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Fig. 1. The structure of NSDI with mutations in Sotos syndrome, Sotos-like syndrome, and other
syndromes. Each box indicates exon, gray regions show functional domains (SET, PWWP, and PHD)
and nuclear receptor interacting domains, NID™ and NID*L. Start and stop codons are located at exon
2 and 23, respectively. Arrowheads and filled circles indicate protein truncation mutations and missense
mutations. Asterisks below arrowhead or circle show familial mutations. The same mutation in different
individuals was shown as different arrowheuds.

out of six MD cases. Among 16 PM cases, 14 were diagnosed as typical SoS and 2 as Sotos-
like syndrome owing to the absence of advanced bone age. The degree of mental retardation
was variable and 2 out of 16 patients had cardiac septal defect. Both reports suggested that
mental retardation in SoS patients with MD is more severe than in patients with PM and cardio-
vascular complications in SoS patients with MD are more frequent than in those with PM.

NSD1 Mutations in Other Overgrowth Syndromes

Notably, in six cases of Weaver syndrome, whose phenotype overlaps significantly with
SoS (17,18,37) and in two cases of another overgrowth syndrome, Beckwith-Wiedemann
syndrome (BWS), NSDI mutations were identified (/8). In Weaver syndrome, 6 cases out of
13had NSD/ intragenic PM(17,20), suggesting that SoS and Weaver syndrome are allelic. The
majority of BWS is caused by either genetic alterations (11p15 paternal uniparental disomy or
CDKNC mutations) or epigenetic defects (demethylation of the KvDMR I region of KCNQIOT
and hypermethylation of H19)(38-40). Interestingly, inaddition to two BWS cases withNSD /
mutations, two SoS cases without NSD/ abnormality showed abnormal status of the 11p15
region (demethylation of KCNQIOT and a paternal isodisomy of 11plS5) (18). These data
indicate challenges for proper clinical diagnosis of even well-established overgrowth syn-
dromes. Another possibility is an unknown common pathway among the three syndromes. It
is very important to evaluate NSD1 status in other overgrowth syndromes to elucidate whether
NSD I mutations are specific not only for SoS.
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IS SOS A GENOMIC DISORDER?

Fifty MDs have been analyzed using fluorescence in situ hybridization and microarray
comparative genomic hybridization (4). Three different types of microdeletions were delin-
eated, among which, the approx 2-Mb MD I (Fig. 2A) was the most common (found in 46 out
of 50 patients). In the other four cases two smaller MDs were recognized. Highly homologous
regions at each deletion breakpoints of the MD I were identified (4—6). These LCRs were
termed Sotos syndrome distal-repeat (SoS-DREP, approx 429 kb) and proximal-repeat (SoS-
PREP, approx 390kb) (Fig. 2). Sequence comparisons of SoS-DREP and SoS-PREP revealed
that six sequence homology subunits (A-F) of PREP showed more than 96% identity to DREP
(Fig. 2B). Their sizes of SoS-PREP subunits were 123.6 kb (A), 20.1 kb (B), 62.8 kb (O,
7.8 kb (D), 8.2 kb (E), and 93.9 kb (F) and those of SoS-DREP subunits were 119.1 kb (A),
19.7 kb (B), 68.7 kb (C), 7.8 kb (D), 8.3 kb (E), 82.8 kb (F), and 50.1 kb (C’). Each of the
homologous subunits, with the exception of one, is located in an inverted orientation and the
order of subunits is different between the two SoS-REPs. Only the subunit C’ in SoS-DREP

_is oriented directly with respect to the subunit C in SoS-PREP. These subunits are more than
99% identical. Two recent reports showed that the subunit C’ in SoS-DREP and the subunit
Cin SoS-PREP, were utilized as a substrate of NAHR of the SoS common deletion (5,6). In
addition, the reports indicated that the crossover events occurred in those subunits and that an
approx 80% of crossover hotspots were within an approx 3-kb genomic sequence in those
subunits (5,6) (Fig. 2).

These data established that SoS is a new genomic disorder and an NAHR mechanism is a
consistent mechanism for generation of the SoS common deletion as in other genomic disorder
reported (4/-43).

IS SOS A CONTIGUOUS GENE SYNDROME?

There are at least 22 genes that map within the common deleted region (UCSC Genome
Browser, May 2004 Assembly, hitp://genome.ucsc.edu/cgi-bin/hgGateway) (Fig. 2). Both
S0S-REPs contain two genes, THOC3 and NY-REN-7 (Fig. 2). THOC3 and NY-REN-7 have
open reading frames that are completely conserved in SoS-PREP and SoS-DREP. The PROP1
gene maps only to SoS-DREP between subunit E and C’ (Fig. 2A). Among those 22 genes
deleted, NSD1, the plasma coagulation factor 12 gene (F/2, OMIM +234000), the prophet of
the PIT-1 gene (PROP1,OMIM +601538), and the xylosylprotein B 1,4-galactosyltransferase,
polypeptide 7 gene (B4GALT7, also known as xylosylprotein 4-3-galactosyltransferase I gene,
XGTP1, OMIM *604327) may be directly related to human phenotypes.

