BMC Genomics 2006, 7:64

feth : | /}
o X
m Rl
R
v O
.a_'c
5
=
Ll
GSC alone
Figure 2

http://iwww.biomedcentral.com/1471-2164/7/64

——
T
~—

Liver sample
without GSC

Liver sample‘
with GSC

Cross-hybridization of GSC. Cross-hybridization of the GSC spike mRNAs to Affymetrix GeneChip. (a) A scatter plot ofa
blank sample with the GSC (horizontal axis) and a blank with the five spike RNAs at a high dosage (vertical axis) measured by
MG-U74v2A GeneChips (raw values generated by Affymetrix MAS 5.0 software). The five spikes are indicated by black dots
with arrows. Signals of the murine probe sets were below 20 on the horizontal axis, indicating negligible cross-hybridization of
GSC spike mRNAs to the murine probe sets. (b) A scatter plot of a liver sample with GSC (horizontal axis) and without GSC
(vertical axis) measured by MG-U74v2A GeneChips. The five spikes are again indicated by black dots with arrows. The dotted
line is the 1/25 fold (4%) line. Cross-hybridization of mouse liver mRNAs to the GSC signals was considered negligible (less

than 4%).

some of these reports share the idea that "absolute expres-
sion" and “transcripts per cell" should entail robust nor-
malization, further practical development to enable
universal application has been awaited.

Here, we report a method for normalizing expression data
across samples and methods to the cell number of each
sample, using the DNA content as indicator. This normal-
ization method is independent of the gene expression
profile of the sample, and may contribute to transcrip-
tome studies as a common standard for data comparison
and interchange.

Results

Dose-response linearity of the medsurement system as a
basis for the Percellome method

The fidelity of transcript detection is the key to this "per
cell" based normalization method, which generates tran-
scriptome data in "mRNA copy numbers per cell". The Q-
PCR system was tested by serially diluting samples to cen-
firm the linear relationship between Ct values and the log

of sample mRNA concentration (data not shown). High
density oligonucleotide microarrays from Affymetrix [11]
were used in our experiments. We tested the linearity of
the Affymetrix GeneChips using a set of five samples made
of mixtures of liver and brain in ratios of 100:0, 75:25,
50:50, 25:75, and 0:100 (designated "LBM" for liver-brain
mix). The results showed a linear relationship (R2> 0.90)
between fluorescence intensity and input for a sufficient
proportion of probe sets, i.e. about 37% of the probe sets
in the older MG-U74v2 and 70% in the newest Mouse
Genome 430 2.0 GeneChip were above the detection level
(approximately one copy per cell) in the 50:50 sample
(Figure 1) [see Additional files 1 and 2].

Dose-response linearity alone is not sufficient to generate
true mRNA copy numbers. An important additional
requirement is that the ratio of signal intensity to mRNA
copy number should be equal among all GeneChip probe
sets of mRNAs and PCR primers. The Q-PCR primer seis
were designed to perform at similar amplification rates to
minimize differences between amplicons, The melting
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Table i: The spike factors for various organs/tissues

http://www.biomedcentral.com/1471-2164/7/64

Species Organ/Tissue (adult, unless otherwise noted) Spike Factor total RNA/genomic DNA SD
Mouse Liver 0.2 21 46
Mouse Lung 0.02 22 4
Mouse Heart 0.05 - -
Mouse Thymus 0.0l C 8 2
Mouse Colon Epitherium 0.05 105 3
Mouse Kidney 0.1 -
Mouse Brain 0.1 - -
Mouse Suprachiasmatic nucleus (SCN) 0.1 - -
Mouse Hypothalamus 0.1 63 4
Mouse Pituitary 0.1 52 8
Mouse Ovary 0.02 35 4
Mouse Uterus 0.02 42 12
Mouse Vagina 0.02 8l 38
Mouse Testis 0.15 56 7
Mouse Epididymis 0.07 53 16
Mouse Bone marrow 0.02 14 3
Mouse Spleen 0.02 . - -
Mouse Whole Embryo 0.15 97 36
Mouse Fetal Telencephalon E10.5-16.5 0.1 48 9
Mouse Neurosphere (El 1.5-14.5) 0.03 42 10
Mouse E9.5 embryo heart 0.15 58 15
Mouse cell lines, 0.2 - -
Rat Liver 0.2 - -
Rat Kidney 0.2 s -
Rat Uterus 0.04 56 5
Rat Ovary 0.04 56 9
Human Cancer Cell Lines 0.2 116 26
Xenopus liver 0.03 -
Xenopus embryo 0.15 - -

temperature was set between 60° and 65°C with a prod-
uct size of approximately 100 base pairs using an algo-
rithm (nearest neighbor method, TAKARA BIO Inc,
Japan), and the amplification co-efficiency (E} was set
within the range 0.9 + 0.1 (E = 22 {-(1/slope) }-1 on a plot
of log2? (template) against Ct value). For the GeneChip
system, the signal/copy performance of each probe set
depended on the strategy of designing the probes to keep
the hybridization constant/melting temperature within a
narrow range, ensuring that the dose-response perform-
ances of the probe sets were similar (df. hup://
i ign/i ). Fail-
ing this, any differences should at least be kept constant
within the same make/version of the GeneChip. Taking
into consideration the biases that lead to imperfections in
estimating absolute copy numbers in each gene/probe set,
we developed normalization methods to set up a com-
mon scale for Q-PCR and Affymetrix GeneChip systems,

The grade-dosed spike cocktail (GSC) and the "spike
factor” for the Percellome method

A set of external spike mRNAs was used to iransfer the
measurement of cell number in the sample (as reflected
by its DNA content) to transcriptome analysis. For the

spikes, we utilized five Bacillus subtilis mRNAs that were
left open for users in the Affymetrix GeneChip series. The
extent to which the Bacillus RNAs cross-hybridized with
other probe sets was checked for the Affymetrix GeneChip
system. The GSC was applied to Murine Genome U74Av2
Armray (MG-U74v2) GeneChips with or without a liver
sample. As shown in Figure 2, cross-hybridization
between Bacillus RNAs and the murine gene probe sets
was negligible [see Additional files 3 and 4]. Mouse
Genome 430 2.0 Array {Mouse430-2), Mouse Expression
Arrays 430A (MOE430A) and B {MOE430B), Rat Expres-
sion Array 230A (RAE230A), Xenopus laevis Genome Array
and Human Genome U95Av2 (HG-U95Av2) and U133A
(HG-U133A) Arrays sharing the same probe sets for these
spike mRNAs showed no sign of cross-hybridization with
the Bacillus probes (data not shown).

We prepared a cocktail containing in vitro transcribed
Bacillus mRNAs in threefold concentration steps, i.e.
777.6 pM (for AFFX-ThrX-3_at), 259.4 pM (for AFFX-
LysX-3_at), 86.4 pM (for AFFX-PheX-3_at), 28.8 pM (for
AFFX-DapX-3_at) and 9.6 pM (for AFFX-TrpnX-3_at). By
referring to the amount of DNA in a diploid cell and
employing a "spike factor" determined by the ratio of
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Paositioning of GSC spike mRNAs in Affymetrix
GeneChip dose-response range. A frequency histogram
of the probe sets of Affymetrix GeneChip Mouse430-2 is
shown. The histogram for all probe sets (gray) shows near-
normal distribution. Blue columns are the "present” calls (P),
red columns “absent” calls (A) and green "marginal” calls. The
five yellow lines indicate the positions of the GSC spike
mRNAs that are chosen to cover the "present” call range by
a proper "spike factor”.

total RNA to genomic DNA in a tissue type (Table 1), the
spike mRNAs were calculated to correspond to 468.1,
156.0,52.0, 17.3 and 5.8 copies per cell (diploid), respec-
tively, for the mouse liver samples (spike factor=0.2). The
ratio of mRNAs in the cocktail is empirically chosen
depending on the linear range of the measurement system
and the available number of spikes. Here, we set the ratio
to three to cover the "present' call probe sets of the
Affymetrix GeneChip system {Figure 3).

