There was a significant relationship between hair mercury concentrations in the

mothers and children (Fig. 5).

Also, the mercury concentration in maternal hair was

significantly correlated with the methylmercury concentration in umbilical cord, but no

significant association was seen between the child’s hair mercury concentration and

methylmercury concentration in umbilical cord (Fig. 6).

Therefore, the maternal hair

mercury concentration could be applied as a proxy for the exposure level at parturition.

Figure 5 Relationship between hair mercury concentrations in 327 mothers and children in

Japan. Black (@) and white (O) circles represent subjects in Akita and Tottori, respectively.
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Results of the body weight at birth, gestation period, smoking and drinking habits
during pregnancy obtained by interview and questionnaire are shown in Table 2. Of
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327 children, 21 had low birth weight of less than 2500 g. There was no child with
phenylketonuria, maple syrup urine disease, homocystinemia, galactosemia, congenital
hypothyroidism, neuroblastoma, or adrenal hyperplasia. According to present and past
history of illness, there were one child with spinal progressive muscular atrophy, one
with congenital malformation (cleft palate), and one with epilepsy. Therefore, 23
children either with the above disease or with low birth weight (<2500 g) were excluded
from the study population.

Table 2 Basic characteristics of 327 mothers and the children

Mean (or Number, %) SD Range
Body weight at birth (g) 3142 436 1568 ~ 4568
Gestation period (weeks) 39.0 1.5 33~42
Smoking during pregnancy 25, 7.6%
Drinking during pregnancy 43, 13.1%
Natural delivery (no Caesar) 290, 88.7%
Gestosis (edema, anemia, etc) 130, 39.8%
Febrile convulsion 30, 9.2%
Otitis media 132, 40.4%

Table 3 Resulis of postural sway test in 156 boys and 148 girls

BOYS GIRLS Statistical
Results of postural sway test Mot SD Moan® 5D sxgm:iPc)ance
Without foars
Transversal sway distance (mm) [eyes open] 5.50+1.97 4.40+1.22 0.0000
Sagittal sway distance (mm) [eyes open] 5.66+2.03 4.76+1.53 0.0000
Sway area (mm®) [eyes open] 874 +597 5531283 0.0000
Sway velocity (nam/s) [eyes open} 16.5+ 5.4 13.8% 3.8 0.0000
Transversal sway distance (mm) [eyes close] 8.12+2.04 4.88+1.46 0.0000
Sagittal sway distance (mm) [eyes close] 6.27+1.90 5.16%1.43 0.0000
Sway area (am?®) [eyes close] 1276 920 7571438 0.0000
Sway velocity (mm/s) [eyes close] 23.0% 8.0 18.7%+ 5.6 0.0000
With foam
Transversal sway distance (mm) [eyes open] 6.15%1.74 4.99%+1.13 0.0000
Sagittal sway distance (mm) [eyes open] 6.86+2.07 5.97+2.04 (.0003
Sway area (mm®) [eyes open] . 18024738 8831449 0.0000
Sway velocity (mm/s) [eyes open] 23.8% 7.0 19.4% 5.5 0.0000
Transversal sway distance (mm) {eyes close] 7.68+2.44 8.06+1.56 0.0000
Sagittal sway distance (mm) [eyes close] 1.71£2.65 6.561.84 0.0000
Sway area (mm®) [eyes close] 2082 £1514 1391 +878 0.0000
Sway velocity (mm/s) [eyes close] 33.5%11.1 27.7T+ 8.6 0.0000
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Table 4 Results of tremor, coordination, and reaction time tests in 156 boys and 148 girls

Other neurobehavioral tests O oIS  Statistical
Meant SD Mean + SD significance (F)
Tremor test:
Tutensity (m/s?), right 0.191%0.068 0.168 +0.052 g.ooiz
Center frequency (Hz), right 5.50+0.93 5.64+0.90 0.2633
Intensity (m/s"), left 0.221+0.088 0.202%0.070 [udty
Center frequency (Hz), left 5.08%+0.94 5.19+0.76 0.2598
Ear-hand coorndination test:
Mean difference in slow rhythm (s), right -0.089+0.080 -0.078+0.055 0.1681
Mean difference in slow rhythm (s), left -0.073+0.053 -0.069+0.054 0.5619
Mean difference in fast rhythma (s), right -0.082+0.049 -0.062 £90.055 GLU0G S
Mean difference in fast rhythm (s), left -0.084 +£0.051 -0.063+0.052 Gookin
Reaction tima:
Mean time (s), right 0.352%0.060 0.360+0.057 0.1839
Mean time (s), left 0.372%0.063 0.383%0.058 0.0822
Eye-hand coordination:
Mean time (ms) 653+ 81 68tx 77 B4
Variance (SD, ms) 166+ 39 156+ 39 3.0248
Minimal time (ms) 267137 304 147 0.0308
Maximal time (ms) i+ 70 97t 57 0.4158
Error number 6.4+4.9 3.5+3.4 90000