F12 encodes the coagulation factor XII, also known as Hageman factor. Heterozygous deletion
of F12 may result in partial F12 deficiency, which could present with a slight to moderate bleeding
tendency (44,45). Low levels of factor X1l activity may also be arisk factor for repeated spontaneous
abortions or skin ulcers (46,47}. A common polymorphism in the 5'-untranslated region of F/2, the
¢.46C > T substitution, was found to be associated with low F12 level (48). In cases of c.46T/T, the
value of F12 was remarkably decreased. Soria et al. (49) reported that the 5q33-gter region is a
quantitative risk factor for thrombosis using genome wide linkage analysis. A novel homozygous
p-W484C mutation was shown to induce low F12 levels (50). It is important to evaluate F12 in SoS
patients with MDs, although such a risk has not been known in SoS.

Homozygous or compound-heterozygous defects of PROP/ result in combined pituitary
hormone deficiency including GH, PRL, TSH, LH and FSH (OMIM +601538) (5/). So far,
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Fig. 2. (A) Physical map depicting microdeletions found in Sotos syndrome (SoS) and two low-copy
repeat sequences, termed proximal-repeat (SoS-PREP) and distal-repeat (SoS-DREP) at 5q35. The Sos-
REPs, indicated as black boxes, are proximal and distal toNSD 1. Among 22 genes that map within
the deletion interval, NSD1, the SoS-REP-specific predicted genes (THO3, NY-REN-7, and PROPI),
and possible human phenotype-related genes (F12, GPRK6, B4GAL4T?7) are presented. THOC3 and
NY-REN-7 map to both SoS-PREP and SoS-DREP. Bold bi-directional arrow represents a deleted
region. An approx 2-Mb microdeletion is the most commonly observed in SoS. (B) There are six subunits
of more than 96% sequence identity between the proximal and the distal SoS-REPs (A-F); their orien-
tation is depicted as arrow. All subunits except C' are inverted with respect to each other. Dotted lines
indicate unique sequence in low-copy repeats. Three relevant genes are shown.

three SoS cases associated with hypothyearsoidism have been reported (52,53 ). Unmasking of
the recessive allele is possible when one allele harbors a PM and the other is deleted. It may
be worth investigating PROP1 if hypothyearsoidism is observed.

B4GALTY7 regulates the synthesis of various glycosaminoglycans (GAGs). GAGs are
basic components of heparin/heparan sulfate or those of chondroitin sulfate/dermatan sul-
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fate and have an important role in the formation of various tissues and organs (54). Defects
of GAGs may be possibly responsible for the various forms of so-called mucopoly-
saccharidoses. In the progeroid type of Ehlers-Danlos syndrome, compound heterozygosity
for p.A186D and p.L206P mutations of B#GALT7 was confirmed. The father was heterozy-
gous for the p.L206P allele and mother heterozygous for the p.A186D allele (55,56).
Although only one case with such mutations has been reported, carrier status for such PMs
in contributions with hemizygous deletion of B4GALT7 in SoS patients with MDs could
contribute to phenotypic variability.

GPRK6 encodes G protein-coupled receptor kinase 6 protein (GPRK6) (OMIM *600869),
which can regulate G protein-coupled receptors. Using immunohistochemistry, GPRK6
expression was confirmed in striatal neurons receiving dopaminergic input and postsynaptic
D2/D3 dopamine receptors were targets of GPRK6 (57). Investigation of GPRK6 by gene
targeting to create a knockout animal shows higher sensitivity to psychostimulants including
cocaine and amphetamine especially in homozygous mice rather than heterozygous, suggest-
ing that such high sensitivity may be related to some potential psychiatric diseases in human
(58). lt would be interesting to evaluate for different psychiatric and behavioral aspects between
SoS cases with MD versus PM.

The influence of the deletion of 21 genes other than NSD/ needs to be carefully evaluated,
as some genes may affect the severity of phenotypes in MD patients.

FUTURE DIRECTION

Rearrangement-prone regions of the human genome including LCRs have been challenging
to sequence (59,60). Validation and mapping of MD breakpoints at the nucleotide level should
provide further insights into the mechanisms of DNA rearrangement. Functional studies of
NSD1 are required for elucidating pathophysiological aspects of SoS. Intensive molecular
analyses of 282 patients with SoS, Sotos-like syndrome, and Weaver syndrome revealed the
NSD1 abnormalities in 168 cases; NSD1 was intact in the other remaining 114 cases. Improved
methods to detect other types of NSD1 abnormalities, including partial deletion and nucleotide
changes of introns and promoter regions, and more data of clinical phenotypes observed in
patients with MDs and PMs should reveal further genotype/phenotype correlations and pro-
vide insights into SoS pathophysiological mechanisms.
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A 17-month-old girl with clinical manifestations of Nevo
syndrome and NSD1 (nuclear receptor binding SET domain
protein 1) deletion is described. Nevo syndrome is a rare
overgrowth syndrome showing considerable phenotypic
overlap with Sotos syndrome—another, more frequent
overgrowth syndrome caused by NSDI mutations or dele-
tions. About a half of Japanese Sotos syndrome patients carry
a 2.2-Mb common deletion encompassing NSD?I and present
with frequent brain, cardiovascular, or urinary tract anoma-
lies. The girl we described had the common deletion and

showed patent ductus arteriosus, atrial septal defect,
vesicoureteral reflux, and bilateral hydronephrosis. It
was thus concluded that the clinical manifestations, includ-
ing the Nevo syndrome phenotype, were caused by the
microdeletion. © 2005 Wiley-Liss, Inc.

