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currents of atrial and ventricular action potentials.'? I, and Ji;
reflect the expression of distinct molecular entities; the
pore-forming «-subunit KvLQT1 (KCNQ1) coassembles
with an accessory f subunit minK (KCNE1) to form the Iy
channels, and the HERG (KCNH2) constitutes the pore-
forming subunit of the channel that underlies the Ix, channels.
Mutations in genes encoding these channel proteins are
responsible for the long-QT syndrome in humans, an inher-
ited cardiac arrhythmia characterized by abnormal cardiac
repolarization and a high risk for sudden death.t3 [, also
represents a relevant target for modulation by autonomic
neurotransmitters and hormones and thereby mediates the
regulation of cardiac electrical activity and contraction by
these extracellular signaling molecules.

The present study was designed to examine the possible
regulation of I, by Ang II and its associated signaling
pathways in isolated guinea pig atrial myocytes using the
whole-cell patch-clamp technique. Our results show for the
first time that Ang II in nanomolar concentrations markedly
potentiates Iy, through a mechanism involving activation of
the G protein—coupled AT, receptor linked to the phospho-
lipase C (PLC)-protein kinase C (PKC) pathway.

Methods

Preparation of Atrial Myocytes

The experimental procedures were conducted in accordance with The
Guide for the Care and Use of Laboratory Animals published by the
US National Institute of Health (NIH publication 85-23, revised
1996). Single atrial myocytes were enzymatically dissociated from
the heart of adult Hartley guinea pigs as described previously.!

Selutions and Chemicals

Normal Tyrode’s solution contained (in mmol/L) 140 NaCl, 54 KCl,
1.8 CaCl,, 0.5 MgCl,, 0.33 NaH,PO,, 5.5 glucose, and 5.0 HEPES (pH
adjusted to 7.4 with NaOH). The standard external solution for measur-
ing I, was normal Tyrode's solution supplemented with 0.4 pmol/L
nisoldipine (a generous gift from Bayer AG, Wuppertal-Elberfeld,
Germany) and 5 pmol/L E-4031 (Wako, Osaka, Japan). Agents added
to the external solution included Ang II (human; Calbiochem, San
Diego, Calif, and Sigma, St Louis, Mo), Sar'~Ang I (Sigma), 1-(5-
isoquinolinesulfonyl)-2-methylpiperazine (H-7, Seikagaku, Tokyo, Ja-
pan), bisindolylmaleimide I (Bis I, Sigma), phorbol 12-myristate 13-
acetate (PMA; Sigma), 1-oleoyl-2-acetyl-sn-glycerol (OAG: Sigma),
KT5720 (Alomone Labs, Jerusalem, Israel), valsartan (a generous gift
from Novartis, Basel, Switzerland), and candesartan (a generous gift
from Takeda Pharmaceutical Chemical Industries, Osaka, Japan). The
control pipette solution contained (in mmol/L) 70 potassium aspartate,
50 KCl, 10 KH,PO,, 1 MgSO,, 3 Na,-ATP, 0.1 Li,-GTP, 5 EGTA, and
5 HEPES (pH adjusted to 7.2 with KOH). The concentration of free
Ca®* and Mg®* in the pipette solution was calculated to be ~1.5X107%
mol/L. (pCa, 9.8) and 3.7X107* mol/L (pMg=4.4), respectively. In
some experiments, 0.1 mmol/L. GTP was replaced with 2 mmol/L
GDPSS (trilithium salt, Roche), and 5 mmol/L. EGTA was substituted
with 20 mmol/L. BAPTA (Sigma). To inhibit PLC, compound 48/80
(Sigma) was added to the pipette solution.