Table 5 Results of neurophysiological tests in 156 boys and 148 girls

Neurophysiological tests BOXS e  Statistical
Meant SD Mean+ SD | significance (P)
Brainstem auditory evohed potentials:
Peak I latency (ms) [20Hz] 1.78%0.15 1.75%0.15 0.1393
Peak ITI latency (ms) [20Hz] 3.95+0.17 3.85+0.16 (.0000
Peak Vlatency (ms) [20Hz] 5.79+0.21 5.65+0.21 (.0000
Peak I latency (ms) [40Hz] 1.82%0.16 1.80%0.17 0.2812
Peak 111 latency (ins) [40Hz] 4.05+0.18 3.94%0.17 4.0000
Peak V latency (ns) [40Hz] 5.93+0.20 5.78%0.21 0.0000
ECG:
Heart rate (/s) 81.1% 9.6 83.6+10.8 0.0260
QTc interval (ms) 392.2%15.4 392.4%15.5 0.8958
R-R interval anolysis.
CVgg (%) 6.20+2.28 6.32%£2.23 0.5984
C-CVyr (%) 3.93%2.14 4.10k2.14 0.4678
C-CVir (%) 4.16%1.82 4.40%£7.85 0.2407
%LF 52.9%12.3 52.6%12.5 0.8748
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Effects of mercury exposure on child neurodevelopment in Japan

In using the multiple regression analysis to control for age and sex, any dose-effect
relationships between the hair mercury concentration in either the mothers or children
and outcome variables of neurobehavioral or neurophysiological tests were not
statistically significant (p>0.05). Regarding the postural sway test, all parameters in
156 boys were significantly larger than those in 148 girls (Table 3); some parameters of
other neurobehavioral tests in the boys were also significantly larger than those in the
girls (Table 4). Similarly, some BAEP latencies in the boys were significantly
prolonged as compared to the girls (Table 5).

International comparison beiween data in Japan and Madeira

In the Madeiran study including 143 mothers and their children, the hair mercury
concentration, child’s age, BAEP latencies, other neurobehavioral tests, and some
possible confounders were surveyed in 1995 (Murata ef al. 1999a).  Other
examinations except the BAEP seemed to be affected by language, education, or
socioeconomic factors. For the quality assurance, the BAEP was measured by the
same manner and examiner. As shown in Table 6, the age in the Madeiran children

was similar to that in the Japanese children.

Table 6 BAEP latencies (mean+SD) in children obtained from Japan and Madeira*

Japan Madeira

(n=292) (n=143)"
Age 6.90+0.30 6.93+0.30
BAEP:
Ipeak (20Hz) 1.77+0.15 1.9810.23
I peak (20Hz) 3.88+0.17 4.15+0.29
Vpeak (20Hz) 5.69+0.21 6.02+0.30*
I-TI1 interpeak  (20Hz) 2.111+0.13 2.17+0.23"
-V interpeak  (20Hz) 1.81+0.15 1.87+0.17"
Ipeak (40Hz) 1.82+0.17 2.06+0.25%
I peak (40Hz) 3.97+0.18 4321038
Vpeak (40Hz) 5.811+0.21 6.28+0.34*
I-II interpeak  (40Hz) 2.15+0.14 2.26+0.28
M-V imterpeak (40Hz) 1.85+0.13 1.96+0.21*

* Analysis of covariance was used to control for age and gender.