We tested this grade-dosed spike cocktail (GSC) by Q-PCR
and confirmed that the Ct values of the spike mRNAs were
linearly related to the log concentrations (cf. Figure 4a),
i.e. could be expressed as

Ct=alogC+p {1}

The GSC was also tested by the GeneChip system and it
was confirmed that the log of the spike mRNA signal
intensities was linearly related to the log of their concen-
trations (cf. Figure 4b),

http://www.biomedcentral.com/1471-2164/7/64

logS=vlogC+d {2}

The linear relationship between the Ct values (Ct) and the
log of RNA concentration (log C) was reasonable given
the definition of Ct values (derived from the number of
PCR cydles, i.e. doubling processes). The linear relation-
ship between the log of GeneChip signal intensity (log S)
and the log of RNA concentration (log C) was rationalized
by the near-normal distribution of log S over all tran-
scripts (cf. Figure 3).

Calculation of copy numbers of all geneslprobe sets per
cell

As described above, using a combination of DNA content
and the spike factor of the sample, the GSC spike mRNAs
become direct indicators of the copy numbers (C') per
cell. When the samples were measured by Q-PCR or Gene-
Chip analysis, the five GSC spike signals in each sample
should obey function {1} for Q-PCR and function {2} for
GeneChip with a good linearity. If the observed linearity
was poor, a series of quality controls was performed and
the measurement repeated. The coefficients of the func-
tions were determined for each sample by the least
squares method. Under the assumption that all genes/
probe sets share the same signal/copy relationship, signal
data for all genes/probe sets were fitted to the functions
{1'} or {2'}, which are the individualized functions of
{1} and {2} for each sample measurement (i).

Cit=ailog(C)+Bi {1'}

Log (8) =vilog(C') + 81 {2'}

(i = sample measurement no.)

The Q-PCR Ct values (Ct) and microarray signal values (S)
of all mRNA species in the sample (i) are converted to
copy numbers per cell (C') by the inverses of functions
{1'} and {2'}, i.e. {3} and {4} below:

C' = BM(Ce-Pi)/ai) {3}

for Q-PCR (Figure 4a).;

C' = B ((logS-vi)/di) {4}

for GeneChips (Figure 4b),

where B is the logarithmic base used in {1} and {2} (see
Materials and Methods for details).

Real world performance of the Percellome method

The correspondence between Q-PCR and GeneChip was
tested using a sample set from 2,3,7,8-tetrachlorodiben-
zodioxin (TCDD)-treated mice. Sixty male C57BL/6 mice
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The dose-response linearity of the GSC spikes in Q-
PCR and the Affymetrix GeneChip array system. Lin-
ear relationships are shown between (a) the Q-PCR Ct val-
ues and log of copy number (log (C"), and (b) the GeneChip
log signal intensity (log(S)) and log of copy number (log (C"))
of the GSC mRNAs. The regression functions were obtained
by the least squares method. The inverse functions (*) were
further used to generate the copy numbers of all other
genes/probe sets for Percellome normalization.

were divided into 20 groups of 3 mice each. TCDD was
administered once orally at doses of 0, 1, 3, 10 and 30 pg/
kg, and the livers were sampled 2, 4, 8 and 24 h after
administration. Nineteen primer pairs were prepared for
Q-PCR and the Ct values of the liver transcriptome were
measured. The same 60 liver samples were measured
using the Affymetrix Mouse430-2 GeneChip [see Addi-
tional files 5 through 8 and 9 through 12]. Q-PCR and
GeneChip data were normalized against cell number by
functions {3} and {4}, respectively. The averages and
standard deviations (sd) of each group (n = 3) were calcu-
lated and plotted as three layers of isoborograms on to 5
x 4 matrix three-dimensional graphs (Figure 5). Together
with another sample set (data not shown), a total of
thirty-six primer pairs were compared, and there was a

hitp://www .biomedcentral.com/1471-2164/7/64

correlation of up to 90% between the Q-PCR and Gene-
Chip surfaces. It is notable that not only the average sur-
faces but also the +1sd and -1sd surfaces corresponded
cdosely in shape and size. We infer that the differences
resulted mainly from biological variations among the
three animals in each experimental group rather than
from measurement error {cf. Figure 7).

An important feature of Percellome normalization is its
independence from the overall expression profile of the
sample. When gene expression profiles differ among sam-
ples, Percellome normalization produces a robust tran-
scriptome that is different from total-RNA dependent
global normalization. As an example, Figure 6 shows the
results of an experiment on the uterotrophic response of
ovariectomized mice to estrogen treatment [ 12] [see Addi-
tional files 13 and 14]. The uteri of the vehicle control are
atrophic because the ovaries, the source of intrinsic estro-
gens, are absent. The uteri of the treated groups are hyper-
trophic owing to estrogenic stimulus from the test
compound administered. Global normalization (90 per-
centile) between the vehicle control group and the high-
dose (1,000 mg/kg) group indicated that 4,600 of 12,000
probe sets showed 2-fold or greater increase, 470 were
reduced by 0.5 or less, and 7,400 remained between these
extremes. In contrast, analysis of Percellome-normalized
data revealed that almost all the 12,000 probe sets showed
a 2-fold or greater increase, including actin, GAPDH and
other housekeeping genes. The hypertrophic tissues, con-
sisting of cells with abundant cytoplasm, provide convinc-
ing evidence for the increases in various cellular
components including housekeeping gene products.

Another important feature of Percellome normalization is
the commonality of the expression scale across platforms.
Batch conversion can be performed between results
obtained from different platforms when the data are gen-
erated by the Percellome method. A practical strategy for
such normalization is to prepare a set of samples from a
target organ of interest with differences in gene expres-
sion, and measure them once by each platform. Data con-
version functions with good linear dose-response
relationships can be obtained individually for those

.genes/probe sets that are measured by both platforms

(Figure 7).

Discussion

We have developed a novel method for normalizing
mRNA expression values to sample cell numbers by add-
ing external spike mRNAs to the sample in proportion to
the genomic DNA concentration. For non-diploid or ane-
uploid samples, an average DNA content per cell should
be determined beforehand for accurate adjustment. When
there is significant DNA synthesis, a similar adjustment
should be considered.
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Correspondence between Q-PCR and GeneChip data. Sixty male C57BL/6 mice were divided into 20 groups of 3 mice
each. 2,3,7,8-tetrachlorodibenzodioxin (TCDD) was administered once orally at doses of 0, |, 3, 10 and 30pg/kg, and the liver
was sampled 2, 4, 8 and 24 h after administration. The liver transcriptome was measured by the Affymetrix Mouse430-2 Gene-
Chip. For Q-PCR, nineteen primary pairs were prepared and the Ct values of the same 60 liver samples were measured (19
genes and 5 spikes in duplicate, using a 96-well plate for 2 samples, total 30 plates). The Percellome data were plotted on to 3-
dimensional graphs for average, +1sd, and — Isd surfaces as shown in (2). The scale of expression (vertical axis) is the copy
number per cell. The 0 h data (*) are copied from the 2 h/dose 0 point for better visualization of the changes after 2 h. The sur-
faces are demonstrated as a grid plot (b) where the grid points indicate one treatment group (n = 3), and a smoothened spline
surface plot (c) for easier 3D recognition ((b), (c): Gys2 (glycogen synthase 2, 142481{5__ at) showing a typical circadian pattern.
(d) the smoothened plots of 6 representative genes/ probe sets generated by Q-PCR (red) and GeneChip (blue). AhR (arylhy-
drocarbon receptor, 1450695_at) showed imperfect correspondence. Cyplal (cytochrome P450, family 1, subfamily a,
polypeptide |, 1422217_a_at) and Cypla2 (14507 15_at) showed good correlations between Q-PCR and GeneChip except for
the saturation in GeneChips above c. 400 copies per cell. Cyplbl (1416612_at) and Cyp7al (1422100_at) showed good corre-
spondence. Hspala (heat shock protein |A, 1452888_at) showed fair correspondence despite low copy numbers, near the
nominal detection limit of the Affymetrix GeneChip system.