Key words: Nevo syndrome; Sotos syndrome; overgrowth;
NSD1I; microdeletion

INTRODUCTION

Nevo syndrome is a rare overgrowth syndrome
characterized by joint laxity, kyphosis, wrist drop,
spindle shaped fingers, and volar edema, and shares
many phenotypic features with Sotos syndrome
[Nevo et al., 1974]. Sotos syndrome is characterized
by overgrowth with advanced bone age, a dys-
morphic face with macrocephaly, large hands and
feet, and mental retardation [Cole and Hughes, 1994].
Recently, a 2.2-Mb microdeletion encompassing the
NSD1 gene was reported in a series of Japanese
patients with Sotos syndrome [Kurotaki et al., 2003].
Patients with an NSDI deletion tend to have
anomalies in the central nervous system (e.g.,
agenesis or hypoplasia of the corpus callosum),
cardiovascular system (e.g., patent ductus arteriosus
and atrial septal defect (ASD)), and urinary system
(e.g., vesicoureteral reflux, hydronephrosis, and
small kidney) [Nagai et al., 2003]. We described a
young girl with Nevo syndrome with an NSDI
deletion, and presenting with both cardiac and
urinary abnormalities in addition to volar edema,

and contractures of hands and feet, which are typical
and pivotal features of Nevo syndrome. We postu-
lated that the clinical manifestations in the girl,
including the Nevo syndrome phenotype, were due
to the microdeletion.

CLINICAL REPORT

The girl was born at full-term after an uneventful
pregnancy as the first child of non-consanguineous
parents. The 22-year-old father measured 170 cmand
weighed 70 kg, the 19-year-old mother was 160 cm
and 79 kg. Birth weight of the girl was 3,450 g
(40.4 SD), length 52 cm (4-1.6 SD), and OFC 35 cm
(+1.58SD). She showed flexion contractures of hands
and feet, valgus deformity of the right foot, and
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muscular hypotonia. Hyperbilirubinemia was trea-
ted with phototherapy for a few days. Growth,
especially weight gain, was extremely accelerated.
She sat alone at age 10 months and stood supported
at 15 months. Atage 17 months, her height was 87 cm
(+3 SD), weight 13.8 kg (+3.6 SD), and OFC 48.5 cm
(+1.8 SD). Motor and speech development were
delayed. Although cognitive function was normal at
age 17 months, she could not speak a word. When
examined by us at age 17 months, generalized
hypotonia and thoracic kyphosis were present. Her
craniofacial features included dolichocephaly, a
narrow high-arched palate, large abnormal low-set
ears, and a webbed neck (Fig. 1a,b). The hands and
feet were large and edematous. In addition, there
was wrist drop and spindle shaped fingers (Fig. 1c,d).
Echocardiography demonstrated an ASD and patent
ductus arteriosus (PDA). Computed tomography of
the brain showed no structural deformity. Bilateral
hydronephrosis was seen on ultrasonography, and
voiding cystoureterography revealed bilateral vesi-
coureteral reflux. Chromosome analysis revealed a
normal 46, XX karyotype. Atage 15 months, her bone
age was advanced being 30 months, particularly seen
in the metacarpophalangeal bones. Radiographic

abnormalities included 11 pairs of thin ribs with a left
cervical rib, thoracholumbar scoliosis, mild iliac
hypoplasia, mild undermodeling of the proximal
femora, and large epiphyses of the hip and knee
bones.

We performed chromosomal and interphase FISH
analysis on cultured peripheral blood lymphocytes
from the patient using seven BAC/PAC clones
encompassing NSD1, which detectdeletions ormuta-
tions leading to Sotos syndrome [Kurotaki et al,,
2003]. Five (RP11-349N1S, RP11-1006E8, RP11-
606E24, RP1-118M12, and RP11-147K7) of the seven
clones showed a deletion in one of homologous
chromosomes 5, whereas the remaining two clones
(RP11-355H1 and RP11-158F10) never showed dele-
tion (Fig. 2). Her deletion thus involved a 2.2-Mb
region encompassing NSDI with its proximal break-
point between RP11-355H1 and RP11-349N15, and
its distal breakpoint between RP11-147K7 and RP11-
158F10.

DISCUSSION

The girl we have described had clinical manifesta-
tions common to both Nevo and Sotos syndromes,

Fio. 1. The patient. (2} 2t age 9 montks, b, ¢, and &: at age 17 monaths,
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 RPIlassElol . RPI1-349NI

Fic. 2. FISH analysis of metaphase chromosomes from the patient. RP11-158F10 and RP11-355H1 are present (arrows), whereas RP11-349N15 and RP11-147K7 are
deleted (arrowheads).

