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Ginsenoside Re Binds to AR, ERe«, and PR. Receptor
competitor assay was performed to test whether ginsenoside
Re could bind to the LBD of human AR, ERqa, and PR. DHT,
E,, and P, showed dose-dependent displacement of fluores-
cently tagged receptor ligands; IC,, was 2.8 nM for DHT,
33.8 nM for E,, and 50.0 nM for P, (Fig. 7). Ginsenoside Re
also showed dose-dependent displacement of fluorescently
tagged receptor ligands; the IC;, values were 56.2 uM for the
AR, 59.0 uM for the ERe, and 80.6 M for the PR (Fig. 7). The

O—

binding of ginsenoside Re to the AR, ERa, and PR was not
saturable up to the concentration of 1 mM, suggesting that
ginsenoside Re is a partial agonist of the AR, ERq, and PR.

Ginsenoside Re Does Not Activate Genotropic Ac-
tion of AR and ERa. Genotropic action of E, is generally
assessed by its effects on proliferation of the estrogen-respon-
sive human breast cancer cell line MCF-7 (Lippman et al.,
1976) and that of DHT via proliferation of the testosterone-
responsive human prostate cancer cell line LNCaP (Hasen-
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Fig. 4. Effects of preincubation with various blockers on ginsenoside Re (3 pM)-induced Ik, enhancement. A, representative superimposed current
traces in the time control experiment in the control state (trace a), at 30 min after start of experiment (b), and at 45 min after start of experiment (c).
B-F, representative superimposed current traces in the control state (trace a), after incubation with various blockers (trace b), and after addition of
ginsenoside Re (3 4M) in the continued presence of various blockers (trace c). B, SMTC (3 pM); C, L-NIO (1 uM); D, SH-6 (1 uM); E, PP2 (1 pM); and
F, wortmannin (10 uM). G, averaged I, after incubation with various blockers for 30 min, and 15 min after addition of ginsenoside Re in the continued
presence of various blockers (45 min after start of experiment). I, was normalized to the control value. %, p < 0.05 between before and after
ginsenoside Re application.
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Fig. 5. Involvement of sex hormone receptors on Iy, enhancement by ginsenosides. A-D, effects of nilutamide (A), an AR inhibitor, IC1182,780 (B), an
ER inhibitor, mifepristone (C), a PR inhibitor, and a combination of nilutamide, ICI182,780, and mifepristone (D) on ginsenoside Re-induced Iy,
enhancement. Left, time course of experiments in 5 cells. x-Axis is time after start of experiments, and y-axis is averaged current density of Ig,. Ix,
were continuously elicited by depolarizing pulses to +50 mV at 0.1 Hz. =, p < 0.05 versus control, ¥, p < 0.05 versus in the presence of ginsenoside
Re. Right, representative superimposed current traces recorded at the timing indicated by italic lower-case alphabets.
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son et al., 1985). We found that, unlike DHT or E,, ginsen-
oside Re did not stimulate proliferation of LNCaP or MCF-7;
rather, it partially inhibited DHP-induced LNCaP prolifera-
tion and E,-induced MCF-7 proliferation (Fig. 8). Thus, gin-
senoside Re is a partial antagonist, but not an agonist, of the
genomic pathway of AR or ERa.

Ginsenoside Re Fails to Recruit CoActivator of AR,
ERa, and PR. To further seek for the mechanism underlying
lack of genomic action by ginsenoside Re, we examined
whether ginsenoside Re triggered binding of a coactivator
peptide containing a canonical LXXLL-motif (L. = leucine,
X = any amino acid) to the LBD of ERq, AR, and PR. We used
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Fig. 6. Effects of ginsenoside Re on Akt phosphorylation. 4, representa-
tive immunoblots showing dose-dependent effects of ginsenoside Re on
Akt phosphorylation. B, densitometric analysis of dose-dependent phos-
phorylation of Akt by ginsenoside Re in three experiments. *, p < 0.05
versus without ginsenoside Re. C, representative immunoblotting show-
ing effects of various blockers on Akt phosphorylation by ginsenoside Re.
D, densitometric analysis of effects of various blockers on Akt phosphor-
ylation by ginsenoside Re in three experiments. #, p < 0.05 versus in the
control state; ¥, p < 0.05 versus in the presence of ginsenoside Re without
any blockers.
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a FRET indicator, SCCoR, in which agonist-induced recruit-
ment of coactivator to the LBD of receptors was designed to
induce FRET signals between enhanced CFP and enhanced
YFP (Awais et al., 2004, 2006). We first confirmed that gin-
senoside Re did not change FRET signals for AR-SCCoR,
ERa-SCCoR, or PR-SCCoR (Fig. 9, A and D). Then, we found
that ginsenoside Re significantly inhibited E,-, DHT-, or
P,-induced FRET signals (Fig. 9, B-D), indicating that gin-
senoside did not induce coactivator recruitment to AR, ERq,
and PR, and rather inhibited agonist-induced coactivator
recruitment.

