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UCH-L3 belongs to the ubiquitin C-terminal hydro-
lase family that deubiquitinates ubiquitin-protein
conjugates in the ubiquitin-proteasome system. A
murine Uchli3 deletion mutant displays retinal de-
generation, muscular degeneration, and mild
growth retardation. To elucidate the function of
UCH-L3, we investigated histopathological changes
and expression of apoptosis- and oxidative stress-
related proteins during retinal degeneration. In the
normal retina, UCH-L3 was enriched in the photo-
receptor inner segment that contains abundant mi-
tochondria. Although the retina of UchI3-deficient
mice showed no significant morphological abnor-
malities during retinal development, prominent
retinal degeneration became manifested after 3
weeks of age associated with photoreceptor cell
apoptosis. Ultrastructurally, a decreased area of mi-
tochondrial cristae and vacuolar changes were ob-
served in the degenerated inner segment. Increased
immunoreactivities for manganese superoxide dis-
mutase, cytochrome ¢ oxidase I, and apoptosis-
inducing factor in the inner segment indicated
mitochondrial oxidative stress. Expression of cyto-
chrome c, caspase-1, and cleaved caspase-3 did not
differ between wild-type and mutant mice; how-
ever, immunoreactivity for endonuclease G was
found in the photoreceptor nuclei in the mutant
retina. Hence, loss of UCH-L3 leads to mitochon-
drial oxidative stress-related photoreceptor cell ap-
optosis in a caspase-independent manner. Thus,
Uchl3-deficient mice represent a model for aduli-
onset retinal degeneration associated with mito-

132

chondrial impairment. (4mJ Patbol 2006, 169:132-141;
DOI: 10.2353/ajpath.2006.060085)

The ubiquitin system has been implicated in numerous
cellular processes, including protein quality control, cell
cycle, cell proliferation, signal transduction, membrane
protein internalization, and apoptosis.'? Ubiquitin-de-
pendent processes are regulated by ubiquitinating en-
zymes, E1, E2, and E3, and deubiquitinating enzymes
such as ubiquitin-specific proteases and ubiquitin C-
terminal hydrolases (UCHSs)."*® To date, four isozymes
of UCHs, UCH-L1, UCH-L3, UCH-L4, and UCH-LS5, have
been cloned in mouse or human.®~8 UCH-L1, also known
as PGP 9.5, has been well characterized among the
isozymes. UCH-L1 is selectively localized to brains and
testis/ovaries” and functions as a ubiquitin ligase in ad-
dition to a deubiquitinating enzyme.® Furthermore, two
distinct mutations are linked to Parkinson's disease in
human'® and gracile axonal dystrophy (gad) in mice.'
UCH-L3, on the other hand, displays 52% amino acid
identity to UCH-L1."2 Uchl3 mRNA is expressed through-
out various tissues and is especially enriched in testis
and thymus.'® In addition to its ubiquitin hydrolase activ-
ity, in vitro studies indicate that UCH-L3 cleaves the C
terminus of the ubiquitinlike protein Nedd-8.1% Al-
though UCH-L1 and UCH-L3 are suggested to function
as reciprocal modulators of germ cell apoptosis in exper-
imental cryptorchid testis,'® the cellular localization and
function of UCH-L3 remain unknown in other organs.
Recently, Uchi3-deficient mice were generated with a
deletion of exons 3 to 7, which are essential for hydrolase
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activity.’® These mutant mice display postnatal retinal
and muscular degenerations as well as mild growth re-
tardation.’ Retinal development is morphologically nor-
mal, but progressive retinal degeneration is reported to
be evident at 3 months after birth.” However, precise
chronological changes and the mechanism of the retinal
degeneration in Uchl3-deficient mice has not been
studied.

Both the caspase-dependent pathway and the
caspase-independent pathway have been proposed to
be involved in the models of retinal degeneration, includ-
ing model animals for retinitis pigmentosa (such as Royal
College of Surgeons (RCS) rat and retinal degeneration
(rd) mice),® retinal detachment,® light injury,2%2" isch-
emic injury,?® and age-related macular degeneration.?®
In the ubiquitin system, UCH-L1 is involved in ischemia-
induced apoptosis in the inner retina®* The role of
UCH-L3 in retinal degeneration, however, is unclear.

To elucidate the function of UCH-L3, we investigated
the histopathological changes and protein expression
with respect to apoptotic pathways in Uch/3-deficient
mice. Our results show that UCH-L3 is mainly localized to
the photoreceptor inner segment that contains abundant
mitochondria in the normal retina. Uchi3-deficient mice
displayed caspase-independent apoptosis during post-
natal retinal degeneration associated with increased ex-
pression of the markers for mitochondrial oxidative stress
at the inner segment. We propose a possible antiapop-
totic role of UCH-L3 in photoreceptor cells.

Materials and Methods

Animals

We used age-matched Uchi3-deficient mice and wild-
type mice, all of which were offspring male from 15 to 20
pairs of heterozygotes that had been backcrossed with
C57BL/6J at postnatal ages of 0 days (P0), 10 days
(P10), 3 weeks (3w), 6 weeks (6w), 8 weeks (8w), and 12
weeks (12w). The total number of wild-type and Uchi3-
deficient mice examined in the present study was 79, of
which 30 mice were used for Western blotting, 42 mice
were used for hematoxylin and eosin staining, immuno-
histochemistry, and terminal deoxynucleotidyl trans-
ferase-mediated dUTP nick end labeling (TUNEL) assay,
and 7 mice were used for electron microscopy. The mice
were maintained at the National Institute of Neuro-
science, National Center of Neurology and Psychiatry
(Tokyo, Japan). The experiments using the mice were
approved by the Institute's Animal Investigation
Committee.

Western Blotting

Eyes from P10-, 3w-, and 6w-old mice of both genotypes
(10 mice in each time point, for a total of 30 mice) were
lysed in protein lysis buffer (100 mmol/L Tris-HCI, pH 8.0,
300 mmol/L NaCl, 2% Triton X-100, 0.2% SDS, 2% so-
dium deoxycholate, 2 mmol/L EDTA) containing protease
inhibitor (Complete protease inhibitor cocktail; Sigma-

Retinal Degeneration in Uchl3-Deficient Mice 133
AJP July 2006, Vol. 169, No. 1

Aldrich, St. Louis, MO). The amount of total protein of
each sample was determined by the Bio-Rad protein
assay (Bio-Rad, Hercules, CA) using bovine serum albu-
min as a standard. Total protein (50 pg/lane) was sepa-
rated by 15% SDS-polyacrylamide gels (Perfect NT Gel,
DRC, Tokyo, Japan). Proteins were transferred to im-
muno-Blot polyvinylidene difluoride membranes (Bio-
Rad) and incubated with 5% skim milk in TBST (50
mmol/L Tris-HCl-buffered saline, pH 7.0, containing
0.05% Triton X-100) for 1 hour at room temperature. The
membranes were incubated with a 1:1000 dilution of
each primary antibody for UCH-L1, UCH-L3,%® and B-ac-
tin (1:1000; Sigma-Aldrich) overnight at 4°C. For the
preparation of anti-mouse UCH-L1 antibody, histidine-
tagged mouse UCH-L1 (6His-mUCH-L1) was prepared
as described previously®® and used to generate a poly-
clonal antiserum in rabbit (Takara, Tokushima, Japan).
The polyclonal antibody was purified by affinity chroma-
tography. The specificity of this antibody to the mouse
UCH-L1 was verified by Western blotting using brain
lysates from gad mice and wild-type mice (data not
shown). The membranes were washed in TBST and fur-
ther incubated with antimouse or rabbit IgG-horseradish
peroxidase conjugate (1:1000; Chemicon, Temecula,
CA). After washing in TBST, the membranes were devel-
oped with the Super Signal West Dura or Femto Extended
Duration Substrate (Pierce, Rockford, IL) and analyzed
with a Chemilmager (Alpha Innotech, San Leandro, CA).
Western blotting was performed five times per each
antibody.

Morphometric Analysis and
Immunohistochemistry of Retina

Mice of both genotypes at PO, P10, 3w, 6w, 8w, and
12w of age (7 mice in each time point, total of 42 mice)
were deeply anesthetized with diethylether, decapi-
tated, and the eyes removed, immersion-fixed with 4%
paraformaldehyde overnight at 4°C, and embedded in
paraffin wax. Deparaffinized sections were stained with
hematoxylin and eosin and examined under. an Axio-
plan2 microscope (Carl Zeiss, Oberkochen, Germany)
at a magnification X400, and the thickness of each
layer was measured using WinRoof software (Mitani
Shoji, Tokyo, Japan).

For immunohistochemical studies, 5-um-thick sagittal
sections at the level of the optic nerve were deparaf-
finized and treated with 1% hydrogen peroxide (H,0,) for
30 minutes, incubated with 1% skim milk in phosphate-
buffered saline (PBS, pH 7.4) for 1 hour at room temper-
ature followed by incubation overnight at 4°C with each
primary antibody for UCH-L1 and UCH-L3%° diluted
1:500 in 1% skim milk in PBS. To characterize apoptosis-
and oxidative stress-related proteins, antibodies to the
foliowing proteins were used; apoptosis-inducing factor
(AlIF; 1:500, Chemicon), caspase-1 (1:100; Cell Signaling
Technology, Beverly, MA), caspase-3 (1:1000; Cell Sig-
naling Technology), cleaved caspase-3 (1:50; Cell Sig-
naling Technology), cytochrome ¢ (1:1000; Santa Cruz
Biotechnology, Santa Cruz, CA), cytochrome ¢ oxidase |
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(COX, 1:10,000; Molecular Probes, Eugene, OR), endo-
nuclease G (Endo G; 1:500, Chemicon) and manganese
superoxide dismutase (Mn-SOD; 1:10,000, Stressgen,
Victoria, BC, Canada). The sections were washed in PBS
and then incubated with biotinylated secondary antibod-
ies diluted 1:500 in PBS containing 1% skim milk. The
sections were treated with the VECTASTAIN Elite ABC kit
(Vector Laboratories, Burlingame, CA) according to the
manufacturer's protocol and developed with 0.02% 3,3'-
diaminobenzidine tetrahydrochloride solution containing
0.003% H,0,. After visualization, sections were counter-
stained with hematoxylin. Sections were examined with
an Axioplan2 microscope (Carl Zeiss). Immunchisto-
chemistry was performed in at least three repeated ex-
periments. The relative immunoreactivity for COX, Mn-
SOD, AlF, and Endo G in each layer of mutant mice was
compared with that of wild-type mice and was classified
into no change (—), slight increase (x), mild increase
(+). and marked increase (++).

TUNEL Staining

Apoptotic cells were examined in mice of both genotypes
at PO, P10, 3w, 6w, 8w, and 12w (7 mice in each time
point, for a total of 42 mice) by TUNEL stain using the
Dead-End Fluorimetric TUNEL system kit (Promega,
Madison, WI) according to the manufacturer's instruc-
tions. The sections were examined by using a confocal
laser scanning microscope (Olympus, Tokyo, Japan).
The microphotographs were captured at magnification
X400 (0.066 mm?/each retinal section), positive cells
were counted (Fluoview 2.0; Olympus), and the data
were subjected to statistical analysis.

Electron Microscopic Analysis

3w-old mice of both genotypes (total 7 mice) were
deeply anesthetized with 20% chloral hydrate aqueous
solution and perfused with the following fixative: 2%
paraformaldehyde, 2% glutaraldehyde in PBS, or so-
dium cacodylate buffer (pH 7.4). The eyes were re-
moved and postfixed with the same fixative overnight
at 4°C. The posterior segments of eyes were trimmed
and washed with PBS or sodium cacodylate buffer,
incubated in phosphate-buffered 1% osmium tetroxide
for 1 hour, and dehydrated in ethancl and embedded
in Epon 812 resin (TAAB, Berks, UK). Ultrathin sections
(75 nm) were mounted on copper grids and stained
with uranium acetate and lead citrate. The sections
were observed using an H-7000 electron microscope
(Hitachi, Tokyo, Japan). Morphometric analysis of mi-
tochondria was performed by measuring average per-
centage of area occupied by cristae within a mitochon-
drion at the inner segment.

Statistical Analysis

In statistical analysis of thickness of retinal layers and
TUNEL-positive cells, three wild-type and four Uch/3-de-
ficient mice were used in each time point (PO, P10, 3w,

A
wild type Uchi3 -I-
P10 3w 6w P10 3w 6w
UCH-L3
p-actin
UCH-L1
$-actin
B C
UCH-L3 UCH-L1
wild type Uchi3 -1- wild type Uehi3 -1-

Figure 1. Expression of UCH-L1 and UCH-L3 in the retina of wild-type and
Uchl3-deficient mice. A: Western blot analysis of UCH-L3 and UCH-L1 using
whole-eye lysates from wild-type and Uchi3-deficient mice at P10, 3w, and
6w. The immunoreactive band for UCH-L3 is undetectable in Uchi3-deficient
mice. Expression of UCH-L1 is similar between both genotypes. B and C:
Immunohistochemistry for UCH-L3 (B) and UCH-L1 (C) in wild-type and
Uchi3-deficient mice retinae at 3w. Immunoreactivity of UCH-L3 is found at
the inner segment of the wild-type retina (arrowheads), whereas there is no
significant immunoreactivity in Uch{3-deficient mice (B). UCH-L1 is ex-
pressed at the inner retina in both genotypes. D: Immunohistochemistry of
UCH-L3 at P10, 3w, and 6w in wild-type retinae. UCH-L3 is faintly expressed
in the outer plexiform layer at P10 (arrowheads). Thereafter, immunoreac-
tivity for UCH-L3 is found in inner segment at 3w and 6w (arrowheads). PR,
photoreceptor; OS, outer segment; IS, inner segment; ONL, outer nuclear
layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexi-
form layer; GCL, ganglion cell layer. Scale bars = 50 pm (B and C) and 20 pm
(D).
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Figure 2. Histopathological changes of postnatal developrent in wild-type (A) and retinal degeneration of Uchi3-deficient mice (B) at PO, P10, 3w, 6w, 8w, and
12w. There is no morphological difference between both genotypes at PO and P10, whereas outer and inner segments, outer nuclear layers, and outer plexiform
layers are progressively degenerated after 3w of age. The illustration indicates a rod photoreceptor cell. VZ, ventricular zone; PR, photoreceptor; OS, outer
segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.

H&E staining. Scale bar = 20 wm (A and B).

6w, Bw, and 12w; for a total of 42 mice). The percentage
of cristae area to whole mitochondrion in ultramicropho-
tographs was measured in 50 mitochondria of each ge-
notype from three wild-type mice and four Uch/3-deficient
mice, and the data were subjected to statistical analysis.
All statistical analyses were carried out by Student’s t-test
using Microsoft Excel.

Results

Expression of UCH-L3 in the Murine Retina

Western blotting detected UCH-L3 (~30 kd) in extracts of
eyes from wild-type mice at P10, 3w, and 6w, but the
“band was undetectable in Uchl3-deficient mice (Figure

1A). The expression level of UCH-L1 was similar in both
genotypes. There was a tendency that the level of
UCH-L3 decreased with age while the level of UCH-L1
increased with age in wild-type mice of all samples ex-
amined (five blots per antibody). Immunohistochemically,
the cellular distribution of UCH-L3 differed from that of
UCH-L1. UCH-L3 was enriched in the photoreceptor in-
ner segment in wild-type mice at 3w of age (Figure 1B),
whereas UCH-L1 was expressed in both genotypes in the
inner retina, which consists of the inner nuclear layer,
inner plexiform layer, and ganglion cell layer (Figure 1C).
Localization of UCH-L3 in the wild-type retina was altered
with age (Figure 1D). Immunoreactivity for UCH-L3 was
not found at PO. UCH-L3 was faintly expressed in the
outer plexiform layer at P10. Thereafter, it was localized to
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inner segment at 3w. The inner segment was less immu-
noreactive for UCH-L3 at 6w, 8w, and 12w, compared
with Sw.

Histopathological Changes of Retinal
Degeneration in the Uchi3-Deficient Mice

Microscopic examination of retinal cross-sections re-
vealed no obvious histopathological changes during
early postnatal development at PO and P10 in the retina of
Uchi3-deficient mice (Figure 2). At 3w of age, the mutant
retina began to degenerate in the inner segment and
ultimately disappeared at 12w (Figures 2B and 3D).
Thickness of the outer segment, outer nuclear layer, and
outer plexiform layer was also significantly decreased in
the mutant mice at 6w of age (Figure 3, C, E, and F).
Despite the conspicuous change in the photoreceptor
cells, the thickness of the mutant inner retina up to 12w of
age was not altered compared with that of the wild-type
(Figure 3, G-).

Ultrastructurally, vacuolar changes were found in the
inner segment of Uchi3-deficient mice at 3w of age (Fig-
ure 4). Mitochondria at the inner segment of mutant mice
were slightly swollen. Groups of small round-to-oval
structures were observed in the degenerated inner seg-
ment (Figure 4D), and these structures were considered
to be the cross-sections of cell processes. Chromatin
condensation in photoreceptor nuclei was sometimes
seen in the outer nuclear layer at 3w (Figure 4F). Mor-
phometric analysis showed that the percentage of cristae
area to whole area of mitochondrion in the inner segment
of Uchl3-deficient mice was significantly lower than that of
wild-type mice (Figure 4, G and H).

Altered Expressions of Apoptosis-Related
Proteins in the Degenerated Retina

Apoptotic cells in the retinal cross-sections were identi-
fied using the TUNEL staining. TUNEL-positive cells were
identified in the ventricular zone at PO and inner nuclear
layer at P10 of both genotypes during the developmental
period (Figure 5, A and C). The number of TUNEL-posi-
tive cells slightly increased in the inner nuclear layer at
P10. After 3w of age, TUNEL-positive cells of mutant
retina significantly increased at the outer nuclear layer of
the mutant retina at 3w, 8w, and 8w (Figure 5, A and D).

To determine which apoptotic pathway was activated
in Uchi3-deficient mice, we examined immunoreactivities
of apoptosis-related proteins. Expression of cytochrome
¢, caspase-3, and cleaved caspase-3 and caspase-1i,
essential molecules for the caspase-dependent pathway,
were unchanged in both genotypes (Figure 6A), whereas
oxidative stress markers, COX and Mn-SOD as well as
AlF and Endo G, indicators of the caspase-independent
pathway, were altered in the mutant retina (Figure 68).
Chronological changes in expression of markers for oxi-
dative stress and caspase-independent apoptosis at PO,
P10, 3w, Bw, 8w, and 12w are shown in Table 1. The
immunoreactivity of COX was increased in the inner seg-
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Figure 3. Chronological changes of retinal degeneration as assessed by
thickness of each layer at different ages in wild-type and Uchi3-deficient
mice. A: Total retinal thickness is progressively decreased after 3w of age. B:
Thickness of ventricular zone at PO and photoreceptor layer at P10 shows no
significant changes between both genotypes. C~F: Thickness of outer retinal
layers in wild-type and Uchi3-deficient mice at different ages. The earliest
change is revealed at 3w of age in inner segment of mutant retina (D).
Thickness of outer segment (C), outer nuclear layer (E), and outer plexiform
layer (F) in Uchi3-deficient mice is significantly decreased with age com-
pared with that in the wild-type. G-I: Thickness of inner retinal layers in
wild-type and Uchi3-deficient mice at different ages. Thickness of inner
nuclear layer (G), inner plexiform layer (H), and ganglion cell layer (1) are
unchanged between both genotypes. Each value represents the mean * SE
(*P < 0.05; **P < 0.01). In all panels, the white bars represent the thickness
in wild-type mice and the black bars represent the thickness in Uchi3-
deficient mice. VZ, ventricular zone; PR, photoreceptor; OS, outer segment;
1S, inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL,
inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.

ment at 3w and Bw. Mn-SOD was mildly increased in the
inner segment at 3w, 6w, and 8w. Although AIF was
enriched in the inner segment of Uchi3-deficient mice at
3w and 8w, nuclear labeling of AlF was not observed. On
the other hand, Endo G was localized to the nuclei of the
outer nuclear layer of the mutant retina at 3w and 6w.
Expression of Endo G was slightly increased in the outer
plexiform layer, inner nuclear layer, and inner plexiform
layer of Uch/3-deficient mice after 3w of age (Table 1).
Thus, degeneration of photoreceptor cells in Uch/3-defi-
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Figure 4. Ultrastructure of the outer retina in wild-type (A, C, and E) and Uchi3-deficient mice (B, D, and F) at 3w of age. A and B: Inner segment of mutant
retina is shrunken associated with vacuolar changes (arrowheads in B). Arrows in A and B indicate outer limiting membrane. C and D: Subsets of mitochondria
at the inner segment in Uch/3-deficient mice are swollen with decreased cristae (arrowheads in D) compared with that of wild-type (arrowheads in C). Groups
of small round-to-oval shaped structures are occasionally seen in degenerated inner segment (white arrows in D). E and F: Outer nuclear layer of wild-type (E)
and Uchi3-deficient (F) mice. Chromatin condensation of photoreceptor cells is observed in mutant mice (F). G and H: Morphometric analysis of mitochondria
was performed with the percentage of cristae area (G; red) against mitochondrial area (z = 50 for each genotype). Cristae area in the inner segment is significantly
decreased in mutant retina (H, —/—, black bar) compared with that in wild-type (H, WT, white bar). Each value represents the mean * SE (**P < 0.01). OS,
outer segment; IS, inner segment; ONL, outer nuclear layer. Scale bars = 1 um (A and B), 500 nm (C and D), and 1 pm (E and F).
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Figure 5. TUNEL analysis in wild-type and
Uchi3-deficient mice at different ages. A:
TUNEL staining in fluorescent microscopy
shows that TUNEL-positive cells (green) are
observed at the ventricular zone at PO as well
as at the inner nuclear layer at P10 in both
genotypes. After 3w of age, TUNEL-positive
cells are found in the outer nuclear layer in
Uchi3-deficient mice. All sections are counter-
stained with propidium iodide (red). B-D:
Number of TUNEL-positive cells in mutant
mice (Uchi3™/"; black bar) is significantly
increased compared with those in wild-type
(wild-type; white bar) at P10, 3w, 6w, and
8w (B). Increased number of TUNEL-positive
cells in mutant mice at P10 correspond to
apoptosis in the inner nuclear layer (C),
whereas that in 3w, 6w, and 8w is reflected to
apoptosis in the outer nuclear layer (D). VZ,
ventricular zone; OS, outer segment; IS, inner
segment; ONL, outer nuclear layer; OPL, outer
plexiform layer; INL, inner nuclear layer; IPL,
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cient mice may be due to caspase-independent apopto-
tic pathway (Figure 7). Ubiqguitin and Nedd-8, which are
considered to be associated with UCH-L3 in vitro,'*'®
were expressed in the inner retina of both genotypes in a
similar pattern as UCH-L1 (data not shown).

Discussion

This study demonstrates the unique localization of
UCH-L3 to the photoreceptor inner segment that is abun-
dantly populated with mitochondria after 3w of age in
wild-type mice. The following features were found with
regard to retinal degeneration in Uchl3-deficient mice.
The retina showed no obvious morphological abnormal-
ities during early postnatal development; however, pro-
greéssive retinal degeneration was observed after 3w of
age. The inner segment was originally perturbated with
ultrastructural changes of mitochondria and increased
expressions of markers for oxidative stress. The caspase-
independent pathway was implicated during photore-
ceptor cell apoptosis. Thus, UCH-L3 may have a role in
preventing mitochondrial oxidalive stress-related apopto-
sis in photoreceptor cells.

Differential Localization of UCH-LT and UCH-L3
in Murine Retina

The cellular distribution of UCH-L3 has not been studied
except in the testis and epididymis, where UCH-L1 and
UCH-L3 have distinct expression patterns.®® in the
present study, we found that UCH-L3 was enriched in the
photoreceptor inner segment after 3w of age, whereas
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inner plexiform layer; GCL, ganglion cell
layer. Scale bar = 20 um (A). Each value in
B-D represents the mean * SE (°P < 0.03;
**P < 0.01).
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UCH-L1 was widely expressed in the inner retina. Photo-
receptor cells are highly differentiated, and each seg-
ment has specific morphology and function; eg, inner
segment contains abundant mitochondria,?” and its oxy-
gen consumption is considered to be high.?® Meanwhile,
expression of UCH-L1 at the inner retina was associated
with that of ubiquitin and Nedd-8. Although in vitro studies
indicate that UCH-L3 has de-neddylation activity,'*
UCH-L1 may be responsible for regulating expression
fevel of ubiquitin and ubiquitin-like protein Nedd-8 in the
retina. Because UCH-L.1 expression in the retina was not
altered in Uchi3-deficient mice, the function of UCH-L3
may not be compensated by UCH-L1. Our results indi-
cate that UCH-L.3 and UCH-L1 differ with regard to their
localization and function in retina.

