferase (Promega) was amplified in E. coli
DHS and isolated with a Qiagen Endotoxin-free
Plasmid Giga Kit (Qiagen Inc.) according to the
instruction manual provided. pGL-3Luc was la-
beled with YOYO-1 (Molecular Probes Inc.) for
the evaluation of cellular uptake (Ogris et al.
2000). Briefly, 10 pl of pGL-3Luc (1 mg/ml) was
mixed with 10 pl 10 upM YOYO-1 and incubated
at room temperature for 1 h in the dark.

Mouse peritoneal macrophages

Female ICR mice were purchased from Japan
SLC Co. The mice used in the study were 6-
8 weeks old, and were housed under pathogen-
free conditions in the animal facility of the Center
for Disease Biology and Integrative Medicine, the
University of Tokyo. Elicited macrophages were
harvested from the peritoneal cavity of female
ICR mice 3 days after intraperitoneal injection of
2ml 3% (w/v) thioglycolate medium (Nissui
Pharmaceutical). Cells were washed and then
suspended in RPMI 1640 supplemented with 10%
fetal bovine serum (FBS, JRH). The cells were
plated on either a 24- or 96-well culture plate ata
density of 3 x 10° cells/cm?. After incubation for
2h at 37°C in 5% CO,-95% air, non-adherent
cells were washed away with PBS (-) and the
residual adherent was cultured under the same
conditions for another 24 h.



Biotechnol Lett (2006) 28:815-821

817

Preparation of pDNA/chitosan complexes

pDNA/chitosan complexes were prepared as in
the method previously reported (Sato et al. 2001).
pDNA solution (0.1 mg/ml water) was mixed with
a given amount of man-chitosan solution (0.3 mg/
ml) in PBS (-) adjusted to pH 6.5. The mixture of
pDNA and man-chitosan was incubated at room
temperature for 15 min. The YOYO-1-labeled
pDNA described above was used for the evalua-
tion of cellular uptake. The ratio of the plasmid
phosphate anion to the chitosan amino groups
(N/P) was 5.

Measurement of zeta potential and particle
size

The concentration of pDNA was adjusted to
1.5 pg/ml by diluting with 20 mM HEPES buffer
(pH 6.5). Zeta potentials and particle sizes of
pDNA complexes were measured with DELSA
440 (Beckman Coulter) at 25°C.

Cellular uptake

Mouse peritoneal macrophages were seeded at
1 x 10° cells/well in 96-well plates 24 h prior to
transfection. pDNA complexes containing 1 pg
YOYO-1-labeled pDNA were incubated with
cells in RPMI1640 adjusted to pH 6.5 containing
10% (v/v) FBS at 37°C under a 5% CO2 humid-
ified atmosphere for 1 h. The culture medium was
replaced with PBS (-) after rinsing with PBS (-)
three times. The cells were then measured for
their fluorescence intensity using a fluorescence
microplate reader (Safire, TECAN) at excitation
and emission wavelengths of 490 and 520 nm,
respectively. For competition studies, the cells
were treated with pDNA/man-chitosan com-
plexes in the presence of 72 pug/ml mannan.

Luciferase assay

Mouse peritoneal macrophages were seeded at
4 x 10° cells/well in 24-well plates 24 h prior to
transfection. pDNA complexes containing 5 pg of
pDNA were incubated with cells in RPMI1640
(pH 6.5) containing 10% (v/v) FBS at 37°Cunder a
5% CO, humidified atmosphere for 4 h. The

medium was replaced with fresh complete
medium and the cells were further incubated for
20 h before assays. Transfection with Lipofectin®
(Gibco BRL) and mannosylated PEI (in vivo-jet-
PEI-Man, Polyplus transfection) was carried out
according to the instruction manuals. The trans-
fected cells were washed three times with PBS (-)
and lysed with cell lysate buffer (Promega).
Luciferase gene expression was measured using a
luciferase assay kit (Promega). The protein con-
centrations were determined with a DC protein
assay kit (BIO-RAD). The relative light units
(RLU) were measured with a luminometer and
were corrected for by the protein concentration.