Discussion

The present study provides convincing evidence to clarify a
mechanism underlying the bioactivity of ginseng in cardio-
vascular system. We have previously reported that ginsen-
oside Re enhances Ix, via a NO-dependent manner in iso-
lated cardiac myocytes (Bai et al., 2003, 2004). In the present
study, we found that ginsenoside Re releases NO via a non-
genomic pathway of sex steroid receptors, resulting in Iy
activation in cardiac myocytes. Ginsenoside Re does not ac-
tivate the genomic pathway of sex steroid hormones, because
it fails to recruit coactivators upon binding of ginsenoside to
the LBD of sex hormone receptors. Thus, ginsenoside is a
specific agonist for the nongenomic pathway of sex steroid
receptors.

Our pharmacological experiments indicate that ginsen-
oside Re activates the nongenomic pathway of sex steroid
receptors to activate eNOS and release NO. Because reliable
methods to measure NO at nanomolar range have not been
available until very recently (Sato et al., 2005), we did not
directly assess NO release from cardiac myocytes induced by
ginsenoside Re. However, our previous report that two dif-
ferent types of NO-trapper, carboxy-2-(4-carboxyphenyl)-
4,45 5-tetramethylimidazoline-1-oxyl-3-oxide and LNAC,
abolished ginsenoside Re-induced Iy, activation (Bai et al,,
2004) supports the idea that I, enhancement by ginsenoside
Re is caused by NO. Ginsenoside Re-induced Iy, activation
was reversed by inhibitors of c-Sre, PI3-kinase, Akt, and
eNOS that are key signal molecules of the nongenomic path-
way of sex steroid receptors (Figs. 2 and 3). In the preincu-
bation with these inhibitors, ginsenoside Re did not activate
I (Fig. 4). Akt phosphorylation by ginsenoside Re was sup-
pressed by inhibitors of ¢-Src, PI3-kinase, and Akt (Fig. 6).
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Fig. 7. Ginsenoside Re binds to the human AR, ERe, and PR. Fluorescently tagged receptor ligands bound to the LBD of the human AR were displaced
by DHT and partially by ginsenoside Re (A); those to the LBD of the human ERa were displaced by E, and partially by ginsenoside Re (B); and those
to the LBD of the human PR were displaced by P, and partially by ginsenoside Re (C). x-Axes are logarithm of concentration of DHT, E,, P,, and
ginsenoside Re; y-axes are intensity of fluorescent polarization. Continuous lines are results of fitting of data to the Hill equation in the following
formula using the least-squares method: mP = mPy; — (mPgq — mP )1 + (ICs/Iginsenoside Re])*H], where mP is intensity of fluorescent
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is the Hill coefficient.
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Finally, inhibitors of AR, ERq, and PR inhibited Iy, enhance-
ment and Akt phosphorylation by ginsenoside Re (Figs. 5
and 6).

In this study, each inhibitor of AR, ERe, and PR only
partially suppressed ginsenoside Re-induced Iy, enhance-
ment, whereas the combination of all three inhibitors com-
pletely abolished ginsenoside Re actions. Competitive bind-
ing assays revealed that ginsenoside Re bound to AR, ERe,
and PR. FRET experiments showed that ginsenosides com-
petitively inhibited DHT-, E,-, and P,-induced coactivator
recruitment further imply that ginsenoside Re somehow in-
teracts with the LBD of AR, ERa, and PR. Taken together,
we speculate that sex hormone receptors might be primary
targets of ginsenoside Re. However, we would not completely
eliminate the possibility that ginsenoside activates some
common signaling molecules downstream of AR, ERe, and
PR rather than binding to each of three receptors. Ginsen-
oside Re required relatively higher concentration to compet-
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Fig. 8. Effects of ginsenosides on proliferation of MCF-7 and LNCaP.
Relative proliferation of cells was calculated as {(cell counts in the pres-
ence of drugs)/(cell counts in the control state). *, p < 0.05 versus control;
+, p < 0.05 versus in the presence of DHT alone or E, alone.

