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EBIANLA HEV, SARYANAR, LFY
ANRE) OBEER>REITDI L. KED
DA NAERIFRELESINDZ N6 T
WA, BRI HEV-LP OEAMIIECIZEEL.,

ZHIZ, HEV-LP Z0 b0 x5+ s 2 &

WL =T, HEV 133 2 B foiE 0B E R
AETHIIEEFZHLAIILTWVS (L et
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BB in vitro T IFN BT 2 FE A gE/2 /3%
2B UANART Z—PEBETE, %L b
Arifa B L, HOV OBRRE2HFAETE 5 ¥ A
S AR BT invivo DA NV AHEBRTHE %
AT 5, it\%ﬁﬁbﬁﬂﬁbt\mvw
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AEEMNEZ bNTZ, A KD E BlAMITFLE,N
DEEINTHRTIHBEEGEEONIIZ 1 7
IOBEERBY, TOaLARNT Y FERHER
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Hepatitis C virus (HCV) is a major cause of chronic liver disease that
frequently leads to steatosis, cirrhosis, and eventually hepatocel-
lular carcinoma (HCC). HCV core protein is not only a component of
viral particles but also a multifunctional protein because liver
steatosis and HCC are developed in HCV core gene-transgenic
(CoreTg) mice. Proteasome activator PA28y/REGy regulates host
and viral proteins such as nuclear hormone receptors and HCV core
protein. Here we show that a knockout of the PA28y gene induces
the accumulation of HCV core protein in the nucleus of hepatocytes
of CoreTg mice and disrupts development of both hepatic steatosis
and HCC. Furthermore, the genes related to fatty acid biosynthesis
and srebp-T1c promoter activity were up-regulated by HCV core
protein in the cell line and the mouse liver in a PA28vy-dependent
manner. Heterodimer composed of liver X receptor a (LXRa) and
retinoid X receptor a (RXRa) is known to up-regulate srebp-1c
promoter activity. Our data also show that HCV core protein
enhances the binding of LXRa/RXRa to LXR-response element in
the presence but not the absence of PA28+. These findings suggest
that PA28y plays a crucial role in the development of liver pathol-
ogy induced by HCV infection.

fatty acid | proteasome | sterol regulatory element-binding
protein (SREBP) | RXRa | LXRa

H epatitis C virus (HCV) belongs to the Flaviviridae family, and
it possesses a positive, single-stranded RNA genome that
encodes a single polyprotein composed of =~3,000 aa. The HCV
polyprotein is processed by host and viral proteases, resulting in 10
viral proteins. Viral structural proteins, including the capsid (core)
protein and two envelope proteins, are located in the N-terminal
one-third of the polyprotein, followed by nonstructural proteins.

HCV infects >170 million individuals worldwide, and then it
causes liver disease, including hepatic steatosis, cirrhosis, and
eventually hepatocellular carcinoma (HCC) (1). The prevalence of
fatty infiltration in the livers of chronic hepatitis C patients has been
reported to average ~50% (2, 3), which is higher than the percent-
age in patients infected with hepatitis B virus and other liver
diseases. However, the precise functions of HCV proteins in the
development of fatty liver remain unknown because of the lack of
a system sufficient to investigate the pathogenesis of HCV. HCV
core protein expression has been shown to induce lipid droplets in
cell lines and hepatic steatosis and HCC in transgenic mice (4-6).
These reports suggest that HCV core protein plays an important
role in the development of various types of liver failure, including
steatosis and HCC.

Recent reports suggest that lipid biosynthesis affects HCV rep-
lication (7-9). Involvement of a geranylgeranylated host protein,
FBL2, in HCV replication through the interaction with NS5A
suggests that the cholesterol biosynthesis pathway is also important
for HCV replication (9). Increases in saturated and monounsatu-
rated fatty acids enhance HCV RNA replication, whereas increases
in polyunsaturated fatty acids suppress it (7). Lipid homeostasis is
regulated by a family of steroid regulatory element-binding proteins
(SREBPs), which activate the expression of >30 genes involved in
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the synthesis and uptake of cholesterol, fatty acids, triglycerides, and
phospholipids. Biosynthesis of cholesterol is regulated by SREBP-2,
whereas that of fatty acids, triglycerides, and phospholipids is
regulated by SREBP-1c (10-14). In chimpanzees, host genes in-
volved in SREBP signaling are induced during the early stages of
HCYV infection (8). SREBP-1c regulates the transcription of acetyl-
CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase,
leading to the production of saturated and monounsaturated fatty
acids and triglycerides (15). SR EBP-1c is transcriptionally regulated
by liver X receptor (LXR) a and retinoid X receptor (RXR) a,
which belong to a family of nuclear hormone receptors (15, 16).
Accumulation of cellular fatty acids by HCV core protein is
expected to be modulated by the SREBP-1c pathway because
RXRa is activated by HCV core protein (17). However, it remains
unknown whether HCV core protein regulates the srebp-Ic
promoter.

We previously reported (18) that HCV core protein specifically
binds to the proteasome activator PA28y/REG in the nucleus and
is degraded through a PA28y-dependent pathway. PA28y is well
conserved from invertebrates to vertebrates, and amino acid se-
quences of human and murine PA28vys are identical (19). The
homologous proteins, PA28« and PA288, form a heteroheptamer
in the cytoplasm, and they activate chymotrypsin-like peptidase
activity of the 20S proteasome, whereas PA28y forms a homohep-
tamer in the nucleus, and it enhances trypsin-like peptidase activity
of 208 proteasome (20). Recently, Li and colleagues (21) reported
that PA28y binds to steroid receptor coactivator-3 (SRC-3) and
enhances the degradation of SRC-3 in a ubiquitin- and ATP-
independent manner. However, the precise physiological functions
of PA28y are largely unknown in vivo. In this work, we examine
whether PA28y is required for liver pathology induced by HCV
core protein in vivo.

Results

PA28+y-Knockout HCV Core Gene Transgenic Mice. To determine the
role of PA28vyin HCV core-induced steatosis and the development
of HCC in vivo, we prepared PA28vy-knockout core gene transgenic
mice. The PA28y-deficient, PA28y~/~ mice were born without
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Fig. 1. Preparation and characterization of PA28y-knockout HCV core-

transgenic mice. (A} The structures of the wild-type and mutated PA28y genes
and the transgene encoding the HCV core protein under the control of the
HBV X promoter were investigated. Positions corresponding to the screening
primers and sizes of PCR products are shown. PCR products of the HCV core
gene as well as wild-type and mutated PA28y alleles were amplified from the
genomic DNAs of PA28y+/*, PA28y*/*CoreTg, PA28y~/~, and PA28y~/~CoreTg
mice. (B) Body weights of PA28y*/*, PA28~*/*CoreTg, PA28y~/~CoreTg, and
PA28y~/~ mice at the age of 6 months. (C) HCV core protein levels in the livers
of PA28y*/*CoreTg and PA28y~/~CoreTg mice were determined by ELISA
(mean * SD, n = 10}. (D} Localization of HCV core protein in the liver. Liver
sections of PA28y*/*, PA28y*/*CoreTg, and PA28y~/~CoreTg mice at the age
of 2 months were stained with anti-HCV core antibody.

appreciable abnormalities in all tissues examined, with the excep-
tion of a slight retardation of growth (22). HCV core gene-
transgenic (PA28y*/*CoreTg) mice were bred with PA28y~/~
mice to create PA28y*/~CoreTg mice. The PA28y*/~CoreTg
offspring were bred with each other, and PA28y~/~CoreTg mice
were selected by PCR using primers specific to the target sequences
(Fig. 14). No significant differences in body weight were observed
among the 6-month-old mice, although PA28y~/~ mice exhibited a
slight retardation of growth (Fig. 1B). A similar level of PA28y
expression was detected in PA28y*/*CoreTg and PA28y*/* mice
(see Fig. 5SB). The expression levels and molecular size of HCV core
protein were similar in the livers of PA28y*/*CoreTg and
PA28y~/~CoreTg mice (Fig. 1C; see also Fig. 5B).

PA287y Is Required for Degradation of HCV Core Protein in the Nucleus
and Induction of Liver Steatosis. HCV core protein has been
detected at various sites, such as the endoplasmic reticulum, mito-
chondria, lipid droplets, and nucleus of cultured cell lines, as well
as in hepatocytes of PA28y*/* CoreTg mice and hepatitis C patients
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Fig. 2. Accumulation of lipid droplets by expression of HCV core protein. (A)
Liver sections of the mice at the age of 6 months were stained with hematoxylin/
eosin {HE). (B) (Upper) Liver sections of PA28y**CoreTg and PA28y~/~CoreTg
mice at the age of 6 months were stained with oil red O. (Lower) The
area occupied by lipid droplets of PA28y*™*+ (white), PA28y*/*CoreTg (gray),
PA28y~/~CoreTg (black), and PA28~y~/~ (dark gray) mice was calculated by Image-
Pro software (MediaCybernetics, Silver Spring, MD) {mean + SD, n = 10).

(6, 23, 24). Although HCV core protein is predominantly detected
in the cytoplasm of the liver cells of PA28y*/*CoreTg mice, as
reported in ref. 6, in the present study a clear accumulation of HCV
core protein was observed in the liver cell nuclei of PA28y~/~
CoreTg mice (Fig. 1D). These findings clearly indicate that at least
some fraction of the HCV core protein is translocated into the
nucleus and is degraded through a PA28y-dependent pathway.
Mild vacuolation was observed in the cytoplasm of the liver cells of
4-month-old PA28y*/*CoreTg mice, and it became more severe
at 6 months, as reported in ref. 25. Hematoxylin/eosin-stained liver
sections of 6-month-old PA28y*/*CoreTg mice exhibited severe
vacuolating lesions (Fig. 24), which were clearly stained with oil
red O (Fig. 2B Upper), whereas no such lesions were detected in
the livers of PA28y~/~CoreTg, PA28vy*/*, or PA28y~/~ mice at
the same age. The areas occupied by the lipid droplets in
the PA28y*/*CoreTg mouse livers were ~10 and 2-4 times larger
than those of male and female of PA28y*/*, PA28y~/~, and
PA28y~/~CoreTg mice, respectively (Fig. 2B Lower). These results
suggest that PA28y is required for the induction of liver steatosis by
HCV core protein in mice.

PA28+ Is Required for the Up-Regulation of SREBP-1c¢ Transcription by

HCV Core Protein in the Mouse Liver. To clarify the effects of a
knockout of the PA28y gene in PA28y*/*CoreTg mice on lipid

Moriishi et al.



<
/.
=P

SREBP-2

A SREBP-1a SREBP-1¢

W

ogsl 1y,
004 [

0.02} |

B SREBP-1¢c

2 A L ey

Stearoyl CoA desaturase __ HMG-CoA synthase HMG-CoA reductase

2 !

Fig. 3. Transcription of genes regulating lipid biosynthesis in the mouse
liver. (A) Total RNA was prepared from the livers of 2-month-old mice; and the
transcription of genes encoding SREBP-1a, SREBP-1¢, and SREBP-2 was deter-
mined by real-time PCR. (B) The transcription of genes encoding SREBP-1¢,
fatty acid synthase, acetyl-CoA carboxylase, stearoyl-CoA desaturase, HMG-
CoA synthase, and HMG-CoA reductase of 6-month-old mice was measured by
real-time PCR. The transcription of the genes was normalized with that of
hypoxanthine phosphoribosyltransferase, and the values are expressed as
relative activity (n = 5; #, P < 0.05; **, P < 0.01). The transcription of each gene
in PA28y*/+, PA28y*/+CoreTg, PA28y~/~CoreTg, and PA28y~/~ mice is indi-
cated by white, gray, black, and dark gray bars, respectively.

metabolism, genes related to the lipid biosyntheses were examined
by real-time quantitative PCR. Transcription of SREBP-1c was
higher in the livers of PA28y*/*CoreTg mice than in those of
PA28vy*/*, PA28y~/~, and PA28y~/~CoreTg mice at 2 months of
age, but no such increases in SREBP-2 and SREBP-la were
observed (Fig. 34). Although transcription of SREBP-1c and its
regulating enzymes, such as acetyl-CoA carboxylase, fatty acid
synthase, and stearoyl-CoA desaturase, was also enhanced in the
livers of 6-month-old PA28y*/*CoreTg mice compared with the
levels in the livers of PA28y*/*, PA28vy™/~, and PA28y~/~CoreTg
mice, no statistically significant differences were observed with
respect to the transcription levels of cholesterol biosynthesis-related
genes that are regulated by SREBP-2 (e.g., HMG-CoA synthase
and HMG-CoA reductase) (Fig. 3B). These results suggest the
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following: (i) the up-regulation of SREBP-1c transcription in the
livers of mice requires both HCV core protein and PA28y; and (if)
the nuclear accumulation of HCV core protein alone, which occurs
because of the lack of degradation along a PA28+y-dependent
proteasome pathway, does not activate the srebp-Ic promoter.

HCV Core Protein Indirectly Potentiates srebp-1c Promoter Activity in
an LXRa/RXRa-Dependent Manner. LXRa, which is primarily ex-
pressed in the liver, forms a complex with RXRa and synergistically
potentiates srebp-Ic promoter activity (16). Activation of RXR« by
HCV core protein suggests that cellular fatty acid synthesis is
modulated by the SREBP-1c pathway, although HCV core protein
was not included in the transcription factor complex in the elec-
trophoresis mobility shift assay (EMSA) (17). To analyze the effect
of HCV core protein and PA28vy on the activation of the srebp-Ic
promoter, we first examined the effect of HCV core protein on the
binding of the LXRa/RXRa complex to the LXR-response ele-
ment (LXRE) located upstream of the SREBP-1c gene (Fig. 44).
Although a weak shift of the labeled LXRE probe was observed by
incubation with nuclear extracts prepared from 293T cells express-
ing FLAG-tagged LXRa and HA-tagged RXRq, a clear shift was
obtained by the treatment of cells with 9-cis-retinoic acid and
22(R)-hydroxylcholesterol, ligands for LXRa and RXRe, respec-
tively. In contrast, coexpression of HCV core protein with LXRa
and RXRa potentiated the shift of the probe irrespective of the
treatment with the ligands. Addition of 500 times the amount of
nonlabeled LXRE probe (competitor) diminished the shift of the
labeled probe induced by the ligands and/or HCV core protein.
Furthermore, coincubation of the nuclear fraction with antibody to
FLAG or HA tag but not with antibody to either HCV core or
PA28y caused a supershift of the labeled probe. These results
indicate that HCV core protein does not participate in the LXRa/
RXRa-LXRE complex but indirectly enhances the binding of
LXRa/RXRa to the LXRE.

The activity of the srebp-Ic promoter was enhanced by the
expression of HCV core protein in 293T cells, and it was further
enhanced by coexpression of LXRa/RXRa (Fig. 4B). Enhance-
ment of the srebp-I¢ promoter by coexpression of HCV core protein
and LXRa/RXRa was further potentiated by treatment with the
ligands for LXRa and RXRa. The cells treated with 9-cis-retinoic
acid exhibited more potent enhancement of the srebp-Ic promoter
than those treated with 22(R)-hydroxylcholesterol. HCV core pro-
tein exhibited more potent enhancement of the srebp-Ic promoter
in cells treated with both ligands than in those treated with either
ligand alone. These results suggest that HCV core protein poten-
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Fig.4. Activation of the srebp-1¢ promoter by HCV core protein. (A) FLAG-LXRa and HA-RXRa were expressed in 293T cells together with or without HCV core
protein. Ligands for LXRa and RXRa dissolved in ethanol [Ligands (+)] or ethanol alone [Ligands (~)] were added to the culture supernatant at 24 h
posttransfection. Cells were harvested at 48 h posttransfection, and nuclear extracts were mixed with the reaction buffer for EMSA in the presence or absence
of antibody (100 ng) against HA, FLAG, HCV core or PA28y, or nonlabeled LXRE probe (Competitor). (Left) The resulting mixtures were subjected to PAGE and
blotted with horseradish peroxidase/streptavidin. The mobility shift of the LXRE probe and its supershift are indicated by a gray and black arrow, respectively.
(Right) Expression of HCV core, HA-RXRa, FLAG-LXRe, and PA28y in cells was detected by immunoblotting. (B) Effects of ligands for RXRe, 9-cis-retinoic acid
(9cisRA), and for LXRa, 22(R)-hydroxylcholesterol (22RHC), on the activation of the srebp-Tc promoter in 293T cells expressing RXRa, LXRe, and/or HCV core
protein. Ligands were added into the medium at 24 h posttransfection at a concentration of 5 uM, and the cells were harvested after 24 h of incubation.
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Fig.5. PA28vyisrequired for HCV core-dependent activation of the srebp-1¢
promoter. (A} Effect of PA28y knockdown on the LXRa/RXRa-DNA complex.
FLAG-LXRa and HA-RXRa were expressed in FLC4 (control) or PA28y-
knockdown (PA28y KD) cells together with or without HCV core protein. Cells
were harvested at 48 h posttransfection, and nuclear extracts were mixed with
the reaction buffer for EMSA. (Upper) The resulting mixtures were subjected
to PAGE and blotted with horseradish peroxidase-streptavidin. The mobility
shift of the LXRE probe is indicated by an arrow. (Lower) Expression of HCV
core, HA-RXRa, FLAG-LXRea, and PA28y in cells was detected by immunoblot-
ting. (8) Effect of PA28y knockout on the LXRa/RXRa-DNA complex in the
mouse liver. (Upper) Nuclear extracts were prepared from the livers of
2-month-old PA28y~'~, PA28y*/*CoreTg, PA28y~/~CoreTg, and PA28y**
mice and subjected to EMSA. The mobility shift of the LXRE probe is indicated
by an arrow. {Lower) The expression of HCV core, PA28y, and B-actin in the
livers of the mice was detected by immunoblotting. (C) Effect of HCV core
protein on srebp-1 promoter activity in PA28y-knockout fibroblasts. A plasmid
encoding firefly luciferase under the control of the srebp-1c promoter was
transfected into MEFs prepared from PA28y*/* (Left) or PA28~~/~ (Right) mice
together with a plasmid encoding a Renilla luciferase. An empty plasmid or
plasmids encoding mouse RXRa or LXRa were also cotransfected into the cells
together with (gray bars) or without (white bars) a plasmid encoding HCV core
protein. Luciferase activity under the control of the srebp-7c promoter was
determined, and it is expressed as the fold increase in relative luciferase
activity after standardization with the activity of Renilla luciferase.

tiates srebp-Ic promoter activity in an LXRa/RXRa-dependent
manner.

HCV Core Protein Activates the srepb-1c Promoter in an LXRa/RXRa-
and PA28y-Dependent Manner. To examine whether PA28y is
required for HCV core-induced enhancement of srebp-Ic promoter
activity in human liver cells, a PA28y-knockdown human hepatoma
cell line (FLC4 KD) was prepared. Enhancement of binding of the
LXRE probe to LXRa/RXRa by coexpression of HCV core
protein and LXRa/RXRe in FLC4 cells was diminished by knock-
down of the PA28y gene (Fig: 54). Furthermore, formation of the
LXRa/RXRa-LXRE complex was enhanced in the livers of
PA28y*/*CoreTg mice but not in those of PA28y~/~, PA28y*/*,
or PA28y~/~CoreTg mice (Fig. 5B). The expression of the HCV
core protein in the mouse embryonic fibroblasts (MEFs) of
PA28y™* mice induced the activation of the mouse srebp-Ic
promoter through the endogenous expression of LXRa and RXRa
(Fig. 5C Left). Further enhancement of the activation of the srebp-Ic
promoter by HCV core protein in PA28y*/* MEFs was achieved
by the exogenous expression of both LXRa and RXRa. However,
no enhancing effect of HCV core protein on srebp-Ic promoter
activity was observed in PA28y~/~ MEFs (Fig. 5C Right). These
results support the notion that HCV core protein enhances the
activity of the srepb-Ic¢ promoter in an LXRo/RXRa- and PA28y-
dependent manner.
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Table 1. HCC in mice at 16-18 months of age

Total no. No. of mice

Mouse and sex of mice developing HCC Incidence, %
PA28y*/+CoreTg

Male 17 5 29.4

Female 28 3 10.7
PA28y*-

Male 16 0 0

Female 4 0 0
PA28y~/~

Male 23 0 0

Female 13 0 0
PA28y~/~CoreTg

Male 15 0 0

Female 21 0 ]

PA28vy Plays a Crucial Role in the Development of HCC in PA28y+/+
CoreTg Mice. The incidence of hepatic tumors in male PA28y*/*
CoreTg mice older than 16 months was significantly higher than
that in age-matched female PA28y*/+CoreTg mice (6). We recon-
firmed here that the incidence of HCC in male and female
PA28y*/+CoreTg mice at 16~18 months of age was 29.4% (5 of 17
mice) and 10.7% (3 of 28 mice), respectively. To our surprise,
however, no HCC developed in PA28y™/~CoreTg mice (males, 15;
females, 21), although, as expected, no HCC was observed in
PA28vy*/~ (males, 16; females, 4) and PA28y~/~ mice (males, 23;
females, 13) (Table 1). These results clearly indicate that PA28y
plays an indispensable role in the development of HCC induced by
HCYV core protein.

Discussion

HCYV core protein is detected in the cytoplasm and partially in the
nucleus and mitochondria of culture cells and hepatocytes of
transgenic mice and hepatitis C patients (6, 23, 24, 26). Degradation
of HCV core protein was enhanced by deletion of the C-terminal
transmembrane region through a ubiquitin/proteasome-dependent
pathway (27). We previously reported (18) that PA28y binds
directly to HCV core protein and then enhances degradation of
HCV core protein in the nucleus through a proteasome-dependent
pathway because HCV core protein was accumulated in nucleus of
human cell line by treatment with proteasome inhibitor MG132. In
this work, accumulation of HCV core protein was observed in
nucleus of hepatocytes of PA28y~/~CoreTg mice (Fig. 1D). This
result directly demonstrates that HCV core protein migrates into
the nucleus and is degraded through a PA28y-dependent pathway.
However, HCV core protein accumulated in the nucleus because
knockout of PA28y gene abrogated the ability to cause liver
pathology, suggesting that interaction of HCV core protein with
PA28yin the nucleus is prerequisite for the liver pathology induced
by HCV core protein. We have previously shown (18) that HCV
core protein is degraded through a PA28y-dependent pathway, and
Minami et al. (28) reported that PA28+y has a cochaperone activity
with Hsp90. Therefore, degradation products of HCV core protein
by means of PA28vy-dependent processing or correct folding of
HCYV core protein through cochaperone activity of PA28ymight be
involved in the development of liver pathology. We do not know the
reason why knockout of the PA28y gene does not affect the total
amount of HCV core protein in the liver of the transgenic mice.
PA28y-dependent degradation of HCV core protein may be inde-
pendent of ubiquitination, as shown in SRC-3 (21), whereas knock-
down of PA28y in a human hepatoma cell line enhanced the
ubiquitination of HCV core protein [supporting information (SI)
Fig. 6], suggesting that lack of PA28y suppresses a ubiquitin-
independent degradation but enhances a ubiquitin-dependent deg-
radation of HCV core protein. Therefore, the total amount of HCV
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core protein in the liver of the mice may be unaffected by the
knockout of the PA28+y gene.

Our results suggest that the interaction of HCV core protein with
PA28+ leads to the activation of the srebp-Ic promoter along an
LXRa/RXRa-dependent pathway and the development of liver
steatosis and HCC. HCV core protein was not included in the
LXRa/RXRa-LXRE complex (Fig. 34), suggesting that HCV
core protein indirectly activates the srebp-Ic promoter. Cytoplasmic
HCYV core protein was shown to interact with Sp110b, which is a
transcriptional corepressor of RARa-dependent transcription, and
this interaction leads to the sequestering of Sp110b in the cyto-
plasm, resulting in the activation of RARa-dependent transcription
(29). The sequestration of an unidentified corepressor of the
LXRa/RXRa heterodimer in the cytoplasm by HCV core protein
may also contribute to the activation of the srebp-Ic promoter.
Although the precise physiological function of PA28y-proteasome
activity in the nucleus is not known, PA28y has previously been
shown (21) to regulate nuclear hormone receptors by means of the
degradation of its coactivator SRC-3 and to participate in the fully
Hsp90-dependent protein refolding (28). It appears reasonable to
speculate that degradation or refolding of HCV core protein in a
PA28+y-dependent pathway might be involved in the modulation of
transcriptional regulators of various promoters, including the
srebp-1c promoter. Saturated or monounsaturated fatty acids have
been shown to enhance HCV RNA replication in Huh7 cells
containing the full-length HCV replicon (7). The up-regulation of
fatty acid biosynthesis by HCV core protein may also contribute to
the efficient replication of HCV and to the progression of HCV
pathogenesis.

Expression of HCV core protein was reported to enhance
production of reactive oxygen species (ROS) (30), which leads to
carbonylation of intracellular proteins (31). Enhancement of
ROS production may trigger double-stranded DNA breaks and
result in the development of HCC (30, 32, 33). HCV core protein
could enhance the protein carbonylation in the liver of the
transgenic mice in the presence but not in the absence of PA28y
(SI Fig. 7), suggesting that PA28y is required for ROS produc-
tion induced by HCV core protein. Development of HCC was
observed in PA28vy+/*CoreTg mice but not in PA28y~/~CoreTg
mice (Table 1). Enhancement of ROS production by HCV core
protein in the presence of PA28y might be involved in the
development of HCC in PA28y*/*CoreTg mice.

It is well known that resistant viruses readily emerge during the
treatment with antiviral drugs targeting the viral protease or
replicase, especially in the case of infection with RNA viruses.
Therefore, antivirals targeting the host factors that are indispens-
able for the propagation of viruses might be an ideal target for the
development of antiviral agents because of a lower rate of mutation
than that of viral genome, if they have no side effects to patients.
Importantly, the amino acid sequence of PA28y of mice is identical
to that of human, and mouse PA28y is dispensable because PA28y
knockout mice exhibit no abnormal phenotype except for mild
growth retardation. Therefore, PA28y might be a promising target
for an antiviral treatment of chronic hepatitis C with negligible side
effects.

In summary, we observed that a knockout of the PA28y gene
from PA28y*/*CoreTg mice induced the accumulation of HCV
core protein in the nucleus and disrupted the development of both
steatosis and HCC. Activation of the srebp-Ic promoter was up-
regulated by HCV core protein both in vitro and in vivo through a
PA28vy-dependent pathway, suggesting that PA28y plays a crucial
role in the development of liver pathology induced by HCV
infection.

Materials and Methods

Histology and immunohistochemistry, real-time PCR, and detec-
tion of proteins modified by ROS are discussed in ST Materials and
Methods.

Moriishi et al.