Confocal laser scanning microscopy

Cells were seeded at 2 x 10° cells/well in glass-
bottomed dishes (diam. 35 mm), and incubated
with pDNA/chitosan complexes for 4 h. The
medium was replaced followed by washing with
PBS (-). The subcellular distribution of YOYO-
1-labeled pDNA/chitosan complexes was ana-
lyzed with a confocal laser-scanning microscope
(TCS-NT, Leica) equipped with a heating stage
(Temp-Control 37-2, Leica) and a Kr/Ar laser.

Cell viability

Mouse peritoneal macrophages adhered to a 96-
well microplate were incubated with pDNA
complexes for 24 h. Ten pl of WST-1 dye solution
(10 mM WST-1 and 0.2 mM 1-methoxy PMS
(Dojindo, Laboratories) per well was added to
the culture medium. After 2 h, absorbance at
450 nm with a reference wavelength of 690 nm
was measured using a microplate reader (Multis-
kan, Labsystem).

Results

The particle size and zeta potential of pDNA/
chitosan, pDNA/5% man-chitosan and pDNA/
21% man-chitosan complexes was about 300 nm
and +15 mV, respectively (Table 1). The modifi-
cation of mannose to chitosan with substitution
degrees of 5% and 21% did not affect the size and
zeta potential of pDNA/man-chitosan complexes.
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Table 1 Particle size and zeta potential of pDNA/chitosan
complexes

pDNA. complex Size Zeta potential
Chitosan 316 £ 33 +174 £ 1.6
5% man-chitosan 205 £ 50 +14.1£1.5
21% man-chitosan 334 + 50 +155+£ 09

The carobohydrate recognition of pDNA/
man-chitosan complexes was determined by
agglutination induced by concanavalin A (ConA).
With the addition of ConA, the turbidity of the
pDNA/man-chitosan complexes increased signif-
icantly at 350 nm, while the pDNA/chitosan
complex showed no change in turbidity (Fig. 1).
Recognition of the pDNA/man-chitosan com-
plexes depended on the substitution degree of
mannose residues in chitosan. The increase in
turbidity of the pDNA/21% man-chitosan com-
plex was twice that of the pDNA/5% man-chito-
san complex. Agglutination of the pDNA/man-
chitosan complexes was reversible by adding
10 mm mannose. These results indicated that the
mannose moieties of the pDNA/man-chitosan
complexes were specifically recognized by ConA.

The interaction of pDNA/man-chitosan com-
plexes with mouse peritoneal macrophages was
investigated using YOYO-1-labeled pDNA. The

$

-
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fad
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Q

Turbidity at 350nm
'S

Time(min)

Fig. 1 Time courses of turbidity changes of pDNA
complexes at 350nm by the addition of ConA.
pDNA = 25 pg/ml, ConA = 0.5 mM. Mannose (final con-
centration 10 mMm) was added at the time marked by the
arrow. Open triangle: pDNA/chitosan complex, filled
square: pDNA/5% man-chitosan complex, open circle:
pDNA/21% man-chitosan complex
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amount of pDNA/man-chitosan complexes taken
up into macrophages was almost the same as
pDNA/chitosan complexes (Fig. 2). In the pres-
ence of mannan as an inhibitor, the amount of
cellular uptake of pDNA/man-chitosan com-
plexes was significantly decreased, while that of
pDNA/chitosan complexes was not.

The transfection efficiency of pDNA/man-
chitosan complexes was investigated by luciferase
assay in macrophages. The transfection efficiency
of both pDNA/5% man-chitosan and pDNA/21%
man-chitosan complexes was significantly higher
than that of pDNA/chitosan complexes, and was
comparable to pDNA complexed with mannosy-
lated PEI, a commercially available transfection
reagent (Fig. 3A). The transfection activity of
pDNA/man-chitosan complexes was also investi-
gated in COS7 cells (Fig. 3B). The transfection
efficiency of pDNA/chitosan complexes was al-
most the same as pDNA/5% man-chitosan com-
plexes, and that of pDNA/21% man-chitosan
complexes was about a quarter of pDNA/chitosan
complexes.