itively displace fluorescently tagged receptor ligands com-
pared with the concentration to enhance Ix,. Although it is
possible that the concentration to interact with the LBD is
different between receptors present in the cytosol (receptor
binding assays) and those localized in the plasma membrane
(electrophysiological experiments), ginsenoside could also act
primarily on molecules other than sex hormone receptors.
Because a phytosterol genistein is a well established nonspe-
cific inhibitor of tyrosine kinases (Akiyama et al., 1987),
c-Sre, a tyrosine kinase that is a common downstream signal
of the AR, ERqw, and PR, may be a potential candidate for
target of ginsenoside Re. Therefore, these points are not
settled yet, and further experiments are certainly needed
Although our data indicate that ginsenoside Re does not
activate the genomic pathway of sex hormone receptors, re-
ported effects of ginsenoside on MCF-7 breast cancer cell
growth are controversial. Ginsenoside Re induces expression
of genes with estrogen-responsive element and proliferation
of MCF-7 (Lee et al., 2003), whereas American ginseng in-
hibits MCF-7 breast cancer cell growth (Duda et al., 1999).
Our data are consistent with the latter; ginsenoside Re does
not enhance proliferation of MCF-7 cells or LNCaP cells.
Experiments with FRET probes, SCCoRs, further provide
supporting evidence that ginsenoside Re fails to activate the
genomic pathway; ginsenoside Re does not induce coactivator
recruitment upon binding to the LBD and inhibits coactiva-
tor recruitment induced by E,, DHT, or P,. A structural basis
analysis seems to provide further supporting evidence. A
structural basis of ERa/coactivator recognition is well docu-
mented from the analysis of the crystal structure of ERa-
LBD bound to both an agonist diethylstilbestrol and a coac-
tivator GRIP1 (Brzozowski et al., 1997; Shiau et al,, 1998).
The LBD pocket bound by an agonist is covered by helix 12 of
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LBD, creating a hydrophobic groove on the surface of LBD,
where a coactivator can bind (Brzozowski et al., 1997; Shiau
et al., 1998). The LBD pocket bound by a selective antagonist
4-hydroxytamoxifen disturbed motion of helix 12 and cre-
ation of a coactivator recognition groove, because of the pres-
ence of a bulky side chain in 4-hydroxytamoxifen. Because,
like 4-hydroxytamoxifen, every ginsenoside has a bulky side
chain (Fig. 1A), ginsenoside is unlikely to promote coactiva-
tor binding.

Hormone replacement therapy has been used for rapidly
developing cardiovascular events, osteoporosis, disturbed
cognition, and other symptoms in postmenopausal women;
however, there are accompanying serious adverse events in-
cluding high risk of estrogen-sensitive cancers (breast can-
cer, ovarian cancer, and certain types of lung cancer) (Bar-
rett-Connor et al., 2005). Likewise, testosterone replacement
therapy has recently been used for various symptoms in male
menopause (andropause) with a risk of testosterone-sensitive
prostate cancer (Hijazi and Cunningham, 2005). 4-Estren-
3a,17B-diol (estren) is a synthetic compound that selectively
induces nongenomic actions of estrogens and androgens
without classic transcriptional activity (Kousteni et al.,
2002). Conversely, 1,2,5-tris(4-hydroxyphenyl)-4-propylpyra-
zole (pyrazole) has potent transcriptional activity with min-
imal effects on nongenomic-induced events: estren, but not
pyrazole, reversed bone loss in mice (Kousteni et al., 2002).
From these findings, they propose that mechanism-specific
ligands of steroid nuclear receptors represent a novel class of
pharmacotherapeutics (Kousteni et al., 2002). Our data im-
ply that ginsenoside is a naturally harvested, mechanism-
specific agonist of sex steroid receptors. In the Eastern world,
P. ginseng has been successfully prescribed for health prob-
lems associated with the post- and perimenopausal periods,
which includes not only cardiac events, but also hot flashes,
loss of bone matrix, and cognition disturbance (Punnonen
and Lukola, 1984; Kropotov et al., 2002; Hartley et al., 2004;
Low Dog, 2005). In the present study, we used ginsenoside Re
at a concentration of 3 p, because this is the concentration
prescribed to patients in China (Bai et al., 2003). It does not
necessarily reflect the plasma concentration in humans. Nev-
ertheless, we expect that effects of ginsenoside described in
the present article may provide a potential of ginsenoside as
a medicinal seed for treatment of cardiac events, and poten-
tially other symptoms, in postmenopausal women and post-
andropausal men.
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Abstract