Whole-Cell Patch-Clamp Techniques and

Data Analysis

Isolated atrial myocytes were current and voltage clamped using the
standard whole-cell patch-clamp technique with an EPC-8 patch-
clamp amplifier (HEKA Electronics, Lambrecht, Germany). Boro-
silicate glass electrodes had tip resistances of 2.5 to 4.0 M{) when
filled with the pipette solution. Iy, was elicited by depolarizing
voltage-clamp steps given from a holding potential of —50 mV to
various test potentials under conditions in which the Na* current was

Potentiation of I, via AT, Receptors 1279

inactivated by setting the holding potential to ~50 mV, and /,; and
Iy, were blocked by nisoldipine (0.4 pmol/L) and E-4031 (5
umol/L), respectively, added to the external solution for the mea-
surement of Iy.'* The effect of external application of Ang II or
Sar'-Ang Il on I, was tested after the initial rundown of /¢, within
3 to 5 minutes of patch rupture was allowed to reach a steady-state
level, and control records were obtained immediately before drug
exposure in each experiment. Action potentials were evoked at a rate
of 0.2 Hz with suprathreshold current pulses of 2- to 3-ms duration
applied via patch electrode in the current-clamp mode. The APD was
measured at 90% repolarization (APDyy). All experiments were
performed at 36x1°C.

The concentration-response relationship for the potentiation of I, by
Ang 1l was drawn by least-squares fit of a Hill equation: R=R_,/
{1 +(ECs/[agonist])™}, where R, represents the maximal degree of
potentiation expressed as a percentage, ECy, is the concentration giving
half-maximal potentiation, and ny is the Hill coefficient. Voltage
dependence of Iy activation was evaluated by fitting the normalized I-V
relationship of tail currents to a Boltzmann equation: fy =1/
{1+expl(Vin—Vo)/k]}, where fy o is the tail current amplitude normal-
ized with reference to the maximum value measured at 50 mV, Vi, is

‘the voltage at half-maximal activation, V, is the test potential, and k is

the slope factor. Time course for the decay of the /i, tail current was
fitted with the sum of 2 exponential functions: /i .,z =A, exp(—Um)+A,
exp(—t/7), where A; and A, represent amplitudes of the fast and slow
components, respectively, and 7 and 7, are time constants for the fast
and slow components, respectively.

Time courses of changes in the amplitude of /i, in the presence of
various reagents were determined by measuring the amplitude of tail
currents elicited on repolarization to a holding potential of —50 mV
after 2000-ms depolarization to 30 mV every 10 or 20 seconds.

Statistical Analysis
All averaged values presented are mean*=SEM. Statistical comparisons
were made by Wilcoxon signed-rank test for paired data. Wilcoxon
rank-sum test was used to compare unpaired data between 2 groups: the
Kruskal-Wallis test was applied to compare data among =3 groups. A
value of P<<0.05 was considered statistically significant.

The authors had full access to the data and take full responsibility
for its integrity. All authors have read and agree to the manuscript as
written.

Results

Stimulatory Action of Ang II and Sar'~Ang II on
I, in Guinea Pig Atrial Myocytes

Figure 1A and 1B demonstrates the representative examples
for the stimulatory effect of Ang II and its stable analogue
Sar'-Ang II, respectively, on Iy, in guinea pig atrial myo-
cytes. Atrial myocytes were depolarized from a holding
potential of —50 mV to test potentials of —40 to 50 mV for
2000 ms, before and during exposure to 1 umol/L. Ang II
(Figure 1A) or 100 nmol/L. Sar'-Ang II (Figure 1B). Both
Ang II and Sar'-~-Ang II markedly increased the slowly
activating outward currents during depolarizations and the
decaying tail currents on return to the holding potential,
which represented the activation and deactivation of Iy,
respectively. The potentiation of Iy, by Ang II and Sar'-Ang
11 was quantitatively evaluated by measuring the amplitude of
tail currents elicited on return to the holding potential after a
2000-ms test pulse to 30 mV. As demonstrated in Figure 1C,
1 umol/L. Ang II and 100 nmol/L Sar'~Ang II increased the
amplitude of Iy, by 60.86.8% (n=8) and 100.7%£16.4%
(n=8), respectively. The percent increase in the amplitude of
Iy, tail current thus calculated was plotted against concentra-
tions of Ang II (Figure 1D). The mean data could be well
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Figure 1. Enhancement of Jxs by Ang It and Sar'-Ang il. A, B, Ik, was activated by 2000-ms depolarizing pulses to test potentials of
—40 to 50 mV in 10-mV steps before (Control) and =4 minutes after exposure to 1 pmol/L Ang I {A) or 100 nmol/L Sar'~Ang i (B). A
and B were obtained from different myocytes. C, Percent increase in the amplitude of I tail current evoked by 1 umol/L Ang Il and
100 nmol/L Sar'-Ang Il (n=8 each), measured after 2000-ms depolarization to 30 mV. D, Concentration-response relationship for the
increase of Iy, tail current evoked by Ang Il at concentrations between 1 and 1000 nmol/L.. Each value is the mean, and error bars rep-
resent SEM of 4 to 6 measurements. Only 1 concentration of Ang Il was examined in a given cell to exciude the influence of possible

desensitization to the agonist.

described by a Hill equation with an ECs; of 6.16 nmol/L and
ny of 1.50.