The smallest sample to which we have successfully
applied the direct DNA quantification method with suffi-
cient reproducibility is the 6.75 dpc (days post coitus)
mouse embryo which consists of approximately 5,000
cells. This sample size is also approximately the lower
limit for double amplification protocol to obtain suffi-
cient amount of RNA for Affymetrix GeneChip measure-
ment (cf. hup://www.affymetrix.com/Auth/support/
- . in)

High-resolution technology such as laser-capture micro-

dissection (LCM) has become popular and the average
sample size analyzed is getting smaller. An alternative
method for LCM samples is to count the cell number in
the course of microdissection. Although we have not yet
applied Percellome method to LCM samples, we have
applied the alternative method to cell culture samples to
gain Percellome data. Stereological and statistical calcula-
tions should become available to correct the number of
partially sectioned cells in the LCM samples. Another
issue for small samples is the yield of RNA. Approximately

Page 7 of 14

(page number not for citation purposes)

-165-



BMC Genomics 2006, 7.64

Uterine weight (mg)

v Low ML MH High
v {probe sets)

4,600

= 7,400

.5

Figure 6

Uterotrophic response of ovariectomized female
mice by an estrogenic test compound.(a) Shows the
uterine weight, which increases in a dose-dependent manner;
V, vehicle control; Low, low dose; ML, medium-low dose;
MH, medium-high dose; High, high dose group. (b) Shows the
line display of uterine gene expression (Affymetrix MG-
U74v2 A GeneChips) normalized by global normalization (90
percentile), and (c) by the Percellome normalization. Aver-
ages of three samples per group were visualized (by K. A.).
The five white lines are the GSC mRNAs. The green and blue
lines are actin (AFFX-b-ActinMur/M12481_3_at) and
GAPDH (glyceraldehyde-3-phosphate dehydrogenase, AFFX-
GapdhMur/M32599_3_at), respectively. By global normaliza-
tion, 7,400 probe sets remained unchanged and 4,600 probe
sets increased more than two-fold in the H group compared
to the V group, whereas almost all probe sets measured had
increased. It is noted that housekeeping genes such as actin
and GAPDH are significantly induced on a per cell basis.

30 ng of total RNA is retrieved from a single 6.75 dpc
mouse embryo. This amount is sufficient for a double
amplification protocol (DA) to prepare enough RNA for
an Affymetrix GeneChip measurement. An inherent prob-
lem with the DA data is that the gene expression profile
differs from that of the default single amplification proto-
col (SA). Consequently the DA percellome data differ
. from that of SA as if they were produced by a different
platform. To bridge the difference, we applied the proce-
dure that was used for data conversion between Q-PCR

http:/mww.biomedcentral.com/1471-2164/7/64

and GeneChip (cf. Figure 7). A set of spiked-in standard
samples including the LBM sample set (of sufficient con-
centration) were measured by the SA protocol and diluted
versions to the limit measured by the DA protocol. These
data provided us with information about whether DA was
successful as a whole {by comparing 5' signal to 3' signals
of selected probe sets) and which probe sets were properly
amplified by DA (by checking the linearity of the diluted
LBM data). For those probe sets that proved to be linearly
amplified, conversion functions between DA and SA were
generated. These details, along with embryo expression
data will be published elsewhere.

Figures 5 and 7 indicate a close correspondence between
the data generated by Q-PCR and GeneChip analyses.
Since each of the 60 samples was normalized individually
against each GSC signal, the high similarity between the
two platforms indicates the robustness and stability of
this spike system (cf. Figure 7, Cyp7al data). Although
more spikes could potentially increase the accuracy of
normalization, our experience is that five spikes are prac-
tically sufficient for covering the detection range of Gene-
Chip microarrays and Q-PCR, as long as they are used in
combination with the "spike factor". The overall benefits
of using a minimum number of external spikes include
lower probability of cross-hybridization, a reduced
number of wells and spots occupied by the spikes in the
Q-PCR plates and small scale microarrays, and less effort
in preparation, QC and supply.

The Percellome data can be truly absolute when all mRNA
measurements including GSC spikes are strictly propor-
tional to the original copy numbers in the sample
homogenate. As noted eatlier, this condition is not guar-
anteed by any platform despite linearity of response.
Therefore, the Percellome-normalized values have some
biases for each primer pair/probe set, depending on the
steepness of the dose-response curves. An advantage of
Percellome normalization is that, as long as such biases
are consistently reproduced within a platform, the data
can be compared directly among samples/studies on a
common scale. Consequently, when a true value is
obtained by any other measure, all the data obtained in
the past can be simultaneously batch-converted to the true
values.

This batch-conversion strategy can be extended to data
conversion between different versions and different plat-
forms, as long as the data are generated in copy numbers
"per cell". We have shown an example between Affymetrix
GeneChip and Q-PCR for limited numbers of probe sets
{cf. Figure 7). Custom rmicroarrays that accept our GSC for
Percellome normalization are in preparation by Agilent
Technologies (single color) and GE Healthcare (CodeLink
Bioarray).
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B Copy number by Q-PCR

Conversion functions between Q-PCR and GeneChip. The data shown in Figure 5 as 3D surfaces are shown as a scatter
plot (60 plots). The regression function can be used to convert Q-PCR to GeneChip and vice versa, with a level of certainty
indicated by coefficient of correlation. Itis noted that Cyplal and Cypla2 became saturated above about 400 copies per cell in
GeneChip system (indicated in pink plots). Cyp7al showed high linearity, indicating that the variation shown by the split +1sd
and -| sd surfaces in Figure 5 reflected biological (animal) variation, not measurement errors.

Another important contribution of Percellome analysis is
in the area of archived data in private and public domains.
Firstly, Percellome data are the result of a simple linear
transformation of the raw microarray data; preserving the
diswibution and order of the probe set data. Therefore,
parametric or non-parametric methods should be able to
align the data distribution and generate estimates of
mRNA copy number of the non-spiked archival samples.

Any archival samples that are re-measurable by Percel-
lome method will greatly increase the accuracy of estima-
tion. Secondly, percellome can provide appropriate
bridging information between old and new versions of
Affymetrix GeneChips, such as human HU-95 and HU-
133, murine MU-74v2 and MOE430 series. This should
also facilitate comparisons between newly generated and
archived data.
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The Percellome method was developed for a large-scale
toxicogenomics project {13] using the Affymetrix Gene-
Chip system. It was intended to compile a very large-scale
database of comprehensive gene expression profiles in
response to various chemicals from a series of experi-
ments conducted over an extended time period. However,
the method also proved to be useful for small-scale plat-
forms such as 96 well plate-based Q-PCRs as shown
above, and probably for small-scale targeted microarrays.
In both cases, highly inducible or highly transcribed genes
are likely to be selected. Therefore, the expression profiles
may differ significantly among samples such that profile-
dependent normalization (e.g. global normalization)
may not be applicable. In such cases, the profile-inde-
pendent nature of the Percellome method provides a
robust normalization.

To demonstrate the profile-independence of the Percel-
lome method, we chose an extreme case - the utero-
trophic response assay (cf. Figure 6). The treated uteri
were composed of hypertrophic cells with abundant cyto-
plasm whereas the untreated uteri were composed of
hypoplastic cells with scant cytoplasm. This indicates that
the uteri of untreated ovariectomized mice were quies-
cent, and that a majority of the inducible genes were prob-
ably transcriptionally  inactive.  Therefore, the
identification of most genes as being induced by 2-fold or
greater is reasonable and expected. In most in vivo experi-
ments, the gene profiles of the samples are much more
similar. However, there is always a set of genes that is
found to be "increased” when analyzed on a "per one cell"
basis that are declared to be "decreased" by global type
normalization, or vice versa. Such increase/decrease calls
made by the global type normalization can differ accord-
ing to the normalization parameters. In both cases, the
Percellome method can inform the researcher how much
the expression profiles are distorted by the treatment, such
as in the case of the uterotrophic assay. We also note that
in vitro experiments such as cell-based studies tend to gen-
erate data similar to that of uterotrophic experiment.