Cardiac hypertrophy is an adaptive process against increased work loads; however, hypertrophy also presents substrates for lethal ventricular
arrhythmias, resulting in sudden arrhythmic deaths that account for about one third of deaths in cardiac hypertrophy. To maintain physiological
cardiac function in the face of increased work loads, hypertrophied cardiomyocytes undergo K* channel remodeling that provides a prolongation
in action potential duration and an increase in Ca®" entry. Increased Ca®" entry, in turn, activates signaling mechanisms including a calcineruin/
NFAT pathway to permit remodeling of the K* channels. This results in a positive feedback loop between the K channel remodeling and altered
Ca*" handling; this loop may represent a potential therapeutic target against sudden arrhythmic deaths in cardiac hypertrophy. The purposes of this
review are to: (1) discuss types of K channels and their mRNA that undergo remodeling in cardiac hypertrophy; (2) report on recent research on
molecular mechanisms of K* channel remodeling; and (3) address physiological events underlying new therapeutic modalities to ameliorate
arthythmias and sudden death in cardiac hypertrophy.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Left ventricular hypertrophy (LVH) is a common electro-
cardiographic finding, occurring in 3-4% of normal popula-
tion [1]. In the Framingham Study, there were 197 sudden
deaths over 26 years in a follow-up of 5209 subjects {2,3].
The multivariate sudden death prediction analysis revealed
that ventricular premature beat which occurs concurrently with
LVH is an independent risk factor [1]. Fatal ventricular
arthythmias caused by premature beats upon cardiac hyper-
trophy are most likely associated with an alternation in cellular
electrophysiology and cardiac remodeling. Specifically, accu-
mulated experimental data suggest that the alteration in
activity of K~ channels associated with cardiac hypertrophy
is a major cause of electrophysiological remodeling and
arrhythmogeneity [4-7].

Subsequent studies employing molecular apalyses indicate
that alterations in Ca®"-dependent signaling pathways underlie
the K” channel remodeling. The resultant positive feedback
loop between K~ channel remodeling and altered Ca®" handling
may provide a new therapeutic target against lethal arrhythmias
and sudden death in cardiac hypertrophy.

2. K* channel remodeling in cardiac hypertrophy

Experimental cardiac hypertrophy has been induced in
several species of animals with varieties of techniques. In
these models, the most consistent electrical change which has
been described in association with the chronic stage of
cardiac hypertrophy is prolongation of action potential
duration (APD) [8-10]. Although the APD prolongation
upon hypertrophy is attributable to alterations in K” channels,

the target type of K~ channel appears to differ between large
(feline and canine) and small mammals (rat, mouse, and
ferret) as we will describe.

2.1. Large mammals

In feline right ventricular hypertrophy (RVH) induced by
constriction of pulmonary artery, the amplitude of inward
rectifier K~ current (Ix,) is increased and that of the delayed
rectifier K™ current (Ig) is decreased [11,12]. In feline LVH
induced by constriction of abdominal aorta, Ix amplitude is
decreased as is the case for pulmonary artery, while I,
amplitude is not altered [13,14]. Although in these studies
transient outward current (I,,) was not analyzed [11-14], in the
later study using feline RVH model, I, was found to be
enhanced [15]. In a canine model of biventricular hypertrophy
induced by atrioventricular block (AVB), the current density of
Ik is diminished in both left ventricular (LV) (~ 50%) and right
ventricular (RV) cells (~55%) [16,17]. The current density of
Ik, is diminished in the RV cells, but not in LV cells [16,17]
(Table 1).