The subcellular distribution of pDNA/man-
chitosan complexes in mouse peritoneal macro-
phages was visualized by a confocal laser scanning

©
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Chitosan 5% Man- 21% Man-
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Fig. 2 Cellular uptake of pDNA complexes in mouse
peritoneal macrophages. Macrophages (10° cells/well)
were incubated with pDNA complexes (DNA = 10 pg/
ml) in the absence (white bar) or presence (hatched bar) of
mannan. After incubation for 1 h, the cells were washed
and analyzed for fluorescence intensity. The values
represent the mean £ SD, n =4

Fluorescence Intensity / 10° cells
M
J—



Biotechnol Lett (2006) 28:815-821

819

&

(A)

S

—
o

102 RLU/mg Protein

Chitosan 5% Man- 21% Man- Man-PE!
Chttosan Chitosan

| (B)

10° RLU/mg Protein
&

[

0 Chitosan 5% Man- 21% Man- Lipofectin
Chitosan Chitosan

Fig. 3 Transfection efficiency of pDNA complexes for
(A) mouse peritoneal macrophages and (B) COS7 cells.
The concentrations of pPDNA were 5 pg/ml for COS7 cells
and 10 pg/ml for macrophages. The cells were incubated
for 4 h with the pDNA complexes. The cells were lysed
and their luciferase activity measured. pDNA complexes
were prepared at N/P = 5

microscope. pDNA/chitosan complexes were
mainly distributed near cell surface after 4h
incubation (Fig. 4A). On the other hand, pDNA/

*) ®)

Fig. 4 The subcellular distribution of pDNA/chitosan
complexes and pDNA/man-chitosan complexes in mouse
peritoneal macrophages. (A) pDNA/chitosan complex,

man-chitosan complexes were largely taken up
into macrophages (Fig. 4B, C).

The influence of pDNA/chitosan and pDNA/
man-chitosan complexes on the cell viability of
mouse peritoneal macrophages was investigated
by MTT assay. As shown in Fig. 5, cell viability
was reduced by increasing the concentration of
pDNA/chitosan complexes, while pDNA/man-
chitosan complexes showed no cytotoxicity below
10 pg/ml of DNA concentration. The commer-
cially available mannosylated PEI showed strong
cytotoxicity depending on the concentration.

120
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8ot I
60}

40}

Cell Viabudity (%)
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Chitosan 5% Man- 219% Man- Man-PE!
Chitosan Chitosan

Fig. 5 Cytotoxicity of pDNA/chitosan complexes and
pDNA/man-chitosan complexes in mouse peritoneal mac-
rophages. The concentrations of pDNA were 1 pg/ml
(white bar), 5 pg/ml (hatched bar), and 10 pg/ml (black
bar). The cells were incubated with pDNA complexes for
24 h

©

(B) pDNA/5% man-chitosan complex, and (C) pDNA/
21% man-chitosan complex. The cells were incubated with
pDNA complexes for 4 h
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Discussion

Macrophages expressing a mannose receptor has
been utilized for several target-specific drug
delivery systems. In this study, we showed that
mannosylated chitosan is a good gene carrier with
high transfection efficiency and low cytotoxicity
in macrophages. The substitution degree of man-
nose in chitosan was sufficient at 5% to enhance
the transfection efficiency to macrophages. The
cellular uptake of pDNA/man-chitosan com-
plexes by macrophages was inhibited by mannan,
while the transfection efficiency of pDNA/chito-
san complexes was almost the same as the pDNA/
5% man-chitosan complexes in COS7 cells. These
results suggest that pDNA/man-chitosan was
taken up by macrophages through mannose—
receptor mediated interaction.

Carbohydrate recognition often depends on
sugar density and is strengthened by the multi-
valent effect; however, the modification of amino
groups in chitosan decreased the charge density of
chitosan and the DNA-binding strength as well as
PEI (Zanta et al. 1997). Thus, the balance of
DNA condensation and receptor-recognition by
modified chitosan would affect cell transfection
efficiency. We then synthesized man-chitosans
with different substitution degrees, 5 and 21%, as
DNA carriers. The substitution degree of man-
nose in chitosan did not affect the size and zeta
potential of pDNA complexes (Table 1). When
pDNA complexes were incubated with DNase I
under the condition that naked pDNA was di-
gested completely, pDNAs complexed with
chitosan, 5% man-chitosan and 21% man-chito-
san showed resistance to DNase I (data not
shown). We also examined DNase digestion of
pDNA complexed with 47% man-chitosan.
Although the formation of the pDNA/47% man-
chitosan complex was confirmed by agarose gel
electrophoresis, pDNA complexed with 47%
man-chitosan was completely digested by DNase
I (data not shown). Therefore, it was confirmed
that low substitution degrees (5 and 21%) of
mannose in chitosan were preferable for the for-
mation of stable pPDNA complexes.