Conclusion

Percellome data can be compared directly among samples
and among different studies, and between different plat-
forms, without further normalization. Therefore, "percel-
lome" normalization can serve as a standard method for
exchanging and comparing data across different platforms
and among different laboratories. We hope that the Per-
cellome method will contribute to transcriptome-based
studies by facilitating data exchanges among laboratories.

Methods

Animal experiments

C57BL/6 Cr Slc (SLC, Hamamatsu, Japan) mice main-
tained in a barrier system with a 12 h photoperiod were

hitp://www.biomedcentral.com/1471-2164/7/64

used in this study. For the liver transcriptome experi-
ments, twelve week-old male mice were given a single
dose of the test compound by oral gavage, and the liver
was sampled at 2, 4, 8 and 24 h post-gavage. For the uter-
otrophic experiment, 6 week old female mice were ova-
riectomized 14 days prior to the 7 day repeated
subcutaneous injection of a test compound [12]. Animals
were euthanized by exsanguination under ether anesthe-
sia and the target organs were excised into ice-cooled plas-
tic dishes. Tissue blocks weighing 30 to 60 mg were placed
in an RNase-free 2 ml plastic tube (Eppendorf GmbH.,
Germany) and soaked in RNAlater (Ambion Inc, TX)
within 3 min of the beginning of anesthesia. Three ani-
mals per treatment group were used and individually sub-
jected to transcriptome measurement.

Sample homogenate preparation

The tissue blocks soaked in RNAlater were kept overnight
at 4°C or until use. RNAlater was replaced in the 2 ml
plastic ube with 1.0 ml of RLT buffer (Qiagen GmbH.,
Germany), and the tissue was homogenized by addinga 5
mm diameter Zirconium bead (Funakoshi, Japan) and
shaking with a MixerMill 300 (Qiagen GmbH., Germany)
at a speed of 20 Hz for 5 min {only the outermost row of
the shaker box was used).

Direct DNA quantitation

Three separate 10 pl aliquots were taken from each sample
homogenate to another tube and mixed thoroughly. A
final 10 pl aliquot therefrom was treated with DNAse-free
RNase A (Nippon Gene Inc, Japan) for 30 min at 37°C,
followed by Proteinase K (Roche Diagnostics GmbH.,
Germany) for 3 h at 55°C in 1.5 ml capped tubes. The
aliquot was transferred to a 96-well black plate. PicoGreen
fluorescent dye (Molecular Probes Inc., USA) was added
to each well, shaken for 10 seconds four times and then
incubated for 2 min at 30°C. The DNA concentration was
measured using a 96 well fluorescence plate reader with
excitation at 485 nm and emission at 538 nm. A phage
DNA (PicoGreen Kit, Molecular Probes Inc., USA) was
used as standard. Measurement by this PicoGreen method
and the standard phenol extraction method correlated
well (coefficient of correlation = 0.97, data not shown).
The smallest sample size for reproducible and reliable
DNA quantitation is about 5,000 cells that corresponds to
a 6.75 dpc mouse embryo.

The grade-dosed spike cocktail (GSC)

The following five Bacillus subtilis RNA sequences were
selected from the gene list of Affymetrix GeneChip airays
(AFFX-ThiX-3_at, AFFX-LysX-3_at, AFFX-PheX-3_at,
AFFX-DapX-3_at, and AFFX-TrpnX-3_at) present in the
MG-U74v2, RG-U34, HG-U95, HG-U133, RAE230 and
MOE430 arrays: thrC, thrB genes corresponding to nucle-
otides 248-2229 of X04603; lys gene for diami-
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‘nopimelate decarboxylase comresponding to nucleotides
350-1345 of X17013; pheB, pheA genes corresponding to
nucleotides 2017-3334 of M24537, dapB, jojF, joiG
genes corresponding to nucleotides 1358-3197 of
138424; TipE protein, TrpD protein, TrpC protein corre-
sponding to nucleotides 1883-4400 of K01391. The cor-
responding ¢DNAs were purchased from ATCC,
incorporated into expression vectors, amplified in E. coli
and transcribed using the MEGAscript kit (Ambion Inc,
TX). The mRNA was purified using a MACS mRNA isola-
tion kit (Miltenyi Biotec GmbH., Germany). The concen-
trations of spike RNAs in the GSC were in threefold steps,
from 777.6 pM for AFFX-ThrX-3_at, 259.4 pM for AFFX-
LysX-3_at, 86.4 pM for AFFX-PheX-3_at, 28.8 pM for
AFFX-DapX-3_at, to 9.6 pM for AFFX-TrpnX-3_at. In gen-
eral, the ratio depends on the linear range of the measure-
ment system and the available number of spikes.

Setting of the "spike factor” and addition of GSC to a
sample homogenate according to its DNA concentration
The GSC was added to the sample homogenates in pro-
portion to their DNA concentrations, assuming that all
cells contain a fixed amount of genomic DNA (g/cell)
across samples. The amount of GSC added to each sample
G (1) was given as

G=C*v*f (1),

where C is the DNA concentration (g/1), v(1) is the volume
of homogenate further used for RNA extraction and f (1/g)
is the "spike factor", which is an adjustment factor to
ensure that the sample is properly spiked by the GSC (cf.
Figure 3). Spike factors have been pre-determined for var-
ious organs/tissues to reflect differences in their total
RNA/genomic DNA ratios (cf. Table 1). In this way, five
spike mRNA signals can properly cover the linear dose-
response range of the platform. In practice, for the
Affymetrix GeneChips, the spike factor is set so that the
five GSC spikes cover the range of "Present" calls given by
the Affymetrix system, which comresponds to approxi-
mately 80 to 7000 in raw readouts given by the Affymetrix
MASS5.0 software. A raw readout of 10 by the current
Affymetrix GeneChip system corresponds to approxi-
mately one copy per cell in mouse liver (spike factor =
0.2), whereas in mouse thymus (spike factor = 0.01) it
corresponds to approximately 0.05 copy per cell. For Q-
PCR, the same spike factor corresponds to Ct values rang-
ing approximately from 17 to 27, which is well within the
linear range of Q-PCR (data not shown).

"Per cell” normalization (Percellome normalization)
Since murine haploid genomic DNA is made of 2.5 x 109
base pairs and one base pair is approximately 600 Daltons
(Da), the haploid genomic DNA weighs 1.5 x 1012 Da,
corresponding to

hitp:/mww.biomedcentral.com/1471-2164/7/64

d =5 x 10-12 (g DNA per diploid cell).

Therefore, the cell number per liter of the sample
homogenate (N) is given as

N =C/d (cells/l)
where C is the DNA concentration (g/1).

On the other hand, the copy numbers of GSC RNAs in the
homogenate are given as follows:

if Sj (mole/l) (j = 1,2,3,4,5) is the mole concentration of
one of the five spike RNAs in the GSC solution and G(1) is
the amount of GSC added to each homogenate, the mole
concentrations of the spike RNAs in the homogenate
(CSj) are given as,

CSj = 8j*C*f (mole/1).

The GSC RNAs in mqles per cell (MSj) are given as
MSj = CSj/N

= §j*C*f/(C/d)

= §j*f*d (mole/cell)

The copy numbers of the GSC RNAs per cell (NSj) are
given as

NSj = MS§j*A
= §j*f*d*A (copies per diploid cell)
where A is Avogadro's number.

As aresult, the GSC spikes AFFX-TrpnX-3_at, AFFX-DapX-
3_at, AFFX-PheX-3_at, AFFX-LysX-3_at and AFFX-ThrX-
3_at correspond approximately to 5.8, 17.3, 52.0, 156.0
and 468.1 copies per cell {per diploid DNA template) for
mouse liver sample homogenates, where the spike factor
= 0.2, It is our observation that the RNA/DNA ratios are
virtually constant across polyploid hepatocytes {data not
shown).