We then examined whether Ang II and Sar'~Ang II
affected the voltage dependence of Iy, activation by measur-
ing the amplitude of tail currents elicited on return to a
holding potential of —50 mV after 2000-ms depolarizing
pulses to test potentials of —40 to 50 mV. Figure 2A
illustrates a representative example of I-V relationships for Iy,
tail currents recorded before and during exposure to 1 pmol/L
Ang II obtained from the experiment of Figure 1A. The tail
current amplitude at each test potential was then normalized
with reference to the maximum value at 50 mV, and mean
values for the normalized tail currents, obtained from 6
experiments, were plotted against test potentials (Figure 2B).
The data points were reasonably well fitted by a Boltzmann
equation, with V,, of 10.4%1.5 mV and k of 11.1£0.8 mV
for control and V,; of 12.2*+2.5 mV and k of 10.3£1.1 mV
for Ang II (n=6). Thus, the voltage dependence of I,
activation was found to be affected little, if at all, by Ang 1.
In a separate set of experiments, it was also confirmed that
Sar'-Ang I increased the amplitude of Iy, without apprecia-
bly affecting the voltage dependent activation of Iy, (Vy, of
10.1222 mV and k of 11.8+ 1.3 mV; n=06).

To examine whether the kinetics of Iy, deactivation was
affected by Ang II and Sar'~Ang II, the tail currents elicited
on return to —50 mV after depolarizing pulses were evaluated
by fitting to the sum of 2 exponential functions (Figure 2C).

The time constants for the fast (1) and slow (7,) components
averaged 69.6+10.8 and 305.6%57.6 ms for control,
77.7%6.2 and 233.0*31.9 ms for Ang I, and 69.4=12.0 and
297.2+71.7 ms (n="6) for Sar'-Ang I, respectively (Figure
2D). There are no significant differences in the values of 7;
and 7, among control, Ang II, and Sar'-Ang II groups,
suggesting that the kinetics of current deactivation at —50
mV was not significantly affected by Ang II and Sar'~Ang IL

Signal Transduction Pathways Involved in AT,
Receptor-Mediated Increase in Iy,

We proceeded to explore the signal transduction pathways
mediating the stimulatory action of Ang II and Sar'-Ang II on
Ix. To examine whether the [, response to Ang II and
Sar'-Ang II was mediated through the AT, receptor, the
effect of these agonists on I, was examined in the presence
of the selective AT, receptor antagonist valsartan.!> As
illustrated in Figure 3A, pretreatment of atrial myocytes with
1 wmol/L valsartan almost totally prevented the stimulatory
action of 100 nmoV/L Sar'-Ang II on I. In a total of 8
myocytes, Sar'-Ang II (100 nmol/L) potentiated Iy, by
15.6+4.6% in the presence of valsartan (1 wmol/L), which is
significantly smaller than the degree of the Iy, potentiation in
the absence of valsartan (100.7%+16.4% increase; n=38,
P<0.05; Figure 3C). Similarly, the potentiation of I, by 1
pmol/L Ang IT was almost totally abolished by pre-exposure
to I umol/L valsartan (control, 60.8+6.8% increase, n=8§;
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Figure 2. Effects of Ang Il and Sar'-Ang Hl on the voltage dependence of activation and the kinetics of deactivation. A, I-V relationships
for Ik tail currents elicited on return to a holding potential of --50 mV after 2000-ms depolarization to various test potentials before and
during exposure to 1 umol/L. Ang Il. B, I-V relationships for normalized Ik, tail currents. Smooth curves represent the least-squares fit of
the data points (mean=8EM of 6 cells) to a Boltzmann equation. C, Semilogarithmic plot of /k tail current elicited on repolarization to
—-50 mV after a 2000-ms voltage step to 30 mV under control conditions. Inset, Original current trace used for the analysis (=76 ms,
=342 ms). D, Summarized data for  and =, in control and during exposure to 1 pmol/L. Ang Il and 100 nmol/L Sar'-Ang Il