1 p<0.05, 1 p<0.001.
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Figure 7 Latencies of the BAEP in children obtained from Japan and Madeira.
Analysis of covariance was used to control for age and gender.
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Figure 8 Relationship between maternal hair mercury concentration and peak II1 latency of the
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Medians of hair mercury concentrations were 1.64 (range, 0.11~6.86) pg/g for 292

Japanese mothers and 9.7 (range, 1.12~54.4) pg/g for 143 Madeiran mothers, and the

latter was significantly higher than the former. By contrast, means and standard

deviations of the BAEP latencies in Japan were significantly smaller than those in

Madeira. Fig. 7 exemplifies latencies of the BAEP in Japan and Madeira. Also,

significant dose-effect relationships between the hair mercury concentration and BAEP

latencies were found in the combined data of Japanese and Madeiran children (Fig. 8);

but, current mercury levels in child’s hair were not significantly related to any BAEP
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latencies (p>0.05), after controlling for age, gender and race.

By using the data of 143 Madeiran children, and combined data of 292 Japanese and
143 Madeiran children, the BMDs and BMDLs were calculated after controlling for age,
gender and race, as shown in Table 7. The BMDLs (mean 9.1 ug/g) in the latter
became significantly smaller than those (mean 9.9 pg/g) in the former (paired sample
test, p=0.0142).

Table 7 Benchmark dose (BMD, ug/g) and its lower 95% confidence limit (BMDL, ug/g) at
benchmark response level of 0.05 according to dose-effect models jor BAEP latencies at 20 Hz
and 40 Hz in 143 Madeiran children and 292 Japanese children

Data in Madeira Combined data of Madeira and Japan

P=0.05 Linear model* Power model ** Linear model* Power model**

BMD BMDL BMD BMDL BMD BMDL BMD BMDL

20Hz:
Peak I latency 2048 11.03 20.67 11.20 16.17 9.97 16.34 10.12
Peak V latency 15.81 9.46 15.98 9.63 14.10 9.14 14.26 9.30
Interpeak I-III latency 18.20 10.40 18.40 10.57 14.51 9.24 14.69 9.40
40Hz:
Peak III latency 14.65 9.02 14.83 9.17 11.23 7.84 11.40 7.99
Peak V latency 18.21 10.33 18.39 10.50 16.49 10.37 16.65 10.53
Interpeak I-111 latency 15.23 9.31 15.43 9.47 11.72 8.02 11.89 8.16

Maternal hair mercury levels (ug/g) were used as a proxy for exposure biomarker at parturition.
* Linear model: [BAEP]=byt+b,'[dose]+b, [age}+b;-[gender] (+b, [race]).
** Power model: [BAEP]=by+b,-[dose]*+b, [age]+bs-[gender] (+b,[race]).

Discussion

None of Japanese children in this study had any clinical mercury-related
abnormalities, although it is well known that patients with Minamata disease have
neurological signs and symptoms such as paresthesia, constriction of visual field,
intention tremor, impairment of hearing and speech, mental disturbances, and unsteady
gait (Kurland ef al. 1959).  Also, medians of current mercury exposures were 1.63 pg/g
for the mothers and 1.65 pg/g for the 7-year-old children. These values are consistent
with previous ones reported by Japanese researchers (Wakisaka et al. 1990; Sakamoto et
al. 1993; Yasutake et al. 2003; Iwasaki ef al. 2003), and do not exceed the safe limit (10
ug/g) of the International Programme on Chemical Safety (1990), as well as the
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no-observed-adverse-effect level (NOAEL) and BMDL of methylmercury which have
been reported to be 15.3 pg/g calculated from the Seychelles Child Development Study
by the Agency for Toxic Substances and Disease Registry (1999) and 12 pg/g calculated
from the Faroese birth cohort study by the US Environmental Protection Agency (2001),
respectively. There were no regional differences in the mercury level either between
fishing and non-fishing areas or between cities and towns (Table 1). In addition, the
hair mercury concentration in the children was slightly but significantly correlated with
that in the mothers, and no significant difference in the current mercury level was
observed between the mother and child. In this way, it is suggested that Japanese
children ingest a similar dose per body weight of methylmercury to their parents,
independent of residential areas.

In the present study, the maternal hair mercury concentration had close relation to the
methylmercury concentration in umbilical cord, although we could not observe in the
children; at least, qualitative evidence would be provided that the maternal hair mercury
concentration can be used as a proxy for the mercury exposure level at parturition. In
another study, the regression (i.e., gradient) of the peak III latency of the BAEP on
maternal hair mercury in the Madeiran cross-sectional study was similar to that on
maternal hair mercury at birth in the Faroese birth cohort study, and the BMDs and
BMDLs, calculated from the former alone were almost similar to those from the
combined data of both children (Murata et al. 2002). Thus, the current mercury level
in maternal hair reflects the mercury exposure level at birth, under the condition that the
dietary habit on fish consumption remains unchanged after the pregnancy with the child.

Since we failed to find any dose-effect relations of the outcome variables to mercury
exposure in Japanese children, it might infer that Japanese children with mercury levels
of less than 7 pg/g had no adverse effects of methylmercury exposure. However, two
notes of warning would be struck against the negative finding: (1) The Faroese birth
cohort had an enormously wide range of mercury exposure (Grandjean et al. 1997), but
the range of our exposure biomarker was extremely small. In addition, the former
sample number was three times as much as the latter. (2) The effects of possible
confounders, such as artificial hair waving (Yamamoto et al. 1978; Yasutake et al. 2003;
Iwasaki et al. 2003) and change in dietary habit on fish consumption, were not fully
excluded in the present study. At least, mothers with artificial hair waving of this
study had about 80% of hair mercury levels in mothers without it. Such exposure
misclassification may have underestimated the true effect in risk assessment (Grandjean
et al. 2002). A larger population that includes higher-level exposures will increase the

statistical power. In addition, assessment of prenatal exposure should be improved by
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analysis of umbilical cord in the present study or by detailed assessments in prospective
studies.

All the BAEP latencies were significantly shorter in the Japanese children than in the
Madeiran children (Table 6 and Fig. 7). Although the device used for the BAEP
measurement differed between both areas despite the same setting conditions such as
bandpass and stimulation, we did not find any differences between pairs of the latencies
measured in eight volunteers by using the two different devices. The interpeak I-II
and I-V latencies of the BAEP were significantly prolonged in patients with fetal
Minamata disease despite the fact that no significant findings were found in patients
with acquired Minamata disease (Hamada et al. 1982), and there were the significant
differences in interpeak III-V and [-V latencies of the BAEP between the Ecuadorian
children, exposed to elemental mercury vapors and methylmercury-contaminated food,
with blood mercury levels of 20-89 ng/liter and with levels below 20 ug/liter (Counter
2003); the difference in the interpeak between both studies (i.e., I-IIl and III-V
latencies) may imply the differential effects of prenatal and postnatal exposures.
Moreover, significant dose-effect associations have been observed between mercury
exposure and prolonged latencies of the BAEP in the Faroese birth cohort and Madeiran
children (Murata et al. 1999a, 1999b). It is therefore suggested that these differences
between the Japanese and Madeiran children, would have been attributable mainly to
mercury, inasmuch as the mercury exposure level was extremely higher in the latter than
in the former.

A BMDL of approximately 9 pg/g in maternal hair for BAEP latencies in the present
study is somewhat low as compared to recently calculated BMDLs for other
neurological outcome variables in the Faroese children (Budtz-Jargensen et al. 2000)
and in a New Zealand population (Crump et al. 1998). Using several curve functions,
an average BMDL of about 10 pg/g was calculated for crude neurological abnormalities
in children exposed in connection with the poisoning incident in Iraq (Cox et al. 1989,
Crump ef al. 1995). Higher BMDLs were also reported from a study in the Seychelles,
where clear effects on psychological test have not been detected so far (Crump et al.
2000). Judging from these reports, as the outcome variable (or endpoint) measured in
each study shifts away from the clinical to subclinical adverse effects, the exposure
level, at which such an effect emerges, appears to become lower, even as shown in Fig.
9 (Schettler et al. 2000). In this respect, the BAEP latencies, as well as
neuropsychological tests including Boston Naming Test and California Verbal Learning
Test employed in the Faroese birth cohort study (Grandjean e al. 1997), are suggested

to be one of the most sensitive endpoints to methylmercury exposure.
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Figure 9 Declining threshold of harm for mercury (Schettler et al. 2000)
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According to the a priori hypothesis, the cord-blood mercury concentration is
expected to be the best predictor for neurobehavioral decrements in children (Grandjean
et al. 1992, 1999).
umbilical cord was significantly correlated with the mercury concentration in cord
blood (r=0.85, p<0.001), rather than that in maternