GSTAI gene was discovered, and the variant allele sig-
nificantly lowers enzyme expression (Coles et al. 2001,
Morel et al. 2002). GSTM! and GSTTI! genes are
polymorphic in humans, and the phenotypic absence of
enzyme activity is due to the absence of a homozygous
and inherited gene (Seidegard et al. 1998, Pemple et al.
1994). GSTMI, a mu class enzyme, detoxifies the reac-
tive metabolites of benzo[a]pyrene and other polycyclic
aromatic hydrocarbons (Ketterer et al. 1992). GSTT!
metabolizes various potential carcinogens, such as
monohalomethanes, which are widely used as methy-
lating agents, pesticides, and solvents (Guengerich et al.
1995). A polymorphic site at nucleotide 313 (an A-to-G
substitution replacing Ile with Val) in the GSTPI gene
was detected and found to modify the enzyme’s specific
activity and affinity for electrophilic substrates—for
example, benzo[a]pyrene and diol epoxide (Ali-Osman
et al. 1997, Watson et al. 1998).

This case control study was carried out to examine
whether the genetic polymorphisms of major phase II
enzymes GSTAl, GSTTI, GSTMI, and GSTPI! are
associated with the risk of prostate cancer.

Materials and methods
Subjects

The demographic data of both case and control groups
are presented in Table 1. The case groups comprised
190 prostate cancer patients (age 70.6 £5.9 years) from
Kitakyushu City and Miyazaki Prefecture, Japan. The
patients were consecutive cases presenting at the Uni-
versity of Occupational and Environmental Health
Hospital and Miyazaki University Hospital and had
been histologically diagnosed during the period of Sep-
tember 1992 to January 2002. None of the patients
refused to participate.

The control group comprised 294 individuals who
had visited local medical clinics in Kitakyushu City and
Miyazaki City between September 1993 and September
2001 for regular medical health check-ups, including
collection of blood and urine specimens (age 67.0+10.4
years). Although no specific age-matching was carried
out, the mean ages of the case individuals were similar to

Fig. 1 Examples of restriction 1 2 3
fragment length polymorphism
(RFLP) of GSTAI-specific
polymerase chain reaction
(PCR) products. The gel shows
lanes 1, 2,4, 5,6, 8,9, 10, 11,
and 12 homozygous GSTAI*A
genotype samples; lane 7 a
heterozygous genotype sample;
lane 3 a homozygous GSTAI*B
genotype sample; and lane B
PCR reagent blank.
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Table 1 Distribution of demographic variables for patients and
controls

Variables Controls Patients
Age (years) (n=294) (n=190)
Mean age (£ SD) 67.0+104 70.6+5.9
Range 45-94 52-80

Smoking status
Nonsmoker (%)
Smoker (%)

91 (31.0%)
203 (69.0%)

57 (30.0%)
133 (70.0%)

the control individuals. The control individuals had no
current or previous diagnosis of cancer. All participants
completed a questionnaire administered by a trained
interviewer that covered medical, residential, occupa-
tional, and smoking status. Smoking status was sum-
marized as smoker or never-smoker until the time of the
interview. Data for prostate cancer risk factors, such as
body mass index, cooking preferences, drug use, and
physical activity, were not available. All participants
were given an explanation of the nature of the study, and
informed consent was obtained. This study was
approved by the ethics committees of the University of
Occupational and Environmental Health and the
University of Miyazaki.

Genotype analysis

Genomic DNA was isolated from peripheral leukocytes
by proteinase K digestion and phenol-chloroform
extraction (Sambrook et al. 1989). The genotype of
GSTAl (GSTAI*A-69C and GSTAI*B-69T) was
determined by polymerase chain reaction-restriction
fragment length polymorphism (PCR-RFLP) according
to Coles et al. (2001). Briefly, the primers used in the
PCR were sense primer (5’-TGT TGA TTG TTT GCC
TGA AAT T-3’) and antisense primer (5-GTT AAA
CGC TGT CAC CCG TCC T-3"). The amplification
was performed by denaturing at 94°C for 5 min, fol-
lowed by 35 cycles at 94°C for 60 s, annealing at 64°C
for 60 s, and extending at 72°C for 60 s in a Perkin-
Elmer 9700 (Norwalk, CT, USA). The amplification
products (20 1) were digested by 10 U of restriction
endonuclease Earl at 37°C for 12 h (Fig. 1).

6 7 8 9 1011 12 B
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A multiple PCR method was used to detect the
presence or absence of the GSTTI and GSTM ! genes
(Katoh et al. 1996). Briefly, this PCR method had both
GSTTI- and GSTMI-specific primer pairs in the same
amplification mixture, and included a third primer pair
for f-globin.

The genotype of GSTPI exon5 (Ilel05Val) was
determined by the PCR-RFLP method according to
Watson et al. (1998). Briefly, the primers used in the
PCR were sense primer (5-GTA GTT TGC CCA AGG
TCA AG-3’) and antisense primer (5-AGC CAC CTG
AGG GGT AAG-3"). The amplification products were
digested by the restriction endonuclease Alw261. All
digest patterns were determined by resolution on a
2% agarose gel.

Statistical analysis

We used a chi-square test to compare the GSTAI,
GSTTI, GSTM!, and GSTPI gene polymorphisms in
the prostate cancer patients with the expected gene dis-
tribution from the healthy control individuals. Crude
odds ratios and 95% confidence intervals (CI) were
calculated for GATAI, GSTTI, GSTMI, and GSTPI
genotypes. Odds ratios (OR) were adjusted for age and
smoking status by using multiple logistic regression
analysis. All statistical analyses were based on two-tailed
probabilities. Values of p<0.05 were considered statis-
tically significant. SPSS II for Windows software (ver-
sion 11.0 J, SPSS Japan, Tokyo, Japan) was used for
statistical analysis.

Results

The frequencies of GSTAIl, GSTTI, GSTMI1, and
GSTP] genotypes are shown in Table 2. The distribu-
tion of GSTAI* A[*B genotypes were in good agreement
with those expected in a Hardy-Weinberg equilibrium.
The frequency of GSTAI*A/*B or *B/*B genotype
individuals among prostate cancer cases increased to

26.3% compared with the control groups (19.0%);
however, this difference did not reach statistical signifi-
cance (OR=1.49; 95% CI, 0.96-2.32) after adjustment
for age and smoking status. The GST7T! nondeletion
genotype was weakly associated with increased incidence
of prostate cancer (OR=1.39; 95% CI, 0.95-2.03).
There was no association of the GSTMI or GSTPI
1105V variant with the risk of prostate cancer.