2.2. Small mammals (Table 1)

In rats, mice, and ferrets, experimental LVH and/or RVH
have been developed with various techniques shown in Table 1
[18—34]. In a majority of the models, L, is reduced. Ito consists
of two components: (1) I, in which recovery from inactivation
is rapid (I.r or L) and (2) that in which recovery from
inactivation is slow (Ig-s O Lio2) [35]: Lio.s, rather than Lo, 1s the
target of remodeling in cardiac hypertrophy, with no changes in
the voltage dependence of steady-state activation and

Table |
Species and techniques used for induction of cardiac hypertrophy
Species Methods Current changes Reference
Feline Pulmonary artery constriction Ikl 't Kleiman et al. [11,12]
Constriction of abdominal aorta ki, ki— Furukawa et al. {13,14]
Canine Atrioventricular block Ixeds I In RV Volders et al. [16], Ramakers et al. [17]
Rats Constriction of ascending aorta Lio-gls Ix—, Ixi— Volk et al. {18]
Constriction of transverse aorta Lol Gomez et al. {19]
Constriction of abdominal aorta Liod Tomita et al. [20]
Uninephrectomized deoxycorticosterone Tiod Coulombe et al. [21]

acetate (DOCA) salt-drinking
Spontaneous hypertensive rat (SHR)
Daily injection of isoproterenol
Chronic high-altitude exposure
Monocrotaline (MCT)-induced RVH
Growth hormone (GH)-secreting tumor
Ferrets Pulmonary artery constriction
Mice Pregnancy
Calsequestrin (CSQ) overexpression
Ga, overexpression
Nerve growth factor (NGF) overexpression
L-type Ca®" channel overexpression
Tumor necrosis factor-a overexpression
Atrioventricular block
Perinephritis-induced hypertension
Aortic banding

Rabbit

Tiotls Tous— Monmtaz et al. {22]
bols Ixi— Cerbai et al. [23]
Tl Meszaros et al. [24]
O O Chouabe et al. [25]

Lol Lee et al. [26]

kol Xu et al. [27]

Lol Ponteau et al. [28]
Lol Eghbali et al. [29]
Lols Ikl Knollmann et al. [30]

Tols il Mitarai et al. [31]
Lods Ikurd Heath et al. [32]
Lol Bodi et al. [33]

Lol Iksiowd Petkova-Kirova et al. [34]
Iiceds Ixels Lo Tia® Tsuji et al. [36]
Lol Txid Melntosh et al. [37]

Lols hials Ik— Gillis et al. {38]
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inactivation, suggesting that the main effect of hypertrophy is a
decrease in the copy number of I, ¢ channel proteins. However,
in the ferret RVH model, I, exhibits delayed recovery from
inactivation, implicating some changes in L, s constructing
molecules, discussed in the section “Change in ion channel
mRINA” [28].

2.3. Implications of difference between large and small
mammals

In hearts of large animals, I, is responsible for the initial
rapid phase of action potential repolarization, discernible as a
notch preceding the plateau phase; Ik, rather than I, plays a
major role in terminal repolarization. I, in rodents, however, 1s
a major repolarizing current throughout the comparatively
short cardiac action potential necessary to maintain extremely
high heart rates. These findings reflect differential features of
hypertrophy-induced electrical remodeling. Rabbits appear to
be intermediate; in biventricular hypertrophy induced by AVB,
the amplitudes of Iy, and Ix, are smaller than control [36,37],
which is in line with the finding that APD changes induced by
aortic stenosis in rabbits are corrected by an Iy, specific
blocker, dofetilide [38]. In rabbit LVH caused by perinephritis-
induced hypertension, however, I, Ik, and L rather than Iy,
or Ixs are diminished [39]. Although data on K™ channel
remodeling in human cardiac hypertrophy are lacking, that in
failing hearts is reported on; I, is down-regulated in LV and
RV cells of failing hearts [40], and Iy, is also down-regulated
in RV cells of heart failure [41].

3. Myocardial infarction (MI)

After acute MI, infarcted zones (IZ) [42-44] and non-
infarcted zones (NZ) [45-51] exhibit distinct electrical
remodeling. The NZ after MI undergoes significant hyper-
trophy as a compensatory process in response to diminished
mass of working muscle [52], which may provide an
arrhythmogenic substrate at a site remote from the previous
MI [53,54]. In the NZ of the rat MI model, I, and Ix
significantly decrease from 3 days to 16 weeks post-infarction
without changes in Ix, or Ic,p [45-50]. In experimental
healed MI in dogs, hypertrophied cardiomyocytes in remote
NZ have prolonged APD and reduced Iy [51]. Thus, the target
K" channels in electrical remodeling in post-MI cardiac
hypertrophy are similar to those of cardiac hypertrophy
induced by other stimuli; APD is prolonged by I.r reduction
in rat, and by Ik reduction in dog.