For each Q-PCR plate or GeneChip, the coefficients, o, B,
y and 8 of functions {1} or {2} are determined from the
GSC values using the least-square method. The signal val-
ues or Ct values of all the other mRNAs measured are then
converted to copy numbers per cell by {3} or {4}, i.e. the
inverses of functions {1} or {2}.
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Table 2: Primers for Q-PCR

http://www.biomedcentral.com/1471-2164/7/64

Gene Forward Reverse
AFFX-TrpnX-3_at TTCTCAGCGTAAAGCAATCCA GCAAATCCTTTAGTGACCGAATACC
AFFX-DapX-3_at TCAGCTAACGCTTCCAGACC GGCCGACAGATTCTGATGACA
AFFX-PheX-3_at GCCAATGATATGGCAGCTTCTAC TGCGGCAGCATGACCATTA
AFFX-LysX-3_at CCGCTTCATGCCACTGAATAC CCGGTTCGATCCAAATTTCC
AFFX-ThrX-3_at CCTGCATGAGGATGACGAGA GGCATCGGCATATGGAAAC
Ahr_1450695_at CAGAGACCACTGACGGATGAA AGCCTCTCCGGTAGCAAACA
Cyplal_1422217_a_at TGCTCTTGCCACCTGCTGA GGAGCACCCTGTTTGTTTCTATG
Cypla2_1450715_at CCTCACTGAATGGCTTCCAC CGATGGCCGAGTTGTTATTG
Cyplbi_1416612_at GCCTCAGGTGTGTTTGATGGA AGTACAGCCCTGGTGGGAATG
Cyp7al_1422100_at TTCTACATGCCCTTTGGATCAG GGACACTTGGTGTGGCTCTC
Hspala_1452388_at ACCATCGAGGAGGTGGATTAGA AGGACTTGATTGCAGGACAAAC

The "LBM" ("liver-brain mix") standard sample

A pair of samples having dissimilar gene expression pro-
files was chosen to evaluate the linearity of the plaiform.
The pairs chosen were brain and liver for mouse and rat,
two distinct cancer cell lines for humans, and adult liver
and embryo for Xenopus laevis. The sample pairs were
processed as described above including addition of the
GSC. Two final homogenates were then blended at ratios
of 100:0, 75:25, 50:50, 25:75 and 0:100 (based on cell
numbers) to make five samples. These five samples were
measured by Q-PCR and/or GeneChips (MG-U74v2A,
MEA430A, MEA430B, MG430 2.0 (shown in Figure 1),
RAE230A, HG-U95A, HG-U133, and Xenopus array).

Quantitative-PCR

Duplicate homogenate samples were treated with DNasel
(amplification grade, Invitrogen Corp., Carlsbad, CA,
USA) for 15 min at room temperature, followed by Super-
Script II (Invitrogen) for 50 min at 42 °C for reverse tran-
scription. Quantitative real time PCR was performed with
an ABI PRISM 7900 HT sequence detection system
(Applied Biosystems, Foster City, CA, USA) using SYBR
Premix Ex Taq (TAKARA BIO .Inc, Japan), with initial
denaturation at 95°C for 10 s followed by 45 cycles of 5 s
at 95°C and 60 s at 60°C, and Ct values were obtained.
Primers for the genes explored in this study were selected
from sequences close to the areas of Affymetrix GeneChip
probe sets as shown in Table 2.

Affymetrix GeneChip measurement

The sample homogenates with GSC added were processed
by the Affymetrix Standard protocol. The GeneChips used
were MG-U74v2A for the uterotrophic study and Mouse
430-2 for the TCDD study (singlet measurement). The
efficiency of in vitro transcription (IVT) was monitored by
comparing the values of 5' probe sets and 3' probe sets of
the control RNAs {(AFFX- probe sets) incdluding the GSC
(see Quality Control below). The dose-response linearity
of the five GSC spikes was checked and samples showing
saturation and/or high background were re-measured

from either backup tissue samples, an aliquot of homoge-
nate, or a hybridization solution, depending on the
nature of the anomaly.

Quality control

Any external spiking method, including our Percellome
method, is valid for high-quality RNA samples. Therefore,
the quality of the sample RNA should be carefully moni-
tored. In addition to a common checkup by RNA electro-
phoresis (including capillary electrophoresis if necessary),
OD ratio, and cRNA yield, we monitor the performance of
IVT (in vitro translation) or amplification. The 3' and 5'
probe set data of the spiked-in RNAs and sample RNAs
(actin, GAPD and other AFFX- probe sets) that are pre-
pared in Affymetrix GeneChip are compared to monitor
the extension of RNA by the IVT process. When both the
spiked-in RNAs and the sample RNAs have similar levels
of 5' and 3' signals respectively, it is judged that the IVT
extension was normally performed. When both spiked-in
and sample RNAs have significantly lower 5' signal than 3'
signal, it is judged that the IVT extension was abnormal.
When only the sample RNAs showed significantly lower 5'
signal than 3' signal, it is judged that the IVT extension
was normal but the sample RNAs were degraded. When
only the spiked-in RNAs showed significantly lower 5’ sig-
nal than 3' signal, it is judged that the IVT extension was
normal but the spiked-in RNAs were degraded (although
we have not encountered this situation). In addition, if
the degraded sample was spiked-in by the non-degraded
spike RNAs and measured by GeneChip, the position of
spiked-in RNAs will be offset toward abnormally higher
intensity. Together, this battery of checkups considerably
increases the ability to detect abnormal events that will
affect the reliability of the Percellome method. When any
abnormality was found, each step of sample preparation
was reevaluated to regain normal data for Percellome nor-
malization.
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The web site for GeneChip data
The GeneChip data are accessible at hup://

www.nihs.go.jp/tox/TTG_Archive.him.
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Additional material

Additional File 1

Excel spreadsheet file containing 15 Affymetrix Mouse 430-2 GeneChip
raw data of five LBM samples in triplicate (cf. Figure 1). The column
name LBM-100-0-X_Signal indicates the component percentages, i.e.
1009 liver 0% brain, and X = 1,2,3 indicates the triplicates. The LBM-
100-0-X_Detection column indicates P for present, A for absent and M
for marginal calls by Affymetrix MAS 5.0 system.

Click here for file

| http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-81.zip)

Additional File 2

Excel spreadsheet file containing Percellome data of the same LBM sam-
ples, of which raw data is listed in Additional file 1 (cf. Figure 1).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-S2.zip|

Additional File 3

Excel spreadsheet file containing 2 Affymetrix MG-U74v2 raw data of a
blank sample with the GSC (horizontal axis of Figure 2a) and blank with
the five spike RNAs at a high dosage (vertical axis of Figure 2a).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-53.zip|

Additional File 4

Excel spreadsheet file containing 2 Affymetrix MG-U74v2 raw data of a
liver sample with GSC (horizontal axis of Figure 2b) and without GSC
(vertical axis of Figure 2b).

Click here for file .
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-S4.zip|

hitp://www.biomedcentral.com/1471-2164/7/64

Additional File 5

(first quarter of a data set consisting of 2 hr, 4 hr, 8 hr, and 24 hr data,
divided because of the upload file size limitation)[: an Excel spreadsheet
file containing 2 hr data (15 GeneChip data) of the total of 60 Affymetrix
Mouse 430-2 GeneChip raw data of the TCDD study consisting of 20 dif-
ferent treatment groups in triplicate (of. Figure 5). The column name
DoseXXX-TimeYY-Z_Signal indicates the dosage and sampling time after
TCDD administration in hours, e.g. XXX = 001 indicates 1 microgram/
kg group, YY = 02 indicates two hours after administration, and 2= 1,2,3
indicates animal triplicate. The DoseXXX-TimeYY-Z_Detection column
indicates P for present, A for absent and M for marginal calls by Affyme-
trix MAS 5.0 system.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-S5.zip]

Additional File 6

(second quarter of a data set consisting of 2 hr, 4 hr, 8 hr, and 24 hr data,
divided because of the upload file size limitation)]: an Excel spreadsheet
file containing 4 hr data (15 GeneChip data) of the total of 60 Affymetrix
Mouse 430-2 GeneChip raw data of the TCDD study consisting of 20 dif-
ferent treatment groups in triplicate (cf. Figure 5). The column name
DoseXXX-TimeYY-Z_Signal indicates the dosage and sampling time after
TCDD administration in hours, e.g. XXX = 001 indicates 1 microgram/
kg group, YY = 02 indicates two hours after administration, and Z = 1,2,3
indicates animal triplicate. The DoseXXX-TimeYY-Z_Detection column
indicates P for present, A for absent and M for marginal calls by Affyme-
trix MAS 5.0 system.