valsartan, 8.5+3.4% increase, n=8; P<(0.05). These obser-
vations support the view that the potentiation of Iy, by Ang II
and Sar'-Ang II is mediated through the AT, receptor.
Moreover, valsartan alone had minimal effect on baseline /.
(7.8%2.9% increase, n=7; Figure 3C), suggesting that val-
sartan prevents the stimulatory action of Ang If and Sar'-Ang
I by blocking the binding of these agonists to the AT,
receptor.

To explore whether the AT, receptor is tonically activated
to potentiate I, in guinea pig atrial myocytes, we examined

the effect of candesartan, the inverse agonist of the AT,
receptor,'® on Iy, in basal conditions. As demonstrated in
Figure 3B and 3C, the baseline Ii, was not appreciably
affected by exposure to candesartan at concentrations of 100
nmol/L and 2 pumol/L., which suggests that there is little, if
any, tonic activation of AT, receptor leading to the enhance-
ment of [y, in baseline conditions of guinea pig atrial
myocytes.

It has been demonstrated in various cell types, including
guinea pig cardiac myocytes,”!7 that the AT, receptor is
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Figure 3. Potentiation of /i, by Sar'-Ang Il is mediated via AT, receptor. A, Effect of Sar'~Ang 1l (100 nmol/L) on Ik in the presence of
valsartan (1 umol/L). B, Effect of candesartan (2 umol/l) on Ik under baseline conditions. C, Summarized data for percent increase in
the amplitude of /k, tail current evoked by Sar'-Ang It (1 pmol/L), Sar'-Ang Il (1 umol/L) plus valsartan (1 wmol/L), valsartan (1 pmol/L)
alone, and candesartan alone at concentrations of 100 nmol/L and 2 umol/L.
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coupled to the activation of PLC via heterotrimeric G
proteins, which results in production of inositol 1,4,5-
trisphosphate (InsP3), a Ca**-mobilizing second messenger,
and diacylglycerol (DAG), an activator of PKC. Both an
elevation in intracellular free Ca® and activation of PKC
have been associated with an enhancement of /i, in guinea pig
cardiac myocytes.'® We therefore tested whether these sig-
naling molecules are involved in an AT, receptor-mediated
increase in Iy. Because the stable analogue Sar'-Ang I
evokes a larger increase in the amplitude of [y, than Ang II
does (Figure 1C), we used Sar'-Ang II as an agonist at the
AT, receptor in subsequent experiments.

We examined whether G protein activation is involved in the
signal transduction pathway by internally perfusing the nonhy-
drolysable GDP analogue GDPPS that irreversibly inhibits G
protein activation. As illustrated in Figure 4A, the stimulatory
effect of Sar'-Ang I on [, was greatly reduced in atrial
myocytes dialyzed with 2 mmol/L. GDPBS (control,
100.7x16.4% increase, n==8; GDPBS, 15.9%17.0% increase,
n=7; P<0.05), indicating that G-protein activation mediates the
potentiation of Iy, via AT, receptor. As shown in Figure 4B, the
potentiation of Ik, by Sar'~Ang II was also significantly attenu-
ated by loading the myocytes with the PLC inhibitor compound
48/80 at 100 umol/L. (compound 48/80, 32.9%:9.9% increase,
n=9), supporting an involvement of PLC activation.

The finding that Ang I and Sar'-Ang II potentiate lx, in
myocytes dialyzed with a control pipette solution containing
5 mmol/L. EGTA suggests that intracellular free Ca** does not
play an essential role in mediating the potentiation of I, via AT,
receptor. This idea was further tested by dialyzing atrial myo-
cytes with BAPTA in place of EGTA, which should provide
more rapid and more efficient Ca?*-buffering conditions inside
the cells. As shown in Figure 4C, 100 nmol/L Sar'-Ang I
increased the amplitude of Iy, even in the myocyte loaded with
20 mmol/L. BAPTA to an extent similar to that in the controls

(BAPTA, 76.0%11.5% increase, n=4), indicating that the stim-
ulatory effect of Sar'-Ang II was not significantly affected by an
increased Ca*-buffering capacity achieved by BAPTA. This
observation can be interpreted to indicate that intracellular free
Ca’" is not critically involved in the AT, receptor-mediated Iy,
increase under the present experimental conditions.