4. Change in ion channel mRNA

To determine which K channel mRNAs are altered by
cardiac hypertrophy, rodent hypertrophy models have been
used due to their convenience for genetic engineering. In the
rodent models, alterations in mRNA encoding the a-subunit
of I, (Kv4.2, Kv4.3, and Kv1.4) and its R-subunit (KChIP2)
are consistent with the electrophysiologic findings indicated
above.

4.1. Kv4.2, Kv4.3, and Kvl 4

Kv4.2 and Kv4.3 encode the pore-forming «-subunit of I, y,
and Kvl.4 encodes the a-subunit of I, In mice, a
heterotetramer of Kv4.2 and Kv4.3 w«-subunits underlie I,
[55]. Kv4.2 and Kv4.3 mRNA are consistently down-
regulated in each hypertrophy model, while effects on Kv1.4
mRNA are controversial. In LVH rats with abdominal aortic
constriction [56] and renovasular hypertension [57] and in rats
with RVH induced by monocrotaline treatment [26], Kv4.2
and Kv4.3 mRNA are the targets of remodeling, without a
change in Kvl.4 mRNA. In murine cardiac hypertrophy
induced by overexpression of L-type Ca?* channel gene
CACNAIC, Kvl.4 mRNA is markedly increased, although
Kv4.2 and Kv4.3 mRNA are reduced [33]. Similar findings
are reported in newborn and cultured rat ventricular myocytes.
In newborn rat ventricular myocytes, Kvl1.4 protein is
expressed at a higher level than Kv4.2; as the age of culture
progresses that does not associate with progression of
cardiomyocyte hypertrophy, Kv1.4 is significantly diminished,
while Kv4.2 increased becoming the predominant K™ channel
protein [58]. Such K™ channel isoform switch is diminished by
incubation with non-myocyte cell-conditioned growth medium
or phenylephrine (PE) that induces cardiomyocyte hypertro-
phy, resulting in reversion of fetal phenotype of the K*
channels [58].

4.2. KChIP2 (Kv channel interacting protein 2)

KChIP2 is an auxiliary K* channel B-subunit that binds to
the N-terminus of Kv4 channels, including Kv4.2 and Kv4.3
[59,60]. KChIP2 appears to have a dual function [59,60].
KChIP2 is required for transport of Kv4 channels from
endoplasmic reticulum to plasma membrane [59,60], which is
in line with the finding that I,¢ expression completely
disappears in KChIP2 knock-out mice (KChIP27") [61].
KChIP2 also regulates gating kinetics of the Kv4 channel; the
presence of KChIP2 accelerates recovery from inactivation of
Lio.r [59,60]. In mice with cardiac hypertrophy induced by
transverse aortic constriction, KChIP2 mRNA is down-
regulated [62]. In ferret RVH, I,.r amplitude is reduced in
association with delayed recovery from inactivation, which
agrees with the loss of acceleration of recovery from
mactivation due to the absence of KChIP2 [28].

4.3. Other K' channel mRNAs

Alterations in K™ channel mRNAs other than I
encoding mRNA (Kv4.2, Kv4.3, and KChIP2) also occur
[56,63]. Among them, Kv1.5 alteration is most frequently
observed [32,64,65]. In post-MI LVH, Kvl.5 mRNA is
diminished. Kv1.5 remodeling appears to be related to
thyroid hormone. Kv1.5 mRNA reduction in post-MI LVH is
associated with reduction in serum triiodethyronine (T3)
level [64]. Because the Kv1.5 gene has a thyroid hormone-
responsive element in its promoter region, T3 induces
expression of Kv1.5 in rat heart [66]. KChIP2 also interacts
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with Kv1.5 and facilitates its cell surface expression [67].
Thus, down-regulation of KChIP2 mRNA may also con-
tribute to the Kv1.5 remodeling. Although expression of
Kv1.5 mRNA and protein is demonstrated both in atrium
and ventricle [68,69], antisense oligodeoxynucleotides direc-
ted against Kv1.5 mRNA inhibit ultrarapid Ix (Ikur) 1n adult
human atrial myocytes, but do not affect I, or Ix in human
ventricular myocytes [70]. Thus, the role of Kv1.5 channel
remodeling may be more significant in atrial fibrillation
rather than in ventricular hypertrophy [71].