Click here for file

| http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-56.zip|

Additional File 7

(third quarter of a data set consisting of 2 hr, 4 hr, 8 hr, and 24 hr data,
divided because of the upload file size limitation)]: an Excel spreadsheet
file containing 8 hr data (15 GeneChip data) of the total of 60 Affymetrix
Mouse 430-2 GeneChip raw data of the TCDD study consisting of 20 dif-
ferent treanment groups in triplicate (cf. Figure 5). The column name
DoseXXX-TimeYY-Z_Signal indicates the dosage and sampling time after
TCDD administration in hours, e.g. XXX = 001 indicates 1 microgram/
kg group, YY = 02 indicates two hours after administration, and 2 =1,2,3
indicates animal triplicate. The DoseXXX-TimeYY-Z_Detection column
indicates P for present, A for absent and M for marginal calls by Affyme-
trix MAS 5.0 system.

Click here for file

| hittp://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-57.zip}

Additional File 8

(last quarter of a data set consisting of 2 hr, 4 hr, 8 hr, and 24 hr data,
divided because of the upload file size limitation)|: an Excel spreadsheet
file containing 24 hr data (15 GeneChip data) of the total of 60 Affyme-
trix Mouse 430-2 GeneChip raw data of the TCDD study consisting of 20
different treatment groups in triplicate (cf. Figure 5). The column name
DoseXXX-TimeYY-Z,_Signal indicates the dosage and sampling time after
TCDD administration in hours, e.g. XXX = 001 indicates 1 microgram/
kg group, YY = 02 indicates two hours after administration, and 2 = 1,2,3
indicates animal triplicate. The DoseXXX-TimeYY-Z_Detection column
indicates P for present, A for absent and M for marginal calls by Affyme-
trix MAS 5.0 systzm.

Click here for file

|http://www .biomedcentral.com/content/supplementary/1471-
2164-7-64-S8.zip|
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Additional File 9

(first quarter of a data set consisting of 2 hr, 4 hr, 8 hr, and 24 hr data,
divided because of the upload file size limitation) |: an Excel spreadsheet
file containing 2 hr Percellome data (15 sample data) of the 60 samples
of the TCDD study (cf. Figure 5), of which corresponding raw data is
listed in Additional file 5.

Click here for file

| http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-89.zip}

Additional File 10

(second quarter of a data set consisting of 2 hr, 4 hr, 8 hr, and 24 hr data,
divided because of the upload file size limitation) |: an Excel spreadsheet
file containing 4 hr Percellome data (15 sample data) of the 60 samples
of the TCDD study (cf. Figure 5), of which corresponding raw data is
listed in Additional file 6.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-510.zip|

Additional File 11

(third quarter of a data set consisting of 2 hr, 4 hr, 8 hr, and 24 hr data,
divided because of the upload file size limitation)]: an Excel spreadsheet
file containing 8 hr Percellome data (15 sample data) of the 60 samples
of the TCDD study (cf. Figure 5), of which corresponding raw data is
listed in Additional file 7.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-S11.zip|

Additional File 12

(last quarter of a data set consisting of 2 hr, 4 hr, 8 hr, and 24 hr data,
divided because of the upload file size limitation)]: an Excel spreadsheet
file containing 24 hr Percellome data (15 sample data) of the 60 samples
of the TCDD study (cf. Figure 5), of which corresponding raw data is
listed in Additional file 8.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-S12 zip|

Additional File 13

Excel spreadsheet file containing 15 Affymetrix MG-U74v2 A GeneChip
raw data of the uterotrophic response study (cf. Figure G). The column
narne X-Y_Signal indicates the treatment (V = vehicle, Low = low dose,
etc) and animal triplicate (Y = 1,2,3). The X-Y_Detection columnn indi-
cates P for present, A for absent and M for marginal calls by Affymetrix
MAS 5.0 system.

Click here for file

| http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-813 zip|

Additional File 14

Excel spreadsheet file containing Percellome data of the same 15 samples
of the uterotrophic response study (cf. Figure G), of which raw data s
listed in Additional file 13.

Click here for file

| http://www.biomedcentral.com/content/supplementary/1471-
2164-7-64-814 zip|
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Mass Distributed Clustering: A New Algorithm for
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Abstract

The availability of whole-genome sequence data and high-throughput techniques such as DNA
microarray enable researchers to monitor the alteration of gene expression by a certain organ or
tissue in a comprehensive manner. The quantity of gene expression data can be greater than
30,000 genes per one measurement, making data clustering methods for analysis essential. Biolo-
gists usually design experimental protocols so that statistical significance can be evaluated; often,
they conduct experiments in triplicate to generate a mean and standard deviation. Existing clus-
tering methods usually use these mean or median values, rather than the original data, and take
significance into account by omitting data showing large standard deviations, which eliminates po-
tentially useful information. We propose a clustering method that uses each of the triplicate data
sets as a probability distribution function instead of pooling data points into a median or mean.
This method permits truly unsupervised clustering of the data from DNA microarrays.

Keywords: data mining, bioinformatics, gene expression data, microarray, repeated measurements,
clustering algorithm

1 Introduction

1.1 Motivation

When large-scale gene expression profiles became available, biologists usually normalized the data
to overt biological events, such as monitorable phenotypes. By doing this, biologically important
expression data could be selected by linkage analysis to a particular biological events and used for
further analysis. This type of analysis tends to be limited to genes that encode the final phases of a
gene cascade or signaling system that directly reflects an emergence of phenotype, and hence shows
high expression values.

The advent of microarray and other high-throughput technologies has removed such limitations,
allowing whole-genome analysis that includes the initial phases of the cascade, where phenotypes are
not clear and signal intensity is usually low. These technologies generate huge quantities of data,
placing great demands on data analysis. To accommodate this demand, the Division of Cellular
and Molecular Toxicology of National Institute of Health Sciences (NIHS), Japan, has developed the
Percellome System [2], which generates absolute mRNA-quantity data as the copy number per cell
from the microarray system and quantitative PCR. This system essentially enables utilization of all

“These authors contributed equally to this work.
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¥To whom correspondence about biological issues including Percellome system should be addressed: E-mail:
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Table 1: Sample data.

Condition 1 Condition 2

1at Exp. 2nd Exp. 3rd Exp. 1at Exp. 2nd Exp. 3rd Exp.
Gene 1 0.9682 0.9924 1.0394 -0.1277 -0.0842 0.2125
Gene 2 1.3666 1.4547 1.3798 -0.2026 -(1.2539 0.4598
Gene 3 -0.0109 «0.0619 0.0738 0.9118 0.9532 1.1352
Gene 4 -0.1315 -0.0222 0.1540 1.3569 1.2596 1.6835
Gene 5 -1.1196 -0.9738 -0.9087 0.0605 0.0946 -0.1643
Gene 6 -1.4476 -1.2152 -1.6372 0.0088 0.0608 -0.0587
Gene 7 -0.0070 0.0697 -0.0623 -0.8928 -1.0297 -1.0775
Gene 8 -0.1238 -().21562 0.3397 -1.3814 -1.3456 -1.4730
Gene 9 1.2004 0.0041 1.0456 -0.2224 0.5194 0.4527
Gene 10 0.1282 0.4077 0.2144 1.1292 0.4488 0.6720
Gene 11 -1.2166 0.2651 0.2115 1.3180 0.7994 0.1325
Gene 12 -0.5777 -0.7242 -0.9481 -0.0283 0.1748 0.6009
Gene 13 -0.2747 -0.3692 -1.6061 -0.8657 -0.0627 0.1783
Gene 14 0.8377 0.1788 -1.5665 -1.2766 -0.7981 -0.17563
Gene 15 -1.1518 0.9327 0.9700 -1.2910 -0.8788 -0.0802
Gene 16 0).0885 1.7689 0.3925 0.0623 0.8691 -1.6715
Gene 17 1.3529 1.8681 -1.7204 1.8635 0.2069 -0.6710
Gene 18 0.7227 0.0423 0.7346 -0.8883 -0.1600 -0.4517
Gene 19 -1.4129 -0.2668 0.1797 1.01563 2.5328 -2.0493
Gene 20 -0.2813 -0.6737 -0.5480 0.4369 -1.0448 -0.8920
Gene 21 -0.29356 2.4749 3.2186 -1.8833 1.8711 0.2152
Gene 22 -6.3168 0.3275 -5.4107 2.0824 0.9931 -3.06956
Gene 23 0.0022 0.1320 -0.1333 2.6916 -0.3704 3.0789
Gene 24 -3.1931 -0.6848 3.8781 -1.8794 -2.8393 -0.6813

of the gene expression data for the clustering analysis. The basis of the clustering strategy for this
all-gene data is a phenotype-independent analysis, meaning that there are no auxiliary data that can
be used for clustering. We have designed a pure, unsupervised clustering system that can handle low-
intensity data along with its variance. It is postulated that low-intensity data may contain relatively
larger amounts of measurement error than high-intensity data.

An example of the data collected for this study is shown in Table 1. Two experiments were
performed in triplicate (i.e., each experiment was performed on three mice). An average result for
each replicated experiment can be calculated, but this eliminates information about any deviations.
Alternatively, the data from the three replicates can be treated as a probability distribution and
handled by & parametric approach. Applying this approach to gene expression data, we were able to
develop our unsupervised clustering algorithm, mass distributed clustering (MADIC).

1.2 Related Works

Most clustering algorithms ignore measurement errors. However, measurement errors occur in the real
world, especially in gene expression analysis. NIHS has established a measurement method that can
analyze all genes, including low-intensity genes that contain substantial measurement errors [2]. Some
clustering algorithms, such as the one presented by Kumar et al., can handle data with errors [3].
Yeung et al. demonstrated clustering algorithms in which deviations from repeated measurements
can be evaluated [6]. Using a clustering algorithm with SD- or CV-distance, their approach was an
improvement over the traditional simple average method, which does not evaluate deviations.

Many clustering algorithms have been proposed for gene expression analysis [4, 5], but existing
algorithms cannot use whole genes, stable and unstable genes. Such methods are useful when clustering
stable objects, but we wanted to devise a method to cluster both stable and unstable genes. Our
proposed algorithm is based on an extension of density-based clustering, DBSCAN [1].

1.3 Purpose of Research

The purpose of this research was to develop a clustering algorithm that would handle triplicate gene
expression data without losing information about deviation.
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1.4 Qutline of Article

In Section 2, we define how we have extended density-based clustering and how our proposed algorithm
differs from those used in conventional clustering. In Section 3, we provide the details of our clustering
algorithm. In Section 4, we present results of experiments with synthetic and real gene data. Finally,
in Section 5 we offer conclusions. '

2 Definitions

2.1 Notations

(1) Data set. O = {01,092, --,0p}: Data set for clustering. o; is a probability distribution function
(PDF) in d-dimensional Euclidean space. We sometimes denote this by the objects o,p,q € O.
0; = po,(z;) : R? - Rt : PDF. x; € R% is a point of d-dimensional Euclidean space. o, is the
parameter of the PDF. We also represent the PDF in another way. We can use this notation if the
PDF has no special direction for this integration. pg,s(r) : R* — R¥ : PDF. r is the distance from
X,

(2) Observation. y(i,7, k) : kth observed value for jth dimension for o;.

(3) Distance. Distance is denoted by dist(x;,%;) in usual Euclidean space. We define distance between
objects as dist(0;, 05) = dist(ps, (x:), po; (%5)) = dist(x;,x;).

(4) €. We use ¢ for the threshold about distance.
(5) 0. We use 6, for threshold about mass.

(6) Mass function. We defined the mass function as:

%ma(r) = Py, ().

We sometimes denote the mass function and PDF with an object index such as m,,, which means
m,,. The mass function has to have the following properties.

a) mq(0) = 0: additional definition.

b) Increasing function: the definition is the differentiation form and the right side is equal to or
greater than zero.

c) If mg, (r) > mg,(r) for some r > 0, then the inequality is true for any positive number.
d) mg(o0) = 1: convenient for giving algorithm parameters.

Well-known probability distributions, such as the chi-square function, have these properties. The
function p is the PDF. The mass function m is the cumulative PDF.

2.2 The Expansion of Density-Based Clustering

We expand and redefine definitions used in traditional density-based clustering as follows:

(1) e-neighborhood. e-neighborhood of an object p, denoted by N, (p), is defined by N.(p) = {q €
O : dist(p,q) < €}. This is the subset of the whole data set that has a distance less than e.

(2) e-neighborhood mass. e-neighborhood mass of an object p, denoted by M.(p), is defined by
Ms(p) = ZqENE(p) mq(g - diSt(p, Q)) V
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Figure 1 shows the concept of e-neighborhood mass in one dimension. This example shows &-
neighborhood mass of the center object. The center object is summarized within the radius &, because
dist(p, p) = 0. The mass of center object is represented by the horizontally filled area, including its
left-most expansion into the vertically filled area (crosshatched). There are two objects within € except
for own object, center object. These objects are summarized within the radius e-dist (p, q). The mass
of left object is represented by the vertically filled area, including its overlap with the horizontally filled
area (crosshatched). The mass of right object is diagonally filled area. Summing the three masses,
mgq(e-dist(p, q)), gives M¢(p). The Crosshatched in this example is double counted.

e-neighborhood mass is the expansion of e-neighborhood. It supposes an infinite limit. If the mass
is concentrated in the center, e-neighborhood mass equals the number of objects in e-neighborhood.

Figure 1: e-neighborhood mass. Figure 2: Directly density reachable.

(3) Directly density reachable. An object p is directly density reachable from an object g wrt. & and
Qum if:

a) p € Ng(q) CO.
b) N(q) > 6y, (core condition 1).
c) mg(e) > myp(e) (core condition 2).

Core condition 1 is the natural expansion of the core condition in DBSCAN. Core condition 2 shows
the direction of the error rate in the experiment. Figure 2 shows the concept of core condition 2. This
condition represents flow from a concentrated object to a distributed object, or from a high-density
object to a low-density object.

(4) Density reachable. An object p is density reachable from an object q wrt. & and 6,, if there
is a chain of objects p1,-+*,PnyP1 = P,Pr = q such that p;; is directly density reachable from
p;. Figure 3 shows the concept of density reachable. This definition is the same as the DBSCAN
definition.

(5) Density connected. Density connectivity is a symmetric relation. An object p is density connected
to an object g wrt. ¢ and 6y, if there is a chain of objects {01, p1,91,02,P2,92,"** , Pm—~1, Gm~1,0m}
such that:

a) Object p is density reachable from object 01.
b) Object q is density reachable from object oy,.

c) Object p; is density reachable from object o;.
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qy

q,

B 0, P,
p 0y q

Figure 4: Density connected.

Figure 3: Density reachable.

d) Object p; is density reachable from object 0441.
e) Object q; is density reachable from object p1.

Because density reachable is defined as flow from a stable object to an unstable object, we cannot
define density connected using one object as is done in DBSCAN, so instead we use the chain of
objects. Condition 5 shows that each object, p;, is in the core condition. Figure 4 shows an example
of density connected. The arrow is the flow of density reachable,

(6) Cluster. A cluster C wrt. ¢ and 6., is a non-empty subset of O satisfying the following conditions:
a) If any p € O satisfies the core conditions, then p is a member of some cluster.

b) For any p,q € O: if p is a member of C and q is density connected from p wrt. € and 6,,, then
q is a member of C (maximality).

c) For any p,q € C: p is density connected to q wrt. £ and 6, (connectivity).