TABLE I. Phenotypic Comparison of Present and Other Patients With Nevo Syndrome or Sotos Syndrome With NSD Deletions

Patients with
Clinical manifestations Present patients Nevo syndrome® Sotos syndrome with deletions®
Common to both syndromes
Neonatal hyperbilirubinemia + 4/7 11/21
Retarded motor and speech development + 2/7 9/9
Overgrowth + 7/7 18/21
Advanced bone age + 5/7 10/14
Coarse facial appearance + 7/7 20/20
Prominent forehead + 7/7 20/20
Large, low-set ears + 6/7 16/20
High palate + 6/7 17/18
Large hands and feet + 5/6 20/21
Frequently seen in Sotos syndrome with deletion
Brain anomalies - 12/19
Cardiovascular anomalies < 12/21
Urinary tract anomalies +¢ 7/13
Frequently seen in Nevo syndrome
Generalized hypotonia + 7/7 7/21
Normal head circumference + 3/4 2/20°
Kyphosis + 7/7
Scoliosis + 3/7 5/21
Cryptorchism 6/6
Edema of hands and feet + 6/7
Wrist drop + 7/7
Spindle shaped fingers + 6/6
Valgus deformity of the feet + 3/3

*Data from Nevo et al. [1974], Hilderink and Brunner [1995), al-Gazali et al. [1997], and Dumic et al. [1998].
PData from Nagai et al. [2003].

“PDA, ASD, vesicoureteral reflex, and hydronephrosis.

9Macrocephaly in 18/20 cases.
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i.e., those frequently seen in Sotos syndrome patients
with deletions encompassing NSDI, and those
frequent or unique in Nevo syndrome patients
(Table . Nevo syndrome is a childhood overgrowth
syndrome that shares many phenotypic features with
Sotos syndrome. Identification of a common NSDZ
deletion in our patient strongly suggests that the two
syndromes are either allelic. Alternatively, they may
causally be related each other. In the latter case, Nevo
syndrome is assumed to be an autosomal recessive
disorder, and a mutant allele of the putative gene on
the non-deleted chromosome 5 may be expressed
through the unmasking heterozygosity mechanism
by the deletion. Of seven previously reported
patients with Nevo syndrome, three were two
brothers and their male cousin from an inbred Arab
family [Nevo etal., 1974}, and two other patients were
from two unrelated Arab families from different
tribes [al-Gazali et al., 1997]. A male patient with the
syndrome from the Netherlands was born to
consanguineous parents [Hilderink and Brunner,
1995]. These findings may indicate a concentration of
the syndrome among the Arab population, and
support its autosomal recessive inheritance. It
remains to be seen whether Nevo syndrome patients
have NSD1 mutations.
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A 6-month-old girl had multiple congenital anomalies, in-
cluding dysmorphic face; tetralogy of Fallot, pulmonary
atresia and patent ductus arteriosus; congenital cystic adeno-
matoid malformation of the right upper lung, and hemilateral
kidney defect. Chromosome analysis as well as flurorescence
in situ hybridization (FISH) and polymorphic marker ana-
lyses in the girl and her parents revealed a de novo large
interstitial deletion of 17p13.1-p11.2 of the paternally derived
chromosome 17. The deletion involved the Smith—Magenis
chromosome region (SMCR). Lack of involvement of the

Miller—Dieker syndrome region at 17p13.3 was confirmed by
both FISH analysis and radiological examinations that
showed no migrational abnormality. The girl died at age 7
months. This is the first report of a patient with a large
interstitial deletion of 17p. © 2005 Wiley-Liss, Inc.

Key words: 17p11.2; Smith—Magenis syndrome; large
interstitial deletion; dysplastic kidney; cyanotic congenital
heart disease; fluorescence in situ hybridization (FISH)

INTRODUCTION

There are two major contiguous gene syndromes
associated with 17p, Miller-Dieker syndrome (MDS,
OMIM #247200) and Smith—Magenis syndrome
(SMS, OMIM #182290), both of which have been
well studied. MDS involves a subtelomeric deletion
of 17p13.3 [Mutchinick et al., 1999; Cardoso et al.,
2003]. Reiner et al. [1993] cloned the LIST (lissence-
phaly-1) gene at 17p13.3, which is deleted in MDS
patients. Subsequently, many single-mutations in
this gene were reported to be the cause of isolated
lissencephaly [Lo Nigro et al., 1997]. SMS is an inter-
stitial deletion syndrome of 17p11.2. The mechanism
of formation for this interstitial deletion is thought to
be non-allelic homologous recombination between
low-copy repeats (LCR) [Shaw and Lupski, 2005]. The
deleted regions of SMS are usually common among
patients [Shaw et al., 2004]. Slager et al. [2003]
identified mutations in the RAII gene, and now
haploinsufficiency of RAI1 is believed to be respon-
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sible for the behavioral, neurologic, otolaryngologic,
and craniofacial abnormalities of SMS. More variable
features, such as heart and renal defects, are prob-
ably due to hemizygosity of other genes involved in
the 17pl1.2deletion.