5. Molecular mechanism of electrical remodeling

Molecular mechanisms underlying down-regulation of I,
have been examined in rodents; roles of Ca’ -dependent
mechanisms involving calcineruin and NFAT3 are well
documented. Calcineurin is a Ca? -dependent protein phospha-
tase, and its activity is increased in pathological conditions,
including hypertrophy and MI [72]. Calcineurin inhibitor
cyclosporin A ameliorates I,.¢ reduction and decreases n
Kv4.2/Kv4.3 mRNA expression in hypertrophied NZ cardio-
myocytes of the rat MI model [73].

NFAT3 is normally phosphorylated in the cytoplasm [74].
When NFAT3 is dephosphorylated by calcineurin, it
translocates into the nucleus where it can interact with
GATA4 to activate transcription of hypertrophic response
genes [75]. Kv1.5, Kv2.1, Kv4.2, Kv4.3, and KChIP2 genes
all have putative NFAT binding sites in their promoter
regions, and all are down-regulated in an NFAT3-dependent
mechanism, but with different thresholds [76]. Kv4.2 is
down-regulated by = 1.6-fold increase in NFAT3 activity, and
much higher increases (presumably >3-fold) in NFAT3
activity are required for down-regulation of Kvl.5, Kv2.1,
Kv4.3, and KChIP2 [76]. NFAT activity is increased in
experimental hypertrophy models [77], but its magnitude
appears to vary among models [76], a potential explanation
why some studies but not all report down-regulation of
Kvl.5 and Kv2.1.

In cardiac hypertrophy, signaling pathways other than
calcineruin and NFAT3 are also altered and may play a role in
K* channel remodeling [78,79]. Myocyte enhancer factor-2
(MEF2) is another Ca®" responsive transcription factor,
implicated in development of cardiac hypertrophy [80.81].
In normal cardiac myocytes, MEF2 exhibits only basal
activity, whereas hypertrophic neurohumoral stimuli, such as
endothelin-1, stimulate MEF2 transcriptional activity by
causing the nuclear export of class II histone deacetylases
(HDACs), which associate with MEF2 and suppress its
activity [78,82]. It has recently been reported that MEF2
directly interacts with NFAT, triggering ternary complex
formation between MEF2, NFAT, and CBP/p300, and induces
chamber dilatation and heart failure with only modest
induction of cardiac hypertrophy [83]; however, it is not
addressed whether MEF2 activation is involved in down-
regulation of the K~ channels in cardiac hypertrophy.
Oxidative stress through an Rac-dependent NADPH oxidase
activation and superoxide production is involved in destabi-

lization of Kv4.3 mRNA [84,85]. Kv4.2 and Kv1.4 mRNA
expression is also regulated by endogenous oxidoreductase
systems [86,87]. In this context, it is interesting that oxidative
stress suppresses DNA binding of several transcriptional
factors including NFAT in certain cells [88]. Mitogen activated
protein kinase (MAPK) is also involved in down-regulation of
KChIP2 mRNA [62].

6. Regional heterogeneity of electrical remodeling
6.1. Transmural heterogeneity

APD and K7 channel expression exhibits transmural
heterogeneity in normal hearts, with I.r more prominent in
epicardium than in endocardium [89-91]. In catecholamine-
induced rat LVH [81] and rat LVH induced by aortic
constriction [18], APD is predominantly prolonged in
epicardial cells in accordance with greater reduction in Ii.r
amplitude compared to endocardial cells. In hypertrophied
cardiac myocytes that are remote from IZ in rat ventricles,
reduction in I, density and in Kv4.2 and Kv4.3 protein
expression are also greater in epicardium than in endocardium
[471.

Several molecular mechanisms have been proposed for
transmural heterogeneity in Lo.s [92-96], one of which
involves calcineurin and NFAT3 pathways [97]. Both
diastolic and systolic [Ca®"];, and calcineurin activity are
higher in endocardium than in epicardium, resulting in the
diminished I,,.; amplitude in endocardium in the normal
heart, at least in mice [97]. Ascending aortic stenosis
selectively increases the Ca®" influx during action potential
in epicardium [98]. Resultant elevated calcineurin activity
may cause a prominent I, reduction in epicardium compared
to endocardium; this hypothesis seems to be supported by the
finding that suppression of both I, amplitude and Kv genes
expression in post-MI hypertrophy is ameliorated by
calcineurin inhibitor cyclosporin A in rat model [73] and in
NFAT ™ mice [76].