A cluster contains the objects that do not satisfy the core condition. Such an object is called a border,
and a border object may belong to multiple clusters.

2.3 Imitative Hierarchical Tree Structure
2.3.1 Lemmas
According to the preceding definitions, the following lemmas are true.

Lemma 1. If an object p is a core object wrt. £1 and 6,,, object p is a core object wrt. g9 > 1
and 6,,. _
Proof. An object p is a core object wrt. £1 and qu,. This means the following:

(1) Mg, (p) > 6, (core condition 1).
(2) 3a € N, (p) C O s.t. mp(e;) > my(er) (core condition 2).

Because M. (p) is a strictly increasing function for e, Mg, (p) > M, (p) > 0, for £2 > £1. According
to the mass function property (c), mp(e1) > mg(ei1) => mp(e2) > my(e2). And, according to the
epsilon neighborhood, q € N, (p) C N, (p) C O. So, 3q € N, (p) C O s.t. mp(e2) > mq(es).

Lemma 2. If a subset C is a cluster wrt. £; and 8,,, there is a cluster that contains C wrt.
g2 > &1 and 6,,.

Proof. Suppose a subset C is a cluster wrt. £ and 6,,. According to the connectivity condition,
any objects p,q € C are density connected. There exists a chain of objects which consists of directly
density reachable or density reachable objects. These definitions are valid for g5 > &7, if satisfied for
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€1. So, p and q are density connected for g9. According to the maximality condition, p and g are
members of the same cluster.

Lemma 3. If an object p is a core object wrt. € and 6,,,, object p is a core object wrt. ¢ and
Omy < Omg.
Proof is the same as Lemma, 1.

Lemma 4. If a subset C is a cluster wrt. € and 6yy,,, there is a cluster that contains C wrt. € and
Oy < Oy -
Proof is the same as Lemma 2.

2.3.2 'Tree Structure

By proceeding with Lemmas 1, 2, 3 and 4, we threshold

can build a hierarchical tree structure if we use 5
the appropriate thresholds and cluster the data. 4 U ‘H
We call this structure a imitative hierarchical tree — | H
structure to distinguish it from hierarchical clus- 3 |
tering. 2 T 1] 1 LT 1
For example, a sequence of thresholds 1 L——T—J L-—-l——l
is {{e1,0m.} {e2,0ms by - 1 {€nyOma}}y and & ' '
sequence of clusters {{C11, C12,-- -}, {C21,Ca2, -},
+++,{Cn1,Chpg, - -}} correspond to the thresh- Figure 5: Imitative hierarchical thee stucture.
olds. For any cluster C;; and k < i, there exists a cluster Cy,, such that Cy,, includes C;;. Figure 5
shows a tree structure. Each rectangle indicates cluster.

=
| S a—

3 Algorithm

3.1 Our Solution

Our proposed algorithm is based on the following ideas:

(1) Consider the deviation of experimental data to be a mass distribution.

(2) Expand density-based clustering for the mass distribution.

(3) Generate the imitative hierarchical clustering tree to adapt the local density.

The deviation in data from identical replicate experiments can be represented as a PDF, and we
identify the probability distribution with the mass distribution. By expanding density-based cluster-
ing, we created an algorithm to calculate the mass distribution as density. The density of DBSCAN is
an integer number that represents the number of objects; in our algorithm, density is a real number.
In using our algorithm, unstable genes should not be the core of a cluster, but in sparse regions the
criteria of stableness should be loose. Our algorithm clusters for multiple thresholds and generates
the imitative hierarchical tree, then chooses the appropriate clusters to adapt the local density.

3.2 Probability Distribution Function

We used the gamma distribution function as our PDF because cumulative gamma distributions have
curves that are shaped like those of chi-square functions. A gamma distribution is a one-dimensional
function that gives the distance from the center of an object:

L. ,r,a—le——r/ﬁ'

Pesl) = GaT(a)

-178-



Mass Distributed Clustering 189

The cumulative gamma distribution is:

1 o0
Dg p(ro) = BT (a) /TO o e~ /Py,

We defined the two parameters for a gamma distribution as follows:

d 202
(X—E, ,8——-——

(84

A gamma function has the following properties:

(1) It is possible to calculate the integral function if alpha is a positive integer; it is called an incomplete
gamma function.

(2) It is most dense around the center and least dense far from the center.

(3) The same deviation must be present in all directions. This condition can be difficult to meet for
many domains, but it works for gene expression data because they have the same scale,

After normalizing our data, we defined the mass function as follows: .
m,(r) = 1 = Dog(r®) = 1 — Dyyg 202 /a(r?).

3.3 Algorithm on Threshold

It is difficult to determine what the threshold
should be. An observation error changes the

value of gene expression. Because of this, we do
not cluster with a single threshold, but make imi- Hierarchical Tree
tative hierarchical clusters by changing threshold

values. In this case, we give a threshold at ap-
propriate intervals to perceive to a bigger change,
than to perceive a change of the cluster constitu-
tion by changing of the delicate value of a thresh-
old.

If there is a pure binary tree structure, the
number of relationship within clusters is a power
of 2. Figure 6 shows the relationship between tree
structure and the relationships wit-hin .clu.sters. Figure 6: Hierarchical tree and relationship be-
The threshold marked by a double line indicates tween objects within clusters.
the smallest clusters; each cluster contains two
objects and four relationships between objects. The threshold marked by a triple line indicates the
next-level clusters; each cluster contains four objects and sixteen relations.

We decided to use a rank of the distance between objects. We assigned the ranks using the following
formula:

Relationship between
objects within clusters &

Rank := 10¥L (i =1,2,--)
Where ¢ is defined as the 1st nearest distance, 101/ , €2 1s defined as the 2nd nearest distance, 10%/L
and so on.
3.4 Representation

After clustering for the threshold, each object is classified as core, as border, or as not belonging to
any cluster. According to the Lemmas, when classified with a core object with a certain threshold,
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an object is always classified as a core object with a bigger threshold than it. It is thus possible to
express core objects with a hierarchical tree structure.

Density-based clustering can find arbitrarily shaped clusters, but in gene expression analysis we
want to find the clusters that have similar sizes. In the hierarchical cluster, we can find the appropriate
cluster that satisfies the size condition.

3.4.1 Appropriate Cluster

For each threshold, we calculate the diameters of the clusters. Diameter is defined as the maximum
distance between the core objects that belong to the cluster. We define the appropriate cluster as
having a diameter less than the threshold and having the maximum diameter for the object.

3.4.2 Classification

We call the core objects of the appropriate cluster rigorous objects. Core objects that do not belong to
an appropriate cluster but which are objects for the loosest threshold are called shell objects if they are
direct-density-reachable from some rigorous objects, or adhesive objects if they are not direct-density-
reachable from any rigorous object. The shell objects belong to the cluster that has the nearest
rigorous object. There are some objects that are not core objects for the loosest threshold, and we
group these into two types. First, the objects that satisfy core condition 1 and do not satisfy core
condition 2 are called unigue objects. These objects satisfy the mass threshold by themselves but they
are far from other objects. The remaining objects are classified as unstable. All objects are classified
into one of these four groups.

4 Experiments

4.1 Experiment with 2-Dimensional Synthetic Data
4.1.1 Data

The data in the 2-dimensional experiment consisted of 24 objects: 8 objects belonged to the clusters,
the others were unstable objects. For each object, 100 points were generated, for a total of 2,400
points. Figure 7 illustrates the data. The four clusters and large amount noise are apparent.

Figure 8 shows the data from three points for each object. The clusters here are much more difficult
to see. The difference between Figures 7 and 8 is due to the different number of observations.

Figure 10 shows the average value for each object. The black objects have small errors, whereas
the gray objects have large errors. As in Figure 7, four clusters are visible (they are the eight black
objects). The 16 gray objects represent background noise. Our algorithm works like Figure 9.

Figure 7: 100 points/object. Figure 8: 3 points/object.
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