Based on a hypothesized role for GSTs in modulating
the effects of carcinogens present in tobacco smoke, we
investigated the combined role of smoking and GSTs.
Table 3 outlines the relationship between the GSTAI,
GSTTI, GSTM1, and GSTP] genotypes and prostate
cancer by stratifying by smoking status. Among smok-
ers, the frequency of GSTA1*A/*B or *B/*B genotype
was significantly higher in prostate cancer cases (27.8%)
compared with the controls (18.2%). The OR of the
individuals with GSTAI*4/*B or *B/*B genotype to
develop prostate cancer was 1.72 (95% CI, 1.01-2.94).
Similarly, the frequency of GSTT! nondeletion genotype
was significantly higher in prostate cancer cases (63.6%)
compared with the controls (51.2%) among smokers
(OR =1.68; 95% CI, 1.06-2.68). No significant associ-
ations were observed for genotypes of GSTMI and
GSTPI I105 V variant with the risk of prostate cancer
for either never-smokers or smokers.

To evaluate the interaction between the genotypes,
we similarly analyzed the combined genotypes in sub-
groups (Table 4). The adjusted OR of carrying the
combined genotyping of GSTAI*A4/*B or *B/*B and
GSTT1 nondeletion was 2.08 (95% CI, 1.14-3.80), with
the combined genotyping of GSTAI*4/*4 and GSTTI
null as a reference.

Discussion

This study presents the first data on the frequency of the
GSTAI polymorphism at GSTAI*A (-567T, -69C, -52G)
and GSTAI*B (-567G, -69T, -52A) in a Japanese pop-
ulation. The prevalence of the GSTAI*A4[*A4, *A/*B,
and *B/*B genotypes in the control population (n=294)

Table 2 Relationship between the GSTAI, GSTTI, GSTMI, and GSTPI genotypes and prostate cancer (OR odds ratio, CI confidence

interval)
Controls % (n) Prostate cancer % (n) OR*® (95% CIJ)

GSTAl *A/*A4 81.0% (238) 73.7% (140) 1

*A/*B 17.0% (50) 23.7% (45) 1.48 (0.94-2.35)

*B[*B 2.0% (6) 2.6% (5) 1.33(0.39-4.51)

*A/*B or *B[*B 19.0% (56) 26.3% (50) 1.49 (0.96-2.32)
GSTT1 Null genotype 48.3% (139) 39.8% (74) 1

Nondeletion genotype 51.7% (149) 60.2% (112) 1.39 (0.95-2.03)
GSTMI Nondeletion genotype 45.5% (131) 50.0% (93) 1

Null genotype 54.5% (157) 50.0% (93) 0.76 (0.52-1.12)
GSTP1 105 Ile/lle 72.9% (212) 76.5% (143) 1

105 Ile/Val 23.7% (69) 20.9% (39) 0.86 (0.55-1.36)

105 Val/Val 5.4% (10) 2.7% (5) 1.01 (0.32-3.12)

105 He/Val or 105 Val/Val 27.1% (79) .87 (0.57-1.35)

23.5% (44 0

%ORs were adjusted for age and smoking status; p <0.05
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Table 3 Relationship between the GSTAI, GSTTI, GSTMI, and GSTP! genotypes and prostate cancer (OR odds ratio, CI confidence

Prostate cancer % (n)

OR?® (95% CI)

interval)
Controls % (n)
GSTAl *A/*4
*A/*B or *B/*B
Never GSTT1 Null genotype
smokers Nondeletion genotype
GSTM1 Nondeletion genotype
Null genotype
GSTPI 105 Ile/Ile
105 le|Val or 105 VallVal
GSTA1 *A[*A
*A[*B or *B[*B
Smokers GSTT1 Null genotype
Nondeletion genotype
GSTMI Nondeletion genotype
Null genotype
GSTP! 105 Ile/lle

105 Ile/Val or 105 ValfVal

79.1% (72)
20.9% (19)
46.6% (41)
53.4% (47)
37.5% (33)
62.5% (55)
71.9% (64)
28.1% (25)
81.8% (166)
18.2% (37)
48.8% (104)
51.2% (109)
49.3% (105)
50.7% (108)
73.3% (148)
26.7% (54)

77.2% (44)
22.8% (13)
47.4% (27)
52.6% (30)
56.1% (32)
43.9% (25)
71.9% (41)
28.1% (16)
72.2% (96)
27.8% (37)
36.4% (47)
63.6% (82)
47.3% (61)
52.7% (68)
78.5% (102)
21.5% (28)

1
1.10 (0.49-2.46)
1

0.95 (0.49-1.86)
(1).46 (0.23-1.06)
i.oo (0.47-2.09)
1.72 (1.01-2.94)°
i.68 (1.06-2.68)°

0.96 (0.61-1.51)
1

0.84 (0.49-1.44)

*0ORs were adjusted for age
5p<0.05

was 81.0% (n=238), 17.0% (n=50), and 2.0% (n=46),
respectively. The distribution of the GSTAI polymor-
phism among different ethnic groups in the literature is
as follows: African-American (n="70) *A4/*4 61%, *A/
*B 26%, *B[*B 13%, and Caucasian (n=278) *A4/
*4 38%, *A/*B 48%, *B/*B 14% (Coles et al. 2001).
Japanese male genotype frequencies were significantly
different from each of these other populations. The
comparative genotype frequencies suggest that there
may be racial differences in the metabolism of chemicals
detoxified by GSTAI1, such as activated heterocyclic
aromatic amine carcinogen N-acetoxy-PhIP.

In this study, we present the first evidence of an
association between GSTAI*B (-567G, -69T, -52A) and
smoking status among prostate cancer patients. Some
reports have shown an association between the incidence
of prostate cancer and tobacco smoking (Hickey et al.
2001). We analyzed the prostate cancer risk in relation
to GSTAI and GSTTI genotype and smoking status.
Our results showed that GSTAI*A4/*B or *B/*B geno-
types were associated with a 49% higher but nonstatis-
tically significant increased risk of prostate cancer
(OR=1.49; 95% CI, 0.96-2.32). However, among
smokers, the OR of the individuals with these genotypes
to develop prostate cancer was 1.72 (95% CI, 1.01-

Table 4 Combined effects of GSTAI and GSTT! genotypes among

Japanese prostate cancer patients and control individuals (OR odds
ratio,CI confidence interval)

GSTAL1 GSTT1 Controls Cases OR? (95% CI)
*A[*A Null 112 56 1
Nondeletion 120 80 1.36 (0.88-2.10)
*A/*B or *B/*B Null 27 18 1.45 (0.73-2.89)
Nondeletion 29 32 2.08 (1.14-3.80)°

?0dds ratios were calculated by comparing contro! individuals and

Erostatc cancer groups, adjusted for age and smoking status
p=0.018

2.72). GSTAI has been reported to be most efficient in
detoxifying N-acetoxy-PhIP, and its presence in tobacco
smoke is 22.9 ng/cig (Smith et al. 2001). Therefore, we
considered that GSTA1 might play an important role in
protecting DNA from tobacco-derived PhIP. Although
this observation needs further study, the effect of
smoking may be more important for susceptible popu-
lations such as those with GSTAI*A/*B or *B/*B
genotypes.

Rebbeck’s group reported the GSTT! nondeletion
genotype to be associated with prostate cancer risk
(OR=1.83; 95% CI, 1.19-2.80) (Rebbeck et al. 1999).
Murata’s group also reported similar results without
statistical significance (OR=1.6; 95% CI, 0.99-2.51)
(Murata et al. 2001). Furthermore, Kelada’s group re-
ported a significant interaction between GSTT1 nonde-
letion genotype and smoking that elevates the risk of
prostate cancer (Kelada et al. 2000). Our results are
similar to theirs (OR =1.39; 95% CI, 0.95-2.03, and for
smokers OR =1.68, 95% CI, 1.06-2.68). These findings
are consistent with the knowledge that GSTT1 produces
genotoxic metabolites in response to specific exposure
such as methyl chloride in cigarette smoke and dichlo-
romethanes (Hallier et al. 1994). GSTTI is expressed at
high levels in the prostate, suggesting that GSTT1 may
play a role in prostate carcinogenesis, especially among
smokers.

To evaluate the interaction between the genotypes,
we analyzed combined genotypes of GSTA4] and
GSTTI. The OR of carrying the combined genotyping
of GSTAI*A/*B or *B/*B and GSTTI nondeletion was
1.36, 1.45, and 2.08 with the combined genotyping of
GSTAI*A/*A and GSTTI nondeletion, GSTAI*A[*B
or *B/*B and GSTT! null, GSTAI*A/*A and GSTTI
null as a reference. These results suggest that the com-
bined genotyping of GSTAI*A/*B or *B/*B and GSTT1
nondeletion may be strongly linked to prostate cancer.
We considered that this interaction may be caused by
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different chemical carcinogens, such as PhIP and methyl
chloride, but that the most important and common
origin of the chemicals associated with this interaction is
tobacco smoke.

On the other hand, no significant association was
observed for genotypes of GSTM 1 and GSTP1 1105V
Rebbeck’s group and Jeronimo’s groups reported simi-
lar results (Rebbeck et al. 1999, Jeronimo et al. 2002).
GSTM1 and GSTPI metabolize a variety of potential
carcinogens, including cigarette smoke-derived chemi-
cals such as benzo[aJpyrene. Nelson et al. reported that
GSTP1 has been shown to inhibit the adduction of
activated PhIP metabolites to DNA in cell-free systems
(Nelson et al. 2001); however, GSTP1 did not play an
important role in prostate carcinogenesis in our study.

In conclusion, our data show a significant relation-
ship between prostate cancer and genetic polymorphism
of GSTAI and GSTT!, especially among smokers. These
findings may be helpful for researching the risk for, and
identifying individuals susceptible to, prostate cancer.
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Abstract

This study evaluates background serum levels o
ductive age and investigates whether lifestyle factm
sectional study was performed on 80 Japanese wen
to have endometriosis. The serum levels of-
polychlorinated dibenzofurans (PCDFs)
biphenyls (PCBs), and 13 chlorinated
age, residence, occupation, body mass
vegetables, fruits and dairy prodye
cPCBs was 11.5 pmol/g lipid, th

fected organochlorine compounds among Japanese women of repro-
especiglly dietary factors, may be associated with these levels. A cross-

0.005 and 0.01, respecti :
lifestyle factors werg:mpt
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1. Introduction

Many environmental organochlorine pollutants in-
cluding polychlorinated dibenzo-p-dioxins (PCDDs),
polychlorinated dibenzofurans (PCDFs), coplanar
polychlorinated biphenyls (cPCBs), ortho-substituted
polychlorinated biphenyls (PCBs) and chlorinated pes-
ticides have the potential to mimic or antagonize nat-
urally occurring hormones and might affect wildlife
and humans adversely (Kavlock et al., 1996; Wolff et
al., 1993). PCDDs and PCDFs were unintended bypro-
ducts of several industries and processes: the herbicide
industry, the chlorine and paper industry, melting pro-
cesses and incineration of waste. More than 80% of
total PCDDs and PCDFs released into the environment
in Japan have been estimated to be derived from
incinerators (Watanabe et al., 1999). PCBs and pesti-
cides were used in industry and agriculture until the
early 1970s. These organochlorines are resistant to
metabolism and are lipid soluble; they bioaccumulate
in the food chain, and are found in human adipose
tissue, blood, and breast milk (Safe, 2000). Human
exposure to organochlorines occurs almost exclusively
through food consumption. Various kinds of fish from;
several supermarkets in Japan were reported to contgir
high levels of PCDDs, PCDFs and PCBs, and:t

shellfish were h1ghe1 than that from oth v
sumi et al., 2001). The main foods*
dietary 1ntake of chlormated

1995). These findings
consume fish or meat

esincluding 8 PCDDs, 10 PCDFs, 4
Bs, and 13 chlorinated pesticides or
olites in 80 Japanese infertile women in a
hosplta sbased cross-sectional study. The object of the
present study was to evaluate background levels of
exposure to organochlorines in Japanese women of
reproductive age, and to estimate the effect of life-
style factors, especially dietary factors, on serum or-
ganochlorine levels.
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2. Subjects and methods
2.1. Subjects and sample collection

Eligible subjects were women aged 20 to 45 years
who complained of infertility and consulted doctors in
the Department of Obstetrics and Gynecology, the
Jikei University School of Medicine, from 1999 to
2000. A total of 139 women were diagnosed lapar-
oscopically according to the revised ‘clagsification of
the American Fertility Society..(1985). Fifty-eight
women with stage II or greafér endpmetriosis were
designated ‘cases.” Eighty-ome women who were
laparoscopically confirnjed no ve endometriosis
(stage 0 or I) were designated ‘controls.” Because
accumulation of, hlofines in the body has
“risk factor for endometriosis
shdometriosis cases might present
{ ganochlorme levels. Of exghty-one

d sample volume. Consequently, eighty
“aged 26—43 (mean age, 32.9 years), were
luded in this study. All subjects gave their written
mformed consent. The study protocol was approved

. by the Institutional Review Board of the Jikei Uni-
versity School of Medicine, National Cancer Center,

National Institute for Environmental Studies, and U.S.
Centers for Disease Control and Prevention (CDC).

A fasting blood sample was obtained before the
laparoscopic examination. Serum was immediately
collected by centrifugation, transferred into a stock
tube and stored at —80 °C until analyzed.

2.2. Questionnaire survey

Subjects were interviewed by a single trained inter-
viewer using a structured questionnaire before the
laparoscopic examination. The questionnaire included
demographic and anthropometric information, occupa-
tion, and use of alcohol and tobacco. Regarding dietary
habits, subjects were asked how often they consumed
6 food items (fish, meat, rice, vegetable, fruit and dairy
products) over the previous year. The frequency of
dietary intake was classified into nine categories, i.e.,
rare, 1-3 times/month, 1-2 times/week, 3-4 times/
week, 5-6 times/week, 1 time/day, 2-3 times/day, 4—
6 times/day, and more than 7 times/day.
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Table 1

Lipid-adjusted serum median levels of organochlorines and total TEQs among Japanese women

Subjects with detectable values®

Median level (25th, 75th)®

Mean LOD (SD/Maximum)

PCDDs/PCDFs/cPCBs (pg/g lipid)

2,3,7,8-TetraCDD* 7/80
1,2,3,7,8-PentaCDD*® 30/80
1,2,3,4,7,8-HexaCDD* 5/80
1,2,3,6,7,8-HexaCDD"® 76/80
1,2,3,7,8,9-HexaCDD¢ 34/80
1,2,3,4,6,7,8-HeptaCDD* 77/80
1,2,3,4,6,7,8,9-OctaCDD* 80/80
2,3,7,8-TetraCDF* 1/80
1,2,3,7,8-PentaCDF°® 1/80
2,3,4,7,8-PentaCDF* 75/80
1,2,3,4,7,8-HexaCDF* 78/80
1,2,3,6,7,8-HexaCDF* 76/80

1,2,3,7,8,9-HexaCDF® 1/80
2,3,4,6,7,8-HexaCDF°® 47/80
1,2,3,4,6,7,8-HeptaCDF¢ 39/80
1,2,3,4,7,8,9-HeptaCDF¢ 1/80

3,44 ,5-TetraCB® 79/80

3,3 ,4,4',5-PentaCB® 77/80

3,3 ,4,4',5,5 -HexaCB® 80/80
PCBs (IUPAC nos.) (ng/g lipid)

PCB44 76/80

PCB49 63/80

PCB52 71/80

PCB66 79/80

PCB74 80/80

PCB87 79/80

PCB99 80/80

PCB101 79/80

PCB105° 80/80

PCB110

PCB118°

PCB128

PCB138+158°

PCB146

PCB151

PCB153

PCB156°

PCB157¢

PCB167¢

PCB170

PCB172

PCB178

PER187

PCB195
PCB196+203¢
PCB201
PCB206
PCB209

<LOD (<LOD,<LOD)
<LOD (<LOD, 5.5)
<LOD (<LOD, <LOD)
26.1 (20.7, 37.1)
<LOD (<LOD, 4.6)
16.8 (13.2, 23.7)

265.5 (196.0, 389.0)
<LOD (<LOD, <LOD)
<LOD (<LOD, <LOD)
11.3 (8.7, 13.8)

62 (4.3, 8.4)

6.1 (5.0,7.9)

<LOD (<LOD, <LOD)
2.0 (<LOD, 3.6) ¥
<LOD (<LOD,

1.1 (0.8, 1.9)
6.8 (4.5, 9.5)
2.6 (1.9, 4.6)
2.0 (1.4, 2.9)
18 (1.1, 2.9)
10.5 (7.2, 15.0)
03 (0.2, 0.5)
16.8 (11.6, 26.2)
59 (3.3,7.8)
0.6 (0.4, 0.8)
36.6 (23.3, 51.0)
3.4 (2.3, 4.9)
0.9 (0.6, 1.3)

1.6 (0.9, 2.2)

82 (5.1, 11.4)
14 (0.9, 2.0)
2.0 (1.2, 2.7)
21.6 (12.9, 28.9)
24 (1.5,3.2)

8.7 (5.0, 12.5)
04 (0.2, 0.6)
24 (1.5,3.7)
0.9 (0.6, 1.4)

1.9 (1.3, 2.9)
24(1.6,3.7)
0.8 (0.5, 1.1)
0.7 (0.5, 0.9)

2.6 (1.8/12.2)
3.1(2.2/15.9)
5.7 (4.2/25.1)
5.0 (4.0/26.1)
52 (4.0/27.1)

4.4 (3.4/24.3)
4.8 (3.6/24.0)
5.7 (3.8/26.8)
54 (3.7/22.7)
6.4 (4.8/31.7)

4.6 (4.8/18.2)
3.7 (3.0/11.9)
3.9 (3.5/13.8)
4.4 (2.5/15.4)
2.8 (1.6/9.9)
2.6 (1.5/9.3)
2.5 (1.5/8.5)
3.8 (2.2/14.8)
4.0 (2.5/19.8)
3.6 (2.1/13.9)
6.5 (3.6/25.2)
2.4 (1.5/83)
2.9 (1.6/10.3)
2.5 (1.4/8.6)
2.5 (1.5/9.3)
2.7 (1.6/10.1)
5.5 (3.3/22.9)
6.4 (3.8/26.6)
7.8 (5.1/36.0)
2.6 (1.4/9.29)
2.7 (1.6/11.0)
2.6 (1.5/9.7)
2.7 (1.6/11.0)
2.6 (1.5/9.7)
2.6 (1.4/9.2)
8.4 (5.3/40.9)
3.9 (2.8/23.9)
7.9 (5.7/47.9)
2.6 (1.6/9.7)
2.6 (1.6/9.7)
7.4 (4.8/40.3)
9.6 (6.5/56.6)
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Table | (continued)

Subjects with detectable values®

Median level (25th, 75th)° Mean LOD (SD/Maximum)

Pesticides (ng/g lipid)

HCB 2/80
b-HCCH 80/80
g-HCCH 2/80
H.EPOX 8/80
Oxychlordane 54/80
trans-NONA 78/80
pp-DDE 80/80
Dieldrin 4/80
op-DDT 0/80
pp-DDT 7/80
Mirex 1/80
Total TEQ values (pg TEQ/g lipid)
PCDDs 80/80
PCDFs 80/80
cPCBs 80/80
PCBs 80/80
PCDDs/PCDFs 80/80
PCDDs/PCDFs/cPCBs 80/80
Sum 80/80

<LOD (<LOD, <LOD)
93.2 (60.8, 171.0)
<LOD (<LOD, <LOD)
<LOD (<LOD, <1LOD)
9.0 (<LOD, 12.2)

20.9 (16.0, 29.3)

221.0 (146.0, 358.5)
<LOD (<LOD, <LOD)
<LOD (<LOD, <LOD)
<LOD (<LOD, <LOD)
<LOD (<LOD, <LOD)

16.1 (2.7/25.7)
8.1 (1.4/13.0)
8.1 (1.4/13.0)
8.1 (1.4/13.0)
. 8.1(1.4/13.0)
8.1 (1.4/13.0)
8.1 (1,4/13.0)

8.6 (6.4, 10.8)
7.5 (6.3, 9.0)
5.1 (3.5, 7.4)
3.6 (2.4, 5.0) .
16.1 (13.

Abbreviations: LOD—Iimit of detection; SD—standard deviation; CDD-—chlorodi

enzo-p-dipxin; CDF—chlorodibenzofuran; CB—chloro-

biphenyl; HCB—hexachlorobenzene; HCCH—hexachlorocyclohexane; H.E HC hi 7_ptachlor epoxide; NONA—nonachlor; DDE—bis(4-
chlorophenyl)-1,1-dichloroethene; DDT—Dbis(4-chlorophenyl)-1,1,1 -trichloppethigne; TEQ—toxic equivalency.

? Number of subjects with values above LOD/number of measured
® 25th—25th percentile; 75th—75th percentile.

¢ WHO-TEF values were assigned.

4 Combined levels for PCB138,158 and PCB196,203 were

2.3. Analytical methods

Serum analyses for a total of 7% co "p nds,
8 PCDDs, 10 PCDFs, 4 cPCBs
selected persistent chlorinated pes
bolites, were performed at the, (

ése compounds were adjusted for serum
. Triglycerides and total cholesterol were

v#ealculating the total lipid level (2.27 Xtotal
cholesterol +triglycerides + 62.3). The mean volume of
blood used for the analyses was 7.99 g (range: 0.89—
13.2 g). Limits of detection (LOD) on a lipid-adjusted
basis were calculated for each sample. Because we
could not measure PCB138 and 158, or PCB196 and

126

203 separately, combined values for PCB138/158 and
PCB196/203 were reported. The list of organochlor-
ines measured and their mean LOD values are shown
in Table 1. TEQ was assessed using the “toxic equiv-
alency factor” (TEF) based upon the relative potency
of each congener compared to 2,3,7,8-tetrachlorodi-
benzo-p-dioxin (TCDD) as the most potent of the
compounds (Van den Berg et al., 2000). The World
Health Organization (WHO)-TEF values were
assigned 7 PCDDs, 10 PCDFs, 4 ¢cPCBs and 6 PCBs
to calculate TEQ values of PCDDs, PCDFs, cPCBs
and PCBs in this study (Table 1) (Van den Berg et al.,
1998). For values below LOD (‘<LOD’), a value of
one half the LOD was assigned (Hornung and Reed,
1990). The results were essentially similar when zeros
were assigned to values <LOD.

2.4. Statistical analysis
Total levels of PCDDs/PCDFs/cPCBs, PCBs and

pesticides were calculated for the sum of serum molar
concentration of PCDDs/PCDFs/cPCBs, PCBs and
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pesticides, respectively. Differences in log-trans-
formed levels of total TEQ, PCDDs/PCDFs/cPCBs,
PCBs and pesticides between subgroups were tested
by the analysis of variance (PROC GLM, SAS,
SAS Institute Inc., Cary, NC). Tests for trend were

Table 2

assessed by using serum organochlorine levels as
continuous variables. P values less than 0.05 (two-
tail) were considered to be statistically significant.
All analyses were conducted using the SAS (version
8.2) program.

Comparisons of serum organochlorine levels according to age, residence, occupation, BMI, smoking and alcohol habit among Japanese women

Variable

Total TEQ Total PCDDs/PCDFs/  Total PCBs Total pesticides
(pg TEQ/g lipid)  cPCBs (pmol/g lipid)  (nmol/g lipid) (nmol/g lipid)
Median Median Median Median

(25th, 75th)®

(25th, 75th)°

(25th, 75th)°

(25th, 75th)°

Total
Age (years)
24-29
30-35
36-43
P for difference®
P for trend
Residence
Residential area
Shopping or
office area
Agricultural or
fishing area
Industrial area
P for difference®
Occupation
Office worker
Specialist
Others
P for difference®
BMI
<19.4
19.4-21.0
>21.0
P for difference®
P for trend
Smoking
Never
Past
Current

P for difference®
P for trend

80

15
45
20

43
18
13

25

24
15

25.1 (203, 31.8)

23.7 (19.5, 25.7)
23.5 (19.6, 28.7)
31.9 (24.6, 39.0)
0.005
0.003

24.6 (20.5, 32.0)
29.3 (28.6, 29.6)

26.0 (17.8, 42.9)

26.7 (12.2, 41.2)
0.79

24.6 (20.1, 32.0)
253 (19.8, 32.2)
29.2 (20.7, 32.5)
0.86

274 (21.1;

23.3 (20.0, 26.2)
26.6 (22.3, 34.3)
30.1 (17.0, 34.0)
0.06
0.06

1.15 (0.84, 1.50)

1.13 (0.78, 1.35)
1.13 (0.86, 1.41)
1.27 (0.91, 2.25)
0.01
0.01

1.14 (0.84, 1.46)
1.15 (0.81, 1.27)

1.41 (0.85, 1.86)

1.46)
1.53)
1.00 (0.84, 1.29)
027
0.18

1.13 (0.84, 1.46)
1.16 (0.83, 1.86)
1.19 (0.82, 1.41)
0.27
0.24

1.00 (0.83, 1.27)
1.26 (1.03, 1.94)
1.21 (0.9, 1.36)
0.20
0.40

0.46 (0.35, 0.66)