Recently, we encountered a girl who had a large
interstitial deletion of 17p, including the Smith—
Magenis chromosome region (SMCR). To our knowl-
edge, this is the largest deletion of 17p in the
literature. Here we describe the clinical details of
this patient.
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CLINICAL REPORT

A 29-year-old, primigravida woman was referred to
us at 35 weeks of pregnancy because of intra-uterine
growth retardation of the fetus. The woman and her
31-year-old husband were healthy and non-consan-
guineous. Tetralogy of Fallot (TOF) and congenital
cystic adenomatoid malformation (CCAM) of the
right upper lung in a fetus were suspected by pre-
natal ultrasonography. Caesarean was performed at
38 weeks of gestation because of breech presenta-
tion. The baby, a girl, weighted 1,978 g (2.9 SD),
and had length of 41.8 cm (—3.8 SD) and OFC of
30.6 cm (—1.7 SD). Echocardiography confirmed
TOF with coarctation of the left pulmonary artery,
and patent ductus arteriosus (PDA). Continuous
injection of prostaglandin E1 (PGE1) was started to
keep the duct open. At age 72 days, the girl received
modified right Blalock-Taussig shunting operation
with a Gore-Tex graft (3 mm), and her left pulmonary
artery was reconstructed. Branch artery from aorta
descendens was detected by chest computed tomo-
graphy (CT), which confirmed CCAM of the right
upper lung. Abdominal echography showed agen-
esis of the left kidney.

Brain MRI at age 2 months showed mild dilatation
of bilateral cerebral ventricles; hypoplasia of the
white matter with delayed myelination, the cerebel-
lar vermis and of the corpus callosum, but no migra-
tional abnormality in the cerebral cortex (Fig. 1B,D).
At age 6 months, she was fed through a nasogastric
tube. She followed moving objects, but instability of
her neck persisted. She had upslanting palpebral
fissures, low-set ears, low nasal bridge, micrognathia
(Fig. 1A), a cleft palate, nuchal skin folds, a single
flexion crease of the left fifth finger, bilateral single
palmar creases, overlapping toes, rocker-bottom
feet, sacral bossing, and a sacral dimple. She died at
age 7 months of cardiac failure. Autopsy was not
granted.

MOLECULAR AND CYTOGENETIC STUDIES

G-banded karyotyping of cultured peripheral
blood lymphocytes showed a large deletion at 17p
(Fig. 1E). Fluorescence in situ hybridization (FISH)
analysis by the use of LSI SMS (Vysis, Downers
Grove, IL) demonstrated a deletion of the SMCR
(Fig. 2A), while that with LSI LIS1 (Vysis) showed no
deletion of LIS7 (Fig. 2B). Detailed FISH analysis on
interphase nuclei of the patient using BAC clone
probes mapped to 17p13.3-11.2 as described else-
where [Shimokawa et al., 2004] showed a deletion
of 17p13.1-11.2 (Table I). Thus, her karyotype
is interpreted as 46,XX,del(17)(p13.1p11.2).ish
del(17)(LIS1+, RP1-95H6+, RP11-54506+, RP11-
457118+, RP11-61B20+, RP11-89A15+, RP11-
746E23—, RP11-125H11—, RP11-27019—, RP11-
385G5—, RP11-746E8—, RAIl—, RP1-172N16—,
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Fic. 1. Facial dysmorphology of the patient at age 4 months (4), including
upslanting palpebral fissures, low-set ears, low nasal bridge, and micrognathia.
MRI with T1W view of sagittal (B) and axial (C,D) sections at different levels,
showing hypoplasia of the cerebellar vermis and corpus callosum (B), mild
dilatation of bilateral cerebral ventricles with white matter hypoplasia and
delayed myelination. No migrational abnormality is seen in the cerebral cortex
(D). Molar tooth sign is absent (C). G-banded chromosome 17 from the patient
and corresponding schematic representation (E). A large deletion of 17p is
indicated in each right-sided chromosome.

RP11-160E2—, RP11-363P3—, RP11-64J19—). Karyo-
types of both parents were normal.

Haplotype analysis of this family was performed
using the following microsatellite markers: D175969,
D1751296, D17S2186, D17S1356, D1751357,
GATA185H04, and D175130. Primer information
was retrieved from the in-silico library [Cooperative
Human Linkage Center (http://gai.nci.nih.gov/
CHLC/) and UCSC Genome Bioinformatics Site
(http://genome.ucsc.edu/)]. Genomic DNA was ob-
tained from the patient and her parents, and sub-
sequent PCR amplification was performed according
to the standard method. The amplicons were visuali-
zed by ethidium bromide staining after separation by
electrophoresis on an acrylamide gel. Only the result
from D178969 (located at 17p12) was informative for
detecting the parental origin of the deletion. As the
patient had a band for this marker in common only
with her mother (Fig. 20), it was deduced that the
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Fic. 2. Two-color FISH analysis of the patient’s chromosomes using LSI SMS Spectrum Orange/RARA Spectrum Green dual-color DNA probe (A). Green signals were
obtained by LSI RARA SpectrumGreen at band 17q21. Arrow and arrowhead indicate the presence and absence, respectively, of a signal for the SMCR. Detection of the
LIS region using SpectrumOrange LSI LIS1 atband 17p13.3 (B). Arrows indicate the presence of the ZIS7 signal. Paternal origin of the deletion (C). The patient inherited
only the maternal allele (arrow). Electrophoretic bands of PCR products for microsatellite marker, 2175969, of the patient and her parents were visualized by ethidium
bromide staining, m, marker ($X174/Haelll digest); F, father; P, patient; M, mother. [Color figure can be viewed in the online issue, which is available at
www.interscience. wiley.com.}

TABLE 1. BAC Clones Located to 17p13.1-11.2 Used as Probes in FISH Study

Location

Nucleotide position

Chromosome Disease

Clone name band* Start* End* locus Result of FISH
RP1-95H6 17p13.3 2443685 2535638 L1151 Normal
RP11-54506 17p13.2 3550805 3735942 Normal
RP11-457118 17p13.2 5093178 5301854 Normal
RP11-61B20 17p13.1 6780963 6943107 Normal B
RP11-89A15 17p13.1 8199810 8365717 Normal
RP11-746E23 17p13.1 8576926 8748280 Deletion
RP11-125H11 17p13.1 9176082 9364840 Deletion
RP11-27019 17p13.1 9745074 9904704 Deletion
RP11-385G5 17p12 11132724 11344170 Deletion
RP11-746E8 17p12 12435731 12620614 Deletion
RP11-172N16 17p11.2 18069802 18201100 SMS Deletion
RP11-160E2 17p11.2 18863814 19021902 Deletion
RP11-363P3 17p11.2 20012562 20185625 Deletion
RP11-64J19 17p11.2 21014522 21191548 Deletion

*Chromosomal location or nucleotide position are from UCSC database (May 2004).
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paternally derived allele at this locus was deleted in
the patient.

DISCUSSION

The girl described here had a de novo large
interstitial deletion of 17p13.1-11.2, including the
SMCR, on the paternally derived chromosome 17.
The lack of clinical manifestations for MDS, including
lissencephaly was confirmed by molecular cytoge-
netic analysis, that is, the LIS7 region, which is critical
for MDS, was intact. Hereditary neuropathy with
liability to pressure palsies (HNPP) can be caused by
a deletion of the PMP22 (peripheral myelin protein-
22) gene that should be included in her deletion
extent. However, since the age of onset of HNPP is
usually between 15 and 20 years, she was too young
to present the symptoms for the disease such as
neuropathy.

The patient had facial dysmorphism showing a
broad, flat nasal bridge; upslanting palpebral fis-
sures, sparse eyebrows, broad midface, and cleft
palate. These manifestations are characteristic of
typical of SMS [Greenberg et al.,, 1991]. Other facial
anomalies such as a2 long philtrum and a carp-shaped
mouth, and hemilateral dysplasia of the kidney have
not been reported in SMS patients. It is likely that
these abnormalities were due to hemizygosity of
genes other than those in the SMCR. Severe con-
genital heart disease (CHG) of the patient, including
TOF, PA, and VSD, is also compatible with SMS.
Greenberg et al. [1996] described that at least 37% of
SMS patients had CHG, and some patients were
reported to have TOF, PA, and VSD [Smith et al,,
1986; Wong et al., 2003; Myers and Challman, 2004].
Thus, the heart anomalies in our patient are not
exceptional for SMS. Natacci et al. [2000] described a
patient who had SMS associated with Joubert
syndrome. Our patient also had hypoplasia of the
cerebellar vermis but molar tooth sign was not
identified by MRL Thus, Joubert syndrome was ruled
out in our case.

In conclusion, this is, to our knowledge, the first
report of a large deletion of 17p. From our
experience with this patient, such a deletion may
lead to a poor prognosis, early infantile lethality. Our
case may contribute to better understanding of a
genotype—phenotype correlation of SMS.
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To the Editor:

Kabuki make-up syndrome (KMS, OMIM 147920),
independently established by Niikawa et al. [1981]
and Kuroki et al. [1981], is characterized by char-
acteristic facial features resembling the Kabuki
actor’s make-up, mild to moderate mental retarda-
tion, postnatal growth retardation, skeletal abnorm-
alities, and wunusual dermatoglyphic patterns
[Matsumoto and Niikawa, 2003]. The multisystem
involvement of the KMS phenotype suggests that
KMS is caused by a microdeletion or microduplica-
tion involving several genes. Milunsky and Huang
[2003] reported that all of the six KMS patients they
examined had approximate 3.5-Mb duplication at
8p22-p23.1 revealed by comparative genomic
hybridization (CGH) and fluorescence in situ hybri-
dization (FISH). They also suggested that a para-
centric inversion in mothers, detected by RP11-
122N11, might contribute to the occurrence of the
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syndrome. At least three groups, including us, failed
to replicate their results by FISH and/or array CGH
analysis [Miyake et al., 2004; Engelen et al., 2005;
Hoffman et al., 2005]. Schoumans et al. [2005]
reported that they observed no chromosomal
abnormalities in 10 affected Caucasian individuals
with typical KMS using the 1.2-Mb-resolution whole
genome BAC array.
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Using a newly developed BAC array covering the
whole genome with a 1.5-Mb resolution, in this
study, array CGH (aCGH) was performed in 38
patients with typical KMS to find genomic imbal-
ances in relation to KMS. Detailed experimental
protocols are described elsewhere [Miyake et al.,
2005]. Peripheral blood leukocytes or lymphoblas-
toid cell lines from the 38 patients (20 males and 18
females) and their parents when available were sent
to us after informed consent. All KMS cases were
sporadicand had a normal karyotype according to G-
banded chromosomal analysis at the 400-band level.
Their metaphase chromosomes for FISH and DNA
for aCGH were prepared either from immortalized
lymphoblastoid cell lines or peripheral blood leuko-
cytes according to standard protocols.

We detected a total of 115 clones implying occult
genomic imbalances, which were all subsequently
confirmed by FISH (14 clones as deletions and
101 clones as duplications) (Fig. 1). Heterozygous
deletion/duplication might be associated with the
pathogenesis of KMS, because an autosomal (or
pseudoautosomal) dominant inheritance is sus-
pected in KMS [Matsumoto and Niikawa, 2003]. All
copy number changed loci (clones) observed in this
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series of KMS patients, except four loci, were unlikely
to be associated with KMS, because the same
changes were also observed in either of their healthy
parents, and/or non-KMS individuals with non-
syndromic mental retardation [Miyake et al., 2005],
and/or were registered in the Database of Genomic
Variants (http://projects.tcag.ca/variation/). One
heterozygous deletion at RP11-97F19 (2pl11.2) in
two patients (KMS5 and KMS17), and two hetero-
zygous duplications at RP11-418N20 (Xp22.33) and
RP4-617A9 (Xp22.3) in a patient (KMS14) remain
inconclusive, because parental samples were un-
available. These changes in the three patients are
described in detail below. Among 37 loci showing
copy number changes in KMS patients, a total of 11
loci were already registered as copy number poly-
morphisms (CPNs) in the Database of Genomic
Variants (checked on July 19, 2005) (Fig. 1), con-
firming that these changes are unlikely pathogenic.

RP11-97F19 Deletion at 2p11.2 in
KMS5 and KMS17

We delimited the deletion to an approximate 1-Mb
region from RP11-15]7 to RP11-136K15 by detailed
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FISH analysis [UCSC Genome Browser NCBI build 35
(May 2004) coordinates, chromosome 2 nucleotide
88979594-89962288 bp] (data not shown). The gain
of this region was reported previously [Sebat et al.,
2004] and is described at the Database of Genomic
Variants (http://projects.tcag.ca/variation), but the
loss has never been reported. We did not find any
cases with the same deletion in 200 chromosomes of
normal Japanese controls. Regarding the duplica-
tion, homozygous and heterozygous duplication
were found in 92 and 8 controls, respectively. The
allele frequencies of the duplication in KMS and
normal controls were 87.5% and 96%, respectively.
No established genes exist within the deletion.

RP4-617A9 and RP11-418N20 Duplication at
Xp22.3 in KMS14

RP4-617A9 and RP11-418N20 are closely located
~0.12 Mb apart. The heterozygous duplication of
RP4-617A9 and RP11-418N20 in KMS14 was
observed by aCGH. FISH analysis revealed that the
duplication spans about 0.7 Mb from RP11-794A12
(distal) to RP11-418N20 (proximal) (UCSC coordi-
nates, chromosome X nucleotide 2341315-
3106243). None of 98 chromosomes in normal
Japanese controls possessed the duplication. In
addition, the gain of this region has not been
reported yet at Database of Genome Variants. This
region was overlapped with a part of the pseudoau-
tosomal region 1 (PAR1). Among seven genes
mapped to the duplication, ZBEDIand CD99 were
in PAR1. Though they are attractive candidate genes
according to a pseudoautosomal dominant inheri-
tance hypothesis [Matsumoto and Nitkawa, 2003}, we
could only find three SNPs in CD99[68A > G (D23G),
496A > G (M166V), 518A > T (N173D)], but no patho-
logical nucleotide changes of the two genes in 37
other KMS patients (data not shown).

In conclusion, our study of 38 KMS patients did not
show any pathological copy number changes,
similar to the previous report [Schoumans et al,
2005]. Thus, it is less likely that microdeletions/
duplications are frequent pathological changes in
KMS. KMS may be caused by defects of a single gene
that regulates various target genes/organs.
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BAC Array CGH Reveals Genomic Aberrations in
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Array using 2,173 BAC clones covering the whole human
genome has been constructed. All clones spotted were
confirmed to show a unique signal at the predicted
chromosomal location by FISH analysis in our laboratory.
A total of 30 individuals with idiopathic mental retardation
(MR) were analyzed by comparative genomic hybridization
using this array. Three deletions, one duplication, and one
unbalanced translocation could be detected in five patients,
which are likely to contribute to MR. The constructed

array was shown to be an efficient tool for the detection
of pathogenic genomic rearrangements in MR patients as
well as copy number polymorphisms (CPNs).

© 2006 Wiley-Liss, Inc.

Key words: mental retardation; BAC array CGH; FISH;
chromosomal abnormality

INTRODUCTION

Mental retardation (MR) occurs with the preva-
lence of 2%~3% of general population [Knight et al.,
1999]. Chromosomal rearrangements at subtelomeric
regions have been detected in 5%~6% of affected
individuals with MR [Flint et al., 1995; Knight et al.,
1999; de Vries et al., 2001, 2003; Harada et al., 2004],
and the whole genome array comparative genomic
hybridization (aCGH) with an approximate 1-Mb
resolution detected pathological genomic imbal-
ances in 14%—20% of MR cases [Vissers et al., 2003;
Shaw-Smith et al., 2004], implying that aCGH is an
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essential method to detect submicroscopic chromo-
somal abnormalities in patients with idiopathic
learning disabilities.

We have developed a new BAC array system
covering the whole genome with a 1.4-Mb resolution
after eliminating problematic clones with multiple
and/or erroneous FISH signals in our laboratory.
Thus all clones used for this array were confirmed to
show a unique signal at a predicted chromosomal
position. Using this system, aCGH was performed in
30 idiopathic MR to validate genomic imbalances in
relation to MR. Several chromosomal abnormalities
as well as copy number polymorphisms (CPNs) we
could find will be presented.

MATERIALS AND METHODS

Subjects

Peripheral blood leukocytes or lymphoblastoid
cell lines from 30 cases of idiopathic MR associated
with some dysmorphic features (14 males and
16 females) and their parents, when available, were
sent to us after informed consent. MR patients, except
for sisters, MR123 and MR124, were sporadic. One
phenotypic female MR case, MR118 with showed
obvious cytogenetic abnormality, 46,XY, but other
MR cases had a normal karyotype according to
G-banded chromosomal analysis at the 400-band
level. Their metaphase chromosomes for FISH
and DNA for aCGH were prepared according to
standard protocols. We also used DNA from an
individual with an abnormal karyotype [46,XX,inv
dup del(8)(qgter — p23.1::p23.1 — p11.23:)] for a
positive control, and from a normal male and a
female as sex-matched references.

Degenerate Oligonucleotide
Primed PCR (DOP-PCR)

BAC/PAC DNA was amplified by two-step PCR.
First DOP-PCR was performed using three different
primers [Fiegler et al., 2003] as previously described
[Harada et al.,, 2004]. The second 5'-amino-linked
primer (5-GGAAACAGCccgactcgag-3) whose 3’ 10
base-pairs (small character) are the same as 5’ 10 base-
pairs of the first DOP-PCR primers. The second PCR
was performed in a total volume of 100 pl containing 1
pl of the mixture of the three different first-PCR
products, 1 x Ex Taq buffer, 5 U Ex Taq (Takara,
Ohtsu, Japan), 0.2 mmol/L each dNTP, and 1 pmol/L
second DOP-PCR primer, and the PCR was cycled 35
times at 94°C for 30 sec, 50°C for 30 sec, and 72°C for
8 min. These four primers were purchased from
Hokkaido System Science Co. Lid. (Sapporo, Japan).

Whole Genome Array

We selected 2,505 “FISHed” BAC/PAC clones
using UCSC genome browser {2003 July version
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(http://genome.ucsc.edu/cgi-bin/hgGateway)), spa-
cing atevery 1.4 Mb of the whole human genome and
chose 2,173 clones as they showed a unique signal
at the predicted chromosomal location. A total of
332 clones were not used for array study, as
172 yielded multiple chromosomal signals by FISH
(6.8%) and 160 showed an aberrant signal that is
probably due to contamination (6.4%). Fifty-nine
BAC/PAC clones previously used for subtelomere
and syndromic MR-specific microarray [Harada etal.,
2004; Kurosawa et al., 2004] were also incorporated
into 2,173 clones. BAC/PAC DNA was extracted
using an automatic DNA extraction system PI-100
(Kurabo, Osaka, Japan), amplified by two-round
PCR, purified and adjusted to the final concentration
>500 ng/pl, and spotted in duplicate on CodeLink™
activated slides (Amersham Biosciences Corp, Piscat-
away, NJ) by the ink-jet spotting method (Nihon
Gaishi, Nagoya, Japan). The identical set of dupli-
cated spots was printed twice as block A and block B
on one slide.

FISH

BAC/PAC DNA was labeled with Spectrum-
Green™-11-dUTP or SpectrumOrange™-11-dUTP
(Vysis, Downers Grove, IL) by nick translation, and
denatured at 70°C for 10 min. Probe-hybridization
mixtures (15 pl) were applied on chromosomes,
incubated at 37°C for 16-72 hr, then washed and
mounted in antifade solution (Vector, Burlingame,
CA) containing DAPI. Fluorescence photomicro-
scopy was performed as previously described
[Miyake et al., 20041

Array CGH

After complete digestion using EcoRI, subject’s
DNA was labeled with Cy-3 dCTP (Amersham
Biosciences) and reference DNA was labeled with
Cy-5 dCTP (Amersham Biosciences) using DNA
random primer Kit (Invitrogen, Carlsbad, CA)
(CGH1). Dyes were swapped in CGH2 (subject
DNA with Cy5 and reference DNA with Cy3) to
check whether signal patterns of CGH1 were
reversed for ruling out false positives. Prehybridiza-
tion and hybridization were preformed as previously
described [Harada et al., 2004]. Slides were incubated
at 37°C for 72 hr with gentle shaking and were
washed once with solution A (1 x PBS with 0.05% -
Tween 20), and twice with solution B (2 x SSC with
50% Formamide) at 43°C for 15 min, and twice
with solution A at room temperature for 10 min with
gently shaking. After drying, the arrays were scanned
by GenePix 4000B (Axon Instruments, Union City,
CA) and analyzed using GenePix Pro 4.0 (Axon
Instruments).

The signal intensity ratio between patient’s and
control DNA was calculated from the data of the