To test whether PKC mediates the Iy response to AT,
receptor stimulation, we investigated the effect of PKC inhibi-
tors and activaters on the stimulatory action of Sar'~Ang IL. As
illustrated in Figure SA and 5B, the stimulatory action of
Sar'-Ang I was largely abolished by pretreatment of atrial
myocytes either with the nonspecific PKC inhibitor H-7
(16.0%+9.2% increase, n=4) or with the specific PKC inhibitor
Bis I (9.86.4% increase, n=35). These results strongly suggest
that the potentiation of i, via the AT, receptor involves PKC
activation. We also checked whether Sar'-Ang I could further
increase I, after potentiation by maximal PKC activation. In
guinea pig atrial myocytes, increasing the concentration of the
nonspecific PKC activator PMA above 300 nmol/L. produced no
further increase in the amplitude of I, (data not shown),
indicating that a maximal potentiation of I, was attained by 300
nmol/L. PMA (44.5£5.6% increase, n=4). As illustrated in
Figure 5C, Sar'-Ang produced little further increase in I, that
was prestimulated maximally with 300 nmol/l. PMA
(71.7£2.3% increase, n=7; Figure 5E). When these reagents
were applied in reverse order (first Sar'~Ang II and then PMA),
there was again only a little further increase in I, during
exposure to PMA (6.2+1.0% increase, n=35; data not shown).
These observations suggest that Sar'-Ang I and PMA activated
the same signaling pathway to potentiate /.. The involvement of
PKC activation was supported further by the observation that
Sar'-Ang II caused only a small additional increase in I after a
maximal potentiation by the selective PKC activator OAG at 20
umol/L (Figure 5D; 10.1%1.5% increase, n=9; Figure SE).

To rule out the possible involvement of protein kinase A
(PKA) in the AT,-evoked potentiation of I, the effect of
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Figure 5. Enhancement of /y, via AT, receptor is mediated through PKC activation. A, C, D, Time course for changes in the amplitude
of Iy tail current during exposure to Sar'-Ang il (100 nmol/l) in the presence of 10 umol/L. H-7 (A), 300 nmol/l. PMA (C), or 20 wmol/L
OAG (D). B, E, Summarized data for percent increase in /s evoked by Sar'-Ang il in the presence of the PKC inhibitors H-7 and Bis |

{B) and PKC activators PMA and OAG (E). P<0.05, H-7, Bis |, PMA, or OAG group vs control.

Sar'~-Ang I (100 nmol/L) was examined in the presence of the Taken together, our results indicate that [, potentiation by AT,
selective PKA inhibitor KT5720. As demonstrated in Figure 6A receptor is mediated primarily through the PKC activation.
and 6B, there were no significant differences in the degree of Iy,
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Figure 7. AT, receptor-mediated shortening of the APD in atrial myocytes. A, Superimposed action potentials recorded before and ~2
minutes after exposure to 100 nmol/L Sar'~Ang If and ~5 minutes after the Sar'-Ang Il was washed out. B, Superimposed action
potentials recorded before and during exposure to Sar'~Ang i, initially without and then with 1 umol/L valsartan. C, Summarized data
for changes in APDy, by exposure to Sar'-Ang Hl, without and then with valsartan.

of major repolarizing currents such as I, would lead to
substantial changes in the repolarization process. We there-
fore examined the net effect of Sar'-Ang II on action
potentials in guinea pig atrial myocytes during superfusion
with normal Tyrode’s solution with no added blockers for
ionic channels. Figure 7A represents superimposed traces of
action potentials recorded before and during exposure to
Sar'-Ang II (100 nmol/L) and after the agonist was washed
out. Sar'-Ang II markedly shortened APD, which was almost
totally reversed on washing out of the agonist. In a separate
set of experiments (Figure 7B), we confirmed that the
Sar'-Ang I (100 nmol/L)~-induced shortening of APD was
significantly reversed by the subsequently applied valsartan
(1 wmol/L). In a total of 12 myocytes, APDy was reduced
from a control value of 113.1%8.8 to 63.1+5.8 ms during
exposure to Sar'-Ang II, which was partially recovered to
88.1:£7.0 ms (n=10) by the subsequent application of val-
sartan (Figure 7C). The resting membrane potential (control,
~84+3 mV; Sar'-Ang II, —83+2 mV; n=8) and action
potential amplitude (control, 1209 mV; Sar'-Ang II,
118+6 mV; n=8) remained unchanged during exposure to
Sar'-Ang II.