0.41 (0.37, 0.54)

0.47 (0.32, 0.63)
0.48 (0.40, 0.71)
0.46 (0.38, 0.67)
0.54

0.54 (0.46, 0.67)
0.44 (0.32, 0.63)
0.41 (0.31, 0.66)
0.02
0.06

0.48 (0.36, 0.66)
0.45 (0.36, 0.60)
0.41 (0.30, 0.67)
0.21
0.24

0.41 (0.33, 0.60)
0.52 (0.36, 0.77)
0.60 (0.37, 0.72)
0.20
0.20

1.32 (0.89, 1.91)
1.64 (1.33, 1.70)

1.26 (0.93, 3.24)

2.03 (0.95, 3.11)
0.29

1.23 (0.85, 1.78)
1.61 (1.01, 2.54)
1.70 (0.89, 1.97)
0.29

1.38 (0.93, 1.83)
1.32 (0.89, 1.95)
1.33 (1.07, 2.33)
0.82
0.91

1.4 (1.01, 1.95)
0.89 (0.62, 2.39)
1.12 (0.84, 1.68)
0.23
0.89

1.26 (0.92, 1.63)
1.65 (0.88, 2.55)
1.45 (0.68, 2.34)
0.37
0.11

191.0 (146.0, 271.0)
201.0 (119.0, 346.0)
297.5 (212.0, 537.0)
0.014

0.02

221.0 (143.0, 323.0)
287.0 (215.0, 358.0)

244.0 (146.0, 519.0)

441.5 (179.0, 704.0)
0.23

215.0 (126.0, 318.0)
250.0 (179.0, 592.0)
225.0 (179.0, 359.0)
0.44

221.0 (143.0, 346.0)
202.0 (150.0, 386.0)
230.0 (146.0, 323.0)
0.66
0.82

228.5 (161.0, 359.0)
157.5 (109.0, 453.0)
195.5 (132.5, 282.5)
0.24
0.54

203.0 (146.0, 281.0)
226.5 (134.0, 409.0)
256.0 (105.0, 618.0)
033
0.16

# Total number of subjects for each item varied due to missing information.
® 25th-—25th percentile; 75th—75th percentile.

© Differences in log-transformed levels between subgroups were tested by the analysis of variance.

4 Others include merchant, housewife and so on.
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In this study, three PCDDs/PCDFs/cPCBs (1,2,3.,4,
6,7,9-heptachlorodibenzo-p-dioxin, octachiorodiben-
zofuran and 3,3’ ,4,4'-tetrachlorobiphenyl), four PCBs
(International Union of Pure and Applied Chemistry
nos. 18, 28, 149 and 177), and two pesticides (aldrin
and endrin) could not be measured because of analyt-
ical conditions. Serum median levels of total TEQ of 7

Table 3

Relationships between serum organochlorine levels and frequency of food intake among Japanese women

PCDDs, 9 PCDFs, 3 ¢PCBs and 6 PCBs were 8.6, 7.5,
5.1 and 3.6 pg TEQ/g lipid, respectively (Table 1). The
serum median level of the total TEQ of PCDDs/
PCDFs/cPCBs/PCBs was 25.1 pg TEQ/g lipid.
Serum median levels of total PCDDs/PCDFs/cPCBs,
PCBs and pesticides were 11.5 pmol/g lipid, 0.46 nmol/
g lipid and 1.32 nmol/g lipid, respectively (Table 2).

Table 2 shows the serum median levels of total
TEQ, 19 PCDDs/PCDFs/cPCBs, 32 PCBs and 11

Frequency of food No.  Total TEQ Total PCDDs/PCDFs/  Total PCBs
intake (n=76) (pg TEQ/g lipid)  cPCBs (pmol/g lipid)  (nmol/g lipid) {ng/g lipid)
Median Median Median Median
(25th, 75th)* (25th, 75th)? (25th, 75th)* (25th, 75th)?
Fish ; .
=3 times a month 7 17.9 (12.2,27.7)  0.75 (0.62, 0.99) 0.92 (0.63, 1.38)  146.0 (104.0, 215.0)
1-4 times a week 58 24.8 (20.5,32.0)  1.16 (0.86, 1.46) 1’25 (0.89, 1.83)  221.0 (143.0, 323.0)
25 times a week 11 30.7 (23.3,42.9) 141 (0.81,2.34) 2.27 (1.72,2.70)  367.0 (277.0, 578.0)
P for difference® 0.001 0.002 0.001 0.001
P for trend 0.002 0.003 0.006 0.002
Meat
=2 times a week 12 24.6 (21.0,30.9)  1.05 (0.98, 1.29) 1.42 (1.11, 1.84)  235.5 (206.0, 358.0)
3-4 times a week 42 25.7 (19.8, 32.0) . 1.33 (0.85, 1.96)  205.0 (126.0, 323.0)
25 times a week 22 24.9 (21.5, 36.5) 8 (0.37,0.77) 132 (0.92,2.70) 373.5 (146.0, 570.0)
P for difference” 0.80 0.57 0.73
P for trend 0.63 0.13 0.16
Rice
=6 times a week 9 29.2 (20.1, 31.7) 0.47 (0.34, 0.66)  1.23 (093, 1.64)  221.0 (183.0, 256.0)
Once a day 24 25.8 (21.1, 36. 3 (09841.55) 0.46 (0.35,0.73)  1.32 (0.82,2.16)  214.0 (128.0, 444.0)
22 times a day 43 24.6 (19.8, 29, 3 (0:84, 1.46) 0.46 (0.36, 0.63)  1.42(0.92,1.95) 221.0 (146.0, 367.0)

P for difference®

P for trend
Vegetable
=6 times a week
Once a day
=2 times a day
P for difference®
P for trend