Mechanism of Photoreceptor Cell Death in the
Uchi3-Deficient Mice

in our result, retinal apoptosis in Uch/3-deficient mice
consisted of two different phases, during retinal develop-
ment and after development. During the early postnatal
development at P10, TUNEL-positive cells were ob-
served in the inner nuclear layer of both genotypes, and
the physiological apoptosis was slightly enhanced in the
mutant retina. Because UCH-L3 was faintly expressed in
the outer plexiform layer at P10 in wild-type mice,
UCH-L.3 may function during development. In the retinal
development, the number of bipolar and Muller cell
deaths reaches a peak at the postnatal days 8 to 11,
which is associated with differentiation of the retina in
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Figure 6. Immunohistochemical analysis of apoptosis- and oxidative stress-
related molecules at 3w of age in wild-type and Uchi3-deficient mice. A:
Expression of molecules relevant to the caspase-dependent pathway, includ-
ing cytochrome ¢ (Cyto C), caspase-3, cleaved caspase-3, and caspase-1, is
unchanged between both genotypes. B: Increased immunoreactivities for
oxidative stress markers, COX, Mn-SOD, and AIF, are observed in the inner
segment of Uchl3-deficient mice (arrows). Translocation of Endo G to nuclei
is found in the outer nuclear layer of Uchi3-deficient mice (inset in B). OS,
outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL,
ganglion cell layer. Scale bars = 50 um (A and B); 10 um (inset in B).

mice.®® Therefore, loss of UCH-L3 may mildly promote
the cell death of these cells.

After 3w of age, prominent and progressive photo-
receptor cell apoptosis was disclosed in the outer nu-
clear layer of Uchi3-deficient mice. Under pathological
conditions, several apoptotic pathways have been
suggested in experimental retinal degeneration.
Caspase-1 is predominantly associated with photore-
ceptor cell apoptosis in retinal degeneration of isch-
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emia-reperfusion.®® Light-induced retinal degeneration
activates the parallel cascades, caspase-12° and
caspase-independent apoptosis.?! Oxidative stress
leads to caspase-independent apoptosis in cultured
cells.®" Our results indicated that a caspase-indepen-
dent pathway was activated during photoreceptor cell
apoptosis in Uchl3-deficient mice, because immuno-
histochemical analysis revealed that activated
caspase-3 and caspase-1 were not expressed in the
degenerated retina. In addition, Endo G, a protein
involved in the caspase-independent pathway, was
expressed in the nuclei of the outer nuclear layer in
Uchi3-deficient mice. Endo G is a mitochondria-spe-
cific nuclease that translocates to nuclei and serves as
the DNase during a caspase-independent apoptosis.®?
Therefore, Endo G may be responsible for the DNA
degradation that occurs during apoptosis in Uch/3-
deficient mice. Expression of Endo G was slightly in-
creased in the outer plexiform layer, inner nuclear
layer, and inner plexiform layer of the Uchi3-deficient
mice after 3w of age despite no significant UCH-L3
immunoreactivities in these layers. This result may re-
flect trans-synaptic secondary neuronal degeneration
or glial changes of Muller cells.

AlF, another factor involved in caspase-independent
apoptosis, was enriched in the inner segment; however,
we did not observe translocation to nuclei for this protein.
AlF is a mitochondrial flavoprotein that is a free radical
scavenger of healthy cells.®® During apoptotic induction,
AIF translocates from mitochondria to nuclei.®34 It func-
tions as a caspase-independent and PARP-1-dependent
death effector that induces chromatin condensation and
large-scale DNA fragmentation.®® In our study, expres-
sion of AIF at the inner segment was associated with
increased immunoreactivities of the oxidative stress
markers, COX and Mn-SOD. Although it is unknown why
AlF did not translocate to nuclei in the degenerated ret-
ina, increased immunoreactivity for AlF in the inner seg-
ment may indicate a reaction to oxidative stress. Because
mouse eyes open 12 to 13 days after birth, light-induced
oxidative stress may affect photoreceptor cell apoptosis
in Uchl3-deficient mice after development. On the other
hand, the retinal oxygen consumption increases under
dark-adapted condition in the cat retina.?®3® |t may be
interesting to study whether constant light or constant
dark has any effect on the development of retinal degen-
eration in the Uchi3-deficient mice.