The pDNA/21% man-chitosan complex was
taken up in macrophages with the same efficiency
as the pDNA/5% man-chitosan complex, and
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there was no significant difference between the
complexes in the transfection efficiency for mac-
rophages (Fig. 3A). Therefore, the substitution
degree of mannose in chitosan was sufficient at
5% for gene delivery to macrophages.

The modification of chitosan with mannose sig-
nificantly enhanced the transfection efficiency in
macrophages in this study. Although it was re-
ported that the mannose receptor-mediated gene
delivery enhanced transfection efficiency (Kawa-
kami et al. 2000), the mechanism has been little
investigated. In order to investigate the cell trans-
fection mechanism of the mannose-mediated gene
carrier, we evaluated the effect of endocytosis
inhibitor on cellular uptake and observed the sub-
cellular distribution of pDNA comlexes with a
confocal laser scanning microscope. Treatment
with cytochalasin B, which inhibits the accumula-
tion of microtubes, significantly inhibited the
cellular uptake of pDNA/chitosan and pDNA/
man-chitosan complexes (data not shown). These
results suggest that pDNA complexes were taken
up by macrophages through phagocytosis. Micro-
scopic observation indicated that pDNA/chitosan
complexes and pDNA/man-chitosan complexes
showed different intracellular transport in macro-
phages (Fig. 4); while pDNA/chitosan complexes
were localized in early phogosomes near the plas-
ma membrane, pDNA/man-chitosan complexes
were delivered inside the cells.

Phagosome movement in macrophages is mod-
ulated by several receptors associated with cell
uptake (Aderem and Underhill 1999). Therefore, it
is considered that the phagocytosis of pPDNA/man-
chitosan complexes is distinct from that of pDNA/
chitosan complexes. Since pDNA/chitosan com-
plexes stayed near the plasma membrane, inter-
action of the pDNA/chitosan complexes with cell
surface receptor may induce signal transduction to
arrest phagosome movement. On the other hand,
bacteria such as M. tuberculosis with lipoarabino-
mannan on the surface, were efficiently internal-
ized via the mannose receptor (Kag and
Schlesinger 1998). Likewise, it is considered that
phagosome movement of pDNA/man-chitosan
complexes occurred in macrophages. pDNA/man-
chitosan complexes showed little cytotoxicity
against mouse peritoneal macrophages, while
pDNA/chitosan complexes exerted a toxic effect
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on the proliferation of macrophage cells in a
dose-dependent manner as well as pDNA/man-
PEI complexes (Fig.5). The cytotoxicity of
pDNA/PEI complexes has been reported in sev-
eral papers (K6ping-Hoggéard et al. 2001; Moghimi
et al. 2005), while that of pDNA/chitosan com-
plexes is known to be low compared to other
complexes (Thanou et al. 2002; Corsi et al. 2003).
pDNA/chitosan complexes also showed little
cytotoxicity for COS7 cells employed in this study
(data not shown). Thus, their cytotoxicity may be
confined to macrophages.

The mannosylation of chitosan decreased the
cytotoxicity of pDNA/chitosan complexes. The
hydrophilic surface of pPDNA/man-chitosan com-
plexes suppresses the formation of aggregation
followed by non-specific adhesion to the cell
surface. The low cytotoxicity of pDNA/man-
chitosan complexes may be caused by the
hydrophilicity of its surface.

Conclusion

In conclusion, we found that mannose-modified
chitosan is a good gene carrier for macrophages.
The modification of mannose to chitosan signifi-
cantly enhanced the transfection efficiency of the
pDNA/chitosan complex and reduced its cyto-
toxicity in macrophages.
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