=6 a week
Once a day

22 times a day

P for difference®

P for trend

40
13

26.0 (20.5, 30.1)
23.9 (18.8, 32.2)
25.7 (23.3, 32.3)
031
0.27

26.2 (20.0, 31.7)
25.8 (20.6, 32.8)
24.6 (20.6, 25.8)
0.76
0.70

1.18 (1.07, 1.27)
1.15 (0.83, 1.36)
1.13 (0.85, 1.46)
0.59
0.55

1.04 (0.83, 1.44)
1.13 (0.84, 1.27)
1.24 (0.86, 1.61)
031
0.49

1.18 (0.99, 1.63)
1.13 (0.84, 1.32)
1.06 (0.82, 1.46)
031
0.46

0.94
0.99

0.44 (0.27, 0.63)
0.46 (0.35, 0.66)
0.49 (0.37, 0.66)
0.35
0.53

0.43 (035, 0.57)
0.47 (0.29, 0.66)
0.47 (041, 0.71)
0.18
0.19

0.61 (0.34, 0.72)
0.45 (0.36, 0.64)
0.43 (0.33, 0.52)
0.09
0.04

0.87
0.85

1.52 (1.07, 1.70)
0.96 (0.78, 1.72)
1.38 (0.98, 2.27)
0.73
0.78

1.07 (0.78, 1.64)
1.44 (0.93, 1.95)
1.38 (0.91, 2.27)
0.37
0.54

1.42 (0.93, 2.51)
1.41 (0.87, 1.90)
1.18 (1.01, 1.61)
0.31
033

0.86
0.74

203.0 (195.0, 359.0)
149.0 (124.0, 225.0)
244.0 (179.0, 386.0)
0.57
0.83

190.0 (124.0, 309.0)
222.0 (161.0, 359.0)
244.0 (150.0, 435.0)
0.35
0.50

227.0 (183.0, 555.0)
211.0 (129.0, 363.0)
230.0 (179.0, 318.0)
0.34
0.24

4 25th—25th percentile; 75th—75th percentile.
® Differences in log-transformed levels between subgroups were tested by the analysis of variance.
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pesticides according to age, residence, occupation,
body mass index (BMI), smoking and alcohol drink-
ing habit among all subjects. Significantly higher
levels of total TEQ, PCDDs/PCDFs/cPCBs, PCBs
and pesticides were observed in older women (P for
trend=0.003, 0.01, 0.005, 0.01, respectively). Serum
total PCB levels were inversely related to BMI (P for
difference=0.02). No significant differences in the
levels of total TEQ, PCDDs/PCDFs/cPCBs, PCBs
and pesticides were found with regard to residence,
occupation, smoking or alcohol drinking habit.
Table 3 shows the association between serum or-
ganochlorine levels and frequency of food intake
among all subjects. Levels of total TEQ, PCDDs/
PCDFs/cPCBs, PCBs and pesticides were significant-
ly increased with increasing frequency of fish intake
( P for trend=0.002, 0.003, 0.0003 and 0.006, respec-
tively). The median levels of total TEQ, PCDDs/
PCDFs/cPCBs, PCBs and pesticides with subjects
who consumed fish more than five times a week
was about 1.7-, 1.9-, 2.0-, 2.5-fold significantly higher
than in subjects who did so less than three times a
month. Inverse association was observed between
dairy product intakes and total PCBs levels (P for
trend=0.04). Significant differences in levels of tota
TEQ, PCDDs/PCDFs/cPCBs, PCBs and pestigides

In the present study, we identified the serum levels
of total TEQ, PCDDs/PCDFs/cPCBs, PCBs and pes-
ticides among Japanese women of reproductive age,
and the possible contributions of age and fish intake to
such levels.

were not found in terms of meat, rice, Vegetabl' and:

The mean or median total TEQ levels of PCDDs/
PCDFs previously reported among Japanese with no
occupational exposure were 9.8 to 24.9 pg TEQ/g lipid
(Arisawa et al., 2003; Kumagai et al., 2002, 2000). The

mean or median total TEQ levels of PCDDs/PCDFs/
cPCB/PCBs previously reported among Japanese with
no occupational exposure were 16 to 61 pg TEQ/g
lipid (Arisawa ct al., 2003; Tsuchiya ¢t al., 2003). The
median level of total TEQ of PCDDs/PCDFs and
PCDDs/PCDFs/cPCBs/PCBs m th,; present study

()()3) To our knowledge, the
of Japanese have not been

e serum p,p’-DDE levels of American
‘ subjects (Laden et al., 2001; Weiderpass et
'2000) In this study, the contribution of individual
orgdnochlorine compounds to the total TEQ was high-

st from 2,3,4,7,8-PentaCDF (21.8%), followed by

3,44 ,5-PentaCB ~ (20.1%), 1,2,3,7,8-PentaCDD
(13.7%) and 1,2,3,6,7,8-HexaCDD (11.4%) (data not
shown).

Because organochlorines are lipophilic, slowly me-
tabolized, and tend to bioaccumulate in the food
chain, higher organochlorine levels should be found
in the human body as people get older. In fact, some
previous studies as well as the present investigation
reported that total serum TEQ levels significantly
increased with age (Arisawa et al, 2003; Chen et
al.,, 2003; Kumagai et al., 2000; Wittsiepe et al,
2000a). In the present study, serum organochlorine
levels tended to be lower as BMI was higher, and a
inverse association was found between the BMI and
level of total PCBs (P for difference=0.02). A few
reports investigated the association between BMI and
serum organochlorine levels, but no significant asso-
ciation was found in almost all of these investigations
(Arisawa et al., 2003; Kumagai et al., 2002, 2000).
One study revealed a positive association between
BMI and serum DDE levels (Schildkraut et al.,
1999). Further study will be needed to explore in

129

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282



283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

8 H. Tsukino et al. / Science of the Total Environment xx (2005) xxx—xxx

more detail the possible association between BMI and
serum organochlorine levels in human.

Concerning the association between dietary intake
and serum organochlorine levels in Japanese, higher
serum TEQ levels in frequent fish and meat consu-
mers are plausible, because the estimated mean daily
intakes of total TEQ levels of PCDDs, PCDFs and
PCBs contaminating foods were highest from fish and
shellfish (76.9%), followed by meat and eggs (15.5%)
in Japanese (Tsutsumi et al., 2001). In our study, we
found that Japanese women of reproductive age who
consumed fish frequently tended to accumulate TEQ
levels of PCDFs, cPCBs, PCBs in their body. Similar
to TEQ levels of PCDFs, cPCBs and PCBs, a positive
association was found between fish intake and TEQ
levels of PCDDs, although not significant. Because
age might be a confounding factor of fish intake, we
divided all subjects into three groups according to age
(24-29, 30-35 and 3643 years) and investigated the
association between fish intake and serum levels of
total TEQ, PCDDs/PCDFs/cPCBs, PCBs and pesti-
cides. In each group, positive associations were also
found between fish intake and serum levels of total
TEQ, PCDDs/PCDFs/cPCBs, PCBs and pestlcldes
(data not shown).
To our knowledge five studies have repoﬁ dzz:on

known occupational expé
reported that frequent ceast

@ levels of PCDFs
sl intake was positively
CBs (P=0.03). Tsuchiya
serum total TEQ levels of 7
PCBs and 8 PCBs among 10
armers and 8 office workers. They
frequent fish eaters, mean TEQ levels

were Sighificantly higher than in the infrequent fish
eaters. Kitamura et al. (2000) investigated the asso-
ciation between 9 factors of food intake and serum
total TEQ levels of 7 TCDDs, 10 TCDFs and 3 PCBs
among employees in waste incineration plants. Their
study revealed that butter/cheese/lard intake was pos-
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itively associated with TEQ levels of PCDDs, PCDFs
and the total TEQ level, while ordinary daily food
including fish, clam, egg, squid and vegetable was
positively associated with serum TEQ levels of
PCBs. They also analyzed the association between
5 preferable meals’ intake and total serum TEQ
levels. The observed higher fish intake was signifi-
cantly associated with higher TEQ levels of cPCBs
(77+126+169) in blood, but not wi
PCDDs or PCDFs.

fish, meat and milk intake.
more detalle information was necessary to clarify

They indicated that

“a8sociation between dietary intake and serum
els'of pesticides including -HCH, hexachloroben-
zefic (HCB), pp’-dichlorodiphenyldichloroethane (pp’-

.. DDD), bis(4-chlorophenyl)-1,1-dichloroethene (DDE)

and DDT among Japanese farmers (Hanaoka et al.,
2002). The authors reported that fish intake showed a
positive but no significant relationship with HCB and
DDT serum levels. In the present study, the serum
pesticide level significantly increased with the increas-
ing frequency of fish intake ( P for trend=0.006), and
this result was consistent with a previous report
(Hanaoka et al., 2002).

Daily dietary intake of PCDDs, PCDFs and PCBs
has been estimated using PCDDs, PCDFs and PCBs
levels in foods. Because the PCDD, PCDF and PCB
levels in foods and the consumption of foods vary
from country to country, the kinds of foods contrib-
uting to daily dietary intake of PCDDs, PCDFs and
PCBs obviously differ with the country. The main
foods contributing to the daily dietary intake of total
TEQ levels of PCDDs and PCDFs have been
reported to be fish for Japanese (Tsutsumi et al.,
2001), Spanish (Llobet et al.,, 2003b), and Belgian
people (Focant et al., 2002), meat and meat products
for Americans (Guo et al., 2001; Schecter et al.,
2001), and British people (Harrison et al., 1998),
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Table 4

Previous reports on the association between food and beverage intake and serum organochlorine level among Japanese populations
Subjects Kinds of food and beverage  Analyzed organochlorines Significant associations Reference
Randomly selected Il Items (beef, pork, milk, TEQ of 7 PCDDs, Positive association Arisawa

people (n=253)

Fishermen, farmers,
office workers
(n=28)

Incinerator workers
(n=94)

Incinerator workers
(n=60)
Farmers (n=41)

Women of reprodu
age (n=80)

eggs, butter, cheese, grilled 10 PCDFs, 12 PCBs
fish, boiled fish, raw fish,

coastal fish, other fish)

Fish TEQ of 7 PCDDs,
10 PCDFs, 4¢PCBs
and 8PCBs

TEQ of 7 TCDDs,
10 TCDFs, 3 PCBs

9 Factors (ordinary daily
food?, clam/shrimp/bacon,
fatty food, rice/egg,
mushroom/ham, meat,
butter/cheese/lard, dairy
product, crab)

5 Preferred meals (fatty
meals, fish meals, noodles,
broiled meat/tempura,
grilled eel/fried dumpling)

TEQ of 5 PCDDs and

5 PCDFs 5 PCDDs, 5 PCDFs
S Pesticides
(b-hexachlorocyclohexane,
b-hexachlorobenzene,
pp’-DDE, pp’-DDT, pp'-
dichlorodiphenyldichloroethane)
TEQ of 7 PCDDs, 9 PCDFs,
3 ¢PCBs, 6 PCBs 7 PCDDs,
9 PCDFs, 3 ¢PCBs, 32 PCBs,
11Pesticides

ms (fish, meats,
vegetables, fruits,

TEQ of PCDFs—
coastal fish

et al., 2003

TEQ of PCBs—
raw fish

Positive association Tsuchiya
TEQ of PCDFf—fish et al., 2003

TEQ of ¢cPCBs—fish ¢

Kitamura
et al., 2000

ordipary daily food,
mushroom/ham
Total TEQ—butter/
cheese/lard
Positive association
TEQ of PCDDs—
meat/tempra, eel/dumpling
TEQ of PCDFs—
eel/dumpling
TEQ of PCBs—
fish meals
Total TEQ—
eel/dumpling
Inverse association
TEQ of PCBs—
fatty meals

Significant association Kumagai
was not found et al., 2000
Significant association Hanaoka
was not found et al., 2002
Positive association This study

TEQ of PCDFs—fish
TEQ of cPCBs—fish
TEQ of PCBs—fish
Total TEQ—fish
PCDDs—fish
PCDFs—fish
cPCBs—fish
PCBs—fish
Pesticides—fish
Inverse association
PCBs—dairy products

# Ordinary daily food contains fish, clam, eggs, squid, vegetables etc.
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and milk and dairy products for Germans (Malisch,
1998). The main food contributing to daily dietary
intake of TEQ levels of PCBs is fish in various
countries including Japan (Tsutsumi et al., 2001),
Spain (Llobet et al., 2003a), the USA (Schecter et
al., 2001), England (Harrison et al., 1998), meat and
meat product in England (Harrison et al., 1998), and
the dairy product in Canada (Wittsiepe et al., 2000D).
The present study revealed that the frequency of fish
consumption was the most significant contributor to
serum total TEQ levels of PCDDs, PCDFs, cPCBs
and PCBs among Japanese women of reproductive
age, and these results were consistent with the results
of the above studies estimating daily dietary intake
for Japanese.

The human health effects associated with low
exposure to organochlorine compounds which levels
we found in the present study have not yet been fully
characterized. However, cancer mortality has been
reported to be unaffected by such low levels of
exposure to organochlorines (Bertazzi et al., 2001).
We will examine the effects on endometriosis of
exposure to organochlorine compounds, and the
results will be reported in a separate paper in th
near future.

In conclusion, we found that among variol

reproductive age. :
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