6.2. Interregional heterogeneity

In addition to transmural heterogeneity, there is inter-
regional heterogeneity of LV repolarization [19,99]. APD is
shortest in LV apex, longest in septum, and intermediate in
LV free wall, reflections of differential I,.r amplitude [19].
LVH induced by abdominal aorta constriction in rats causes
greater L, ¢ reduction in LV apex and LV free wall, resulting
in loss of interregional APD heterogeneity [19]. Interregio-
nal heterogeneity in APD, I, and Kv4.2 expression between
RV free wall and intraventricular septum also is eliminated
by MI [100]. Underlying mechanisms, including roles of
calcineruin and NFAT3, in loss of interregional hetero-
geneity are yet to be determined. Nevertheless, these
findings indicate that both transmural and interregional
heterogeneity in APD and ILo.r present in normal hearts
work as an anti-arthythmic; elimination of transmural and
interregional heterogeneity would then cause electrical
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Increased work loads

NE, Angll, ET-1, LIF,
aldosterone, etc. loar?

Ca?
NFAT3-@) l
le——- calcineurin
NFAT3

——> Kv4.2 - Kv4.33

Fig. 1. Potential positive feedback between increased Ca®  entry and I,
reduction. NE, norepinephrine; ET-1, nedothelin-1; LIF, leukemia inhibitory
factor.

instability, making hypertrophied hearts more susceptible to
lethal arrhythmias.

7. Physiological and clinical significance

7.1. Is reduced I,,.r a cause of cardiac hypertrophy or
epiphenomenon?

Cardiac-specific functional knock-out of Ii.r with over-
expression of a dominant-negative mutant W362F Kv4.2 in
mice [101] and targeted deletion of Kv4.2 (Kv4.2™"7) [102]
does not induce hypertrophy, suggesting that pathological
hypertrophy causes a reduction of I, rather than the opposite.

In other studies, however, cardiac-specific overexpression of
a dominant-negative Kv4.2 in mice caused dilated cardiomyo-
pathy and heart failure, in addition to prolongation of APD
[103,104].

Furthermore, overexpression of Kv4.2 in cultured neonatal
rat cardiomyocytes prevents hypertrophy induced by PE [105].
Infection of adenovirus carrying the Kv4.3 gene (Ad.Kv4.3)
reverses hypertrophy induced by Ang I in cultured neonatal rat
ventricular myocytes [106]. In vivo infection of AdKv4.3
abrogates the hypertrophy induced by aortic stenosis in rats
[107]. All these findings implicate I, reduction as a cause of
hypertrophy, and restitution of I, protects against hypertrophy,
indicating the presence of a positive feedback loop between I
reduction and progression of hypertrophy via a Ca®",
calcineruin, and NFAT3-dependent pathway (Fig. 1) [108].
However, there is currently no clear explanation why some
models show the association between I, reduction and
hypertrophy [103,104], and others do not [101,102].

7.2. Clinical implications

Interruption of the Ca**-dependent positive feedback loop
may be a potential new therapeutic target against arthythmias

and sudden death in cardiac hypertrophy [109-112]. Hyper-
trophy-stimulating neurohumoral factors, such as noradrenaline
[113-115], Ang Il [116,117], endothelin-1 [118,119], leukemia
inhibitory factor [120], and aldosterone [121,122] activate the
L-type Ca”" channels and/or the T-type Ca*" channels, resulting
in increases in [Ca®"]i and calcineurin activity and triggering
hypertrophic stimuli. Elimination of these triggers by inhibition
of angiotensin-converting enzyme (ACE) [123-126], the type-1
Ang 11 (AT1) receptor [127-131], a mineralcorticoid receptor
[132,133], and an endothelin-A receptor [134] causes regres-
sion of cardiac hypertrophy and successfully prevents arrhyth-
mogeneity of cardiac hypertrophy. L-arginine, the biological
precursor of nitric oxide (NO) [135], also attenuates DOCA-
induced LVH in rats, which is in line with recent data that NO
released from eNOS protects against Ca*" overload [136,137].
Calcineurin inhibitor prevents cardiac hypertrophy in mice
[138]. However, these arc results from rodent hypertrophy
models and are yet to be verified in larger mammals. For
example, in canine complete AV block-induced hypertrophy,
AT1 receptor antagonist irbesartan does not reverse the
hypertrophy or arrhythmogenesis [139]. Thus, the therapeutic
efficacy of such pharmacological approaches requires further
careful examination in large mammals including the human.
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Sex Difference of Sudden Death :
Treatment
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RIKTE (sudden death), TEMk (arrhythmia), QTHERE (QT interval), &I E (sex hormone)
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