Discussion

The present experiments demonstrate that stimulation of the
AT, receptor evokes a marked increase in the amplitude of I,
in guinea pig atrial myocytes. Ang II is effective at potenti-
ating I, at concentrations of ==1 nmol/L (Figure 1D),
which appears to be higher compared with the plasma level of
Ang I in humans at baseline conditions (=5 pmol/L).1?
However, Ang II is also stored in cardiomyocytes, is secreted
by various stimuli such as mechanical stress, and acts as
autocrine/paracrine factors.?° A previous study found that the
concentration of Ang II in the interstitial fluid space of dog
heart is ~6 nmol/L,>! which seems to be comparable to the
concentration needed to affect /i in cardiac myocytes.

It has been shown in various tissue and cell types that AT,
receptors are coupled predominantly to PLC via heterotri-
meric G protein Gq, which leads to. the hydrolysis of
phosphatidylinositol 4,5-bisphosphate to produce InsP; and
DAG.” InsP; stimulates its receptors on the sarcoplasmic
reticulum to mobilize intracellular Ca?* stores; DAG acti-
vates Ca**-dependent (conventional) and Ca®*-independent

(novel) isoforms of PKC. The present results are consistent
with activation of the AT, receptor linked to a G protein
(probably Gq)-PLC signaling pathway to mediate the stim-
ulatory action of Ang IT on I (Figures 3 and 4). The
involvement of resultant activation of PKC in the action of
Ang 1I is supported by the experiments using the inhibitors
and activators of PKC; the stimulatory action of Ang II was
greatly reduced by the presence of Bis I and H-7 and was
masked by previous application of PMA and OAG (Figure 5).
At present, the precise mechanism by which PKC regulates
Ixs remains to be fully elucidated. The recent mutagenesis
study has detected PKC phosphorylation sites (8409, S464,
T513, and S577) in the C-terminus of KCNQ! protein,
responsible for potentiating the KCNQ1/KCNE! channel,??
the molecular constituents of human 713 However, it is also
possible that PKC acts on nonchannel substrate(s) to enhance
Iy,. Further studies are thus required to clarify the molecular
basis for PKC-mediated regulation of I..

Adult guinea pig myocardium has been demonstrated to
express the «, BIL, vy, € and { isoforms of PKC.23 The
observation that fy, can be readily enhanced not only by PMA
and OAG but also by AT, stimulation in a strong Ca**
buffering of the cytoplasm (5 mmol/L. EGTA) suggests the
possibility that the Ca**-independent novel isoform PKCe,
rather than Ca**-dependent conventional PKC isoforms, is
preferentially involved in the Iy response under the present
experimental conditions. It has recently been reported that the
KCNQI/KCNE] channel heterologously expressed in Xeno-
pus oocytes is potentiated by both PKCPBII and PKCe. It
will be interesting to exarnine which isoform of PKC medi-
ates the potentiation of [y, via AT, receptors in atrial
myocytes.

It was previously demonstrated in guinea pig ventricular
myocytes that Ang II decreases I, but increases /i,25 which
is apparently in contrast to the present results concerning the
effect of Ang II on /i,. One possible explanation could be the
different method of dissecting Ix into its 2 components, [,
and Iy, Consistent with this, our preliminary results showed
that Sar'-~Ang II (100 nmol/L) did not evoke any appreciable
inhibitory effect on Jx, in guinea pig ventricular myocytes
when evaluated with the present experimental protocol shown
in Figure 1 (unpublished observation). Alternatively, intra-
cellular signaling pathways coupled to the AT, receptor might
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be dissimilar between atrial and ventricular myocytes. It was
also shown that in guinea pig hearts, AT, receptor in atria has
a higher affinity for Ang II than that in ventricles.?®