Uchl3-Deficient Mice as a Model of Retinal
Degeneration with Mitochondrial Impairment

Apoptosis during retinal degeneration is observed in in-
herited diseases such as retinitis pigmentosa as well as
in retinal diseases induced by a variety of stimuli, includ-
ing hypoxia and oxidative stresses.”*® Several geneti-
cally engineered animal models of retinitis pigmentosa
have been extensively investigated, including the RCS rat
and rd mice. Retinal degeneration in the RCS rat was
originally identified as an impairment of phagocytosis by
pigmented epithelium due to mutation of receptor ty-
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Table 1. Chronological Changes in Expression of Markers for Oxidative Stress and Caspase-Independent Apoptosis
COX Mn-SOD AlF Endo G

PO P10 3w 6w 8w 12w PO P10 3w 6w 8w 12w PO P10 3w 6w 8w 12w PO P10 3w 6w 8wi2w
vzZr - - - -
PR - - - —
(OH] - - nd nd - ~ nd nd - — nd nd - - nd nd
IS + 4+ - nd + + + nd ++ + = nd - - - nd
ONL - - - = - - - = = - - - - = - e A S RS
OPL - - - - - - - - - - - hd - - - - * pragi o
INL - - — — — — — - - — — — — - - - +$§ +§ _
e T T - - * =
GCL - - - - = - - = - = = e = - - = = = = - - - =

*VZ, ventricular zone; PR, photoreceptor; OS, outer
nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.

segment; (S, inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner

—, no change; *, slight increase: +, mild increase; and ++, marked increase of immunoreactivity compared to that of wild type.

nd, not determined due to atrophic change.
SNuclear staining.

rosine kinase (Mertk) with subsequent photoreceptor cell
death occurring in a caspase-1- and -2-dependent man-
ner.®%-42 rd mice have a recessive mutation in the rod
cGMP phosphodiesterase B-subunit, and photoreceptor
apoptosis occurs via a caspase-dependent mecha-
nism.*34* Thus, these animal models of retinitis pigmen-
tosa differ from Uchi3-deficient mice with regard to the
mechanism of retinal degeneration.

The relationship between retinal degeneration and mi-
tochondrial dysfunction has not been well studied except
in Harlequin mice, which contain a mutation of AlF and
exhibit progressive retinal degeneration.*® We consider
that the degeneration induced in the Uchi3-deficient mice
is associated with mitochondrial dysfunction, because
mitochondria in the inner segment of mutant retina exhib-
ited morphological changes such as decreased cristae
area. Uchl3-deficient mice reveal not only retinal degen-
eration but also muscle degeneration and mild growth

- -
((caspase-1 -
\\ajpase (C-:ytochrome [ 7
A e, — P
\\\\ /7 —— K
\\ B N Mitochondria
éaspase%w
™
S’\\
W
AR
éj Caspase-independent

Caspase-dependent

Pathway
Pathway

D

{'\\."/ Nucleus

Figure 7. Function of UCH-L3 in apoptosis during retinal degeneration.
Mitochondrial apoptosis is classified into caspase-dependent and caspase-
independent pathways. Loss of UCH-L3 leads 1o oxidative stress-induced
mitochondrial damage that causes translocation of Endo G from mitochon-
dria to nuclei, resulting in caspase-independent apoptosis. Red arrows are
considered to be activated in Uchl3deficient mice.

retardation,’” and thus the lack of UCH-L3 may affect
general organs containing abundant mitochondria. Sub-
types of mitochondrial diseases, such as chronic pro-
gressive external ophthalmoplegia and Kearns-Sayre
syndrome, are caused by various mitochondrial DNA
deletions and observed progressive ophthalmoplegia as
well as retinitis pigmentosa.*®*” Because UCH-L3 is pre-
dicted to be involved in the maintenance of mitochondrial
function, Uchi3-deficient mice may be a model of disease
that arises from mitochondrial impairment. Further stud-
ies are necessary to clarify the molecular mechanisms
underlying retinal degeneration, as well as other organs
in these animals.
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