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We have reported that the ~786T >C polymorphism  reducing the ACh-induced NO production from the
enhanced the vasoconstriction response due to an intra-  coronary endothelial cells in the patients with
coronary injection of ACh [9,16]. We suggested that the -786T>C polymorphism causes significant
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vasoconstriction. Although the ACh-induced NO is mainly
generated by the endothelial cells, both endothelial cells
and cardiomyocytes are thought to be potential sources of
NO generation when a state of hypoxia exists in the
heart. Node ez &/. [17] reported that NO production from
the heart is increased in ischemic hearts, and after
exertion, in patients with effort angina. These results
suggest that hypoxia possibly accounts for an increase in
NO production from the heart, including from coronary
arterial endothelial cells and/or from cardiomyocytes. Han
et al. [18] reported that hypoxic red blood cells (RBGCs)
generate HbFe(II)NO, and that the NO consumption
rate therefore increases. The NO level is possibly
reduced under the hypoxic condition because of an
increase in the NO consumption rate of RBCs. In the
present study, for non-coronary spasm patients with the
-786T/T genotype (group A), NO was possibly generated
from endothelial cells due to the intracoronary injection
of ACh; furthermore, their coronary arteries did not
produce coronary spasm. In coronary spasm patients with
the -786T/T genotype (group B), an intracoronary
injection of ACh caused coronary spasm. Although the
NO consumption rate possibly increases in hypoxic RBCs,
the total NO level in the serum was maintained at an
overall high level in group B. The increase in NO
production from the heart, including from the endothelial
cells and/or from the cardiomyocytes, under an ischemic
condition, immediately relaxed the coronary arteries.
After an intracoronary injection of ACh, there was no
significant difference in the delta NOx levels between
groups A and B. Although the coronary spasm patients
with the -786T/T genotype have high delta NOx
levels before and after the provocation test, some of them
possibly have coronary spasm for reasons other than the
reduced NO production from the heart. In coronary spasm
patients with the -786C allele (group C), reduced NO
production from the endothelial cells due to the
intracoronary injection of ACh caused coronary spasm,
and an insufficient supply of NO production from the
heart under this ischemic condition prolonged
coronary spasm. An increase in the NO consumption rate
in hypoxic RBCs possibly leads to a still more critical
spasm state. Previously, we reported that the -786T > C
polymorphism is strongly associated with coronary spasm
and also with myocardial infarction without organic
stenosis {19]; furthermore, we suggested that this
polymorphism is possibly associated with the severity of
coronary spasm. The ~786T > C polymorphism reduced
NO production from the heart, even in an ischemic
condition, and predisposed the patients to a prolonged
coronary spasm, leading to myocardial infarction without
organic stenosis. Also, endothelial dysfunction and oxida-
tive stress are known to be crucially involved in the
pathogenesis of coronary spasm [20-24]. A decrease in
NO production possibly increases oxidative stress
and predisposes the patients with the ~786C allele to
coronary spasm.

There are some reports regarding systemic circulating
NOx levels and the =786 > C polymorphism [10,25,26].
Alchough there is a low tendency for the systemic
circulating NOx level in subjects with the ~786C allele,
there are few reports stating that it is clearly low. It is
possible that there is not enough of a significant dif-
ference in the systemic circulating NOx level to classify
this as being due to the genotype of the -786T>C
polymorphism because of the influences of cither meal
and/or individual levels of oxidative stress. In the present
study, an intracoronary injection of ACh significantly
increased delta NOx levels in subjects without coronary
spasm without the -786C allele, although it did not
significantly change the delta NOx levels in subjects with
coronary spasm without the -786C allele, and 1t
significantly decreased the delta NOx level in subjects
with coronary spasm with the ~786C allele. There was a
difference of sufficient magnitude in delta NOx levels
before and after the provocation test to classify the
genotype of the -786T > C polymorphism, even in
coronary spasm patients. It is well known that NO plays
a key role in the regulation of vascular tone [4,5,27,28]
and has vasoprotective effects by scavenging superoxide
radicals and suppressing piatelet aggregation, leukocyte
adhesion and smooth muscle cell proliferation [29-31]. A
decrease in the delta NOx level possibly affects the
cardiovascular system and leads to severe vasoconstric-
tion. Furthermore, Tanus-Santos e /. [32] reported
that the -786C allcle decreases platelet-derived NO.
The ~786C allele may accelerate platelet aggregation and
serve as a risk factor for cardiovascular disease. Indeed, it
was reported that the -786C allele is associated with
coronary spasm [8], myocardial infarction [19] and
coronary organic stenosis {33].

In conclusion, the —786T > C polymorphism reduces NO
production from the heart duc to an intracoronary
injection of ACh, and thus predisposes patients to a
prolonged and more severe coronary spasm.

Study limitation

In the present study population, there were two non-
coronary spasm patients with the -786C/T genotype and
there were no patients with the —~786C/C genotype, this
is possibly because the study population was relatively
small in size. However, we have previously reported that
the frequencies of these patients are relatively low in
the Japanese population [8,9,19]. In both patients with
the ~786C/T genotype without coronary spasm, delta
NOx levels basically decreased after the provocation
test. Even in the case of non-coronary spasm patients, the
-786C allele possibly suppresses NO production from
the heart, which is due to an intracoronary injection of
ACh. Further studies in a larger population group,
including many non-coronary spasm patients with the
-786C allele and many patients with the -786C/C
genotype, will be beneficial to further elucidate this topic.
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NO is generated by NO synthase (NOS), which exists as
a family of related but distinct isoforms, including
neuronal (nNOS) [34,35], inducible (iNOS) [36,37],
and endothelial (eNOS) [4] isoforms. It has been
reported that eNOS is detected in the endothelial cells
overlying normal human aortas, fatty streaks and ad-
vanced atherosclerotic lesions, whereas iNOS and nNOS
are not detectable in normal vessels, although widespread
production of these two isoforms has been found in early
and advanced lesions associated with macrophages,
endothelial cells and mesenchymal-appearing intimal
cells [38]. In the present study, we did not distinguish
which isoform of NOS produces NO from the heart
before or after the provocation test.
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