Previous studies have shown that AF itself causes progres-
sive electrophysiological remodeling (shortening of effective
refractory period) in the atria by affecting the expression and
function of several ion channels.2”28 Jt has recently been
demonstrated that an upregulation of AT, receptors, which
occurs in the left atrium of patients with lone AF and AF with
mitral valve disease, is closely related to the remodeling
process and stabilization of AF.?° Consistent with this notion,
it was also reported that electrical remodeling during exper-
imental AF is prevented by the AT, antagonist candesartan in
dogs.3® The AT, receptor-mediated shortening of APD via
potentiation of Iy, (Figure 7) might be the another way
through which Ang IT participates in electrophysiological
perturbation in the atria during AF. On the other hand, the
present observation that a drastic shortening of atrial APD by
AT, stimulation can be substantially reversed after addition of
the AT, antagonist valsartan could explain why the incidence
of newly developed AF is decreased in patients (with heart
failure) who receive the drug (Val-HeFT trial).3! It should be
noted, however, that a possible direct blockade of repolariz-
ing currents other than Iy, by valsartan could also contribute
to the reversal of APD shortening observed in this study
(Figure 7B and 7C).

In recent years, a prospective, randomized trial has dem-
onstrated that in patients with persistent AF cardioverted to
sinus rhythm, adding the AT, antagonist irbesartan tc amiod-
arone is more effective in maintaining sinus rhythm com-
pared with treatment with amiodarone alone.'® In this trial,
the benefit of irbesartan is largely ascribed to the reduction of
the immediate and so-called subacute (during 1 hour and the
first weeks after cardioversion, respectively) recurrences of
AF. The immediate reversal of APD shortening by AT,
blockade (Figure 7) may again contribute at least partly to
this advantage of irbesartan in preventing relapses of AF in
the initial short-term phase.
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Response to Letter Regarding Article, “Angiotensin II
Potentiates the Slow Component of Delayed Rectifier
K* Current via the AT, Receptor in Guinea Pig
Atrial Myocytes”

We thank Dr Christ and his colleagues very much for their
interest in our article.! We attempted to contend that the
short-term enhancement of atrial Iy, by angiotensin II (Ang II)
shortens the action potential duration (APD) and may contribute
to the very early phase of atrial electrical remodeling. We fully
agree that the antifibrotic effects may represent the principal
mechanism by which Ang II type 1 receptor blockers prevent
atrial fibrillation (AF), but the difference between short-term and
long-term phases of atrial remodeling should also be considered.

Dr Christ and colleagues cited a rapid pacing of the right
atum in a canine model used to induce long-term atrial
structural remodeling and increased susceptibility to AF.2 The
animals were treated with candesartan from 1 week before the
start of pacing, and the treatment was continued for 5 weeks.
Although candesartan prevented structural remodeling and sus-
ceptibility to AF, it failed to affect the changes in atrial effective
refractory period (AERP) produced by atrial tachycardia. On the
other hand, the same authors® examined the effect of candesartan
on short-term changes in AERP produced by rapid atrial pacing
for just 180 minutes. The AERP shortening was completely
prevented by candesartan, demonstrating a role for Ang I type 1
receptors in the early stage of electrical remodeling. In humans,
irbesartan was found to significantly suppress the recurrence of
AF.4 The AF recurrence was efficiently inhibited during early
days but not at more than 14 days. The most straightforward
interpretation of the data would be that irbesartan did not prevent
the development of atrial fibrosis but regressed the electrical
remodeling. Our study, which examined the immediate action of
Ang 11 and Ang II type 1 receptor blockers on a specific ion
current regulating the APD, is consistent with a role for Ang II
in early electrical remodeling.

In the studies of human atrial myocytes by Bertaso et al and
Wang et al56 cited by Dr Christ et al, the myocytes were isolated
by using the “chunk” method, which has previously been
demonstrated to be associated with damage to delayed rectifier
currents.” Thus, we cannot take the absence of I, from patch-
clamp recordings of isolated human atrial myocytes as evidence
of their lack of contribution to atrial repolarization in humans.
Moreover, gain-of-function mutations of KCNQI are known to
cause familial AF.8 We therefore think that upregulation of
human atrial Ix, should be of substantial contribution in gener-
ating the AF, in which the shortening of APD is at least 1 of the
major determinants of AF maintenance.
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