Plasmids and Reagents. Human PA28y cDNA was isolated from a
human fetal brain library (18). The gene encoding HCV core
protein was amplified from HCV strain J1 (genotype 1b) (34) and
cloned into pCAG-GS (35). Mouse cDNAs of RXRa and LXRa
were amplified by PCR from the total cDNAs of the mouse liver.
The RXRa and LXRa genes were introduced into pEF-
FLAGGspGBK (36) and pcDNA3.1 (Invitrogen, Carlsbad, CA),
respectively. The targeting fragment for human PA28+y knockdown
(GGATCCGGTGGATCAGGAAGTGAAGTTCAAGAGA-
CTTCACTTCCTGATCCACCTTTTTTGGAAAAGCTT) was
introduced into the BamHI and HindlIII sites of pSilencer 4.1 U6
hygro vector (Ambion, Austin, TX). Mouse anti-FLAG (M2) and
mouse anti-B-actin antibodies were purchased from Sigma (St.
Louis, MO). Rabbit polyclonal antibody against synthetic peptides
corresponding to amino acids 70-85 of PA28y was obtained from
AFFINITI (Exeter, UK.). Horseradish peroxidase-conjugated
goat anti-mouse and anti-rabbit IgGs were purchased from ICN
Pharmaceuticals (Aurora, OH). Rabbit anti-HCV core protein was
prepared by immunization with recombinant HCV core protein
(amino acids 1-71), as described in ref. 24. Mouse monoclonal
antibody to HCV core protein was kindly provided by S. Yagi (37).
The plasmid for expression of HA-tagged ubiquitin was described
in ref. 27.

Preparation of PA28y-Knockout HCV CoreTg Mice. The generation of
C57BL/6 mice carrying the gene encoding HCV core protein
genotype 1b line C49 and that of PA28y~/~ mice have been
reported previously (22, 25). Both strains were crossbred with each
other to create PA28y~~CoreTg mice. PA28y~/~CoreTg mice
were identified by PCR targeted at the PA28y or HCV core gene
(22,25). Using 1 pg of genomic DNA obtained from the mouse tail,
the PA28y gene was amplified by PCR with the following primers:
sense, PA28-3 (AGGTGGATCAGGAAGTGAAGCTCAA); and
antisense, PA28vy-5cr (CACCTCACTTGTGATCCGCTCTCT-
GAAAGAATCAACC). The targeted sequence for the PA28y-
knockout mouse was detected by PCR using the PA28-3 primer and
the PAKO-4 primer (TGCAGTTCATTCAGGGCACCGGA-
CAG). The transgene encoding HCV core protein was detected by
PCR as described in ref. 25. The expression of PA28y and HCV
core protein in the livers of 6-month-old mice was confirmed by
Western blotting with mouse monoclonal antibody to HCV core
protein, clone 11-10, and rabbit antibody to PA28y. Mice were
cared for according to the institutional guidelines. The mice were
given ordinary feed, CRF-1 (Charles River Laboratories, Yoko-
hama, Japan), and they were maintained under specific pathogen-
free conditions.

All animal experiments conformed to the Guidelines for the
Care and Use of Laboratory Animals, and they were approved by
the Institutional Committee of Laboratory Animal Experimenta-
tion (Research Institute for Microbial Diseases, Osaka University).

Preparation of Mouse Embryonic Fibroblasts. MEFs were prepared
as described in ref. 22. MEFs were cultured at 37°C under an
atmosphere of 5% CO; in Dulbecco’s modified Eagle’s medium
(Sigma) supplemented with 10% FBS, penicillin, streptomycin,
sodium pyruvate, and nonessential amino acids.

Transfection and Immunoblotting. Plasmid vectors were transfected
into the MEFs and 293T cells by liposome-mediated transfection
by using Lipofectamine 2000 (Invitrogen). The amount of HCV
core protein in the liver tissues was determined by an ELISA as
described in ref. 37. The cell lysates were subjected to SDS/
PAGE (12.5% gel), and they were then transferred onto PVDF
membranes. Proteins on the membranes were treated with
specific antibody and Super Signal Femto (Pierce, Rockford, IL).
The results were then visualized by using an LAS3000 imaging
system (Fuji Photo Film, Tokyo, Japan). The method of immu-
noprecipitation test is described in ref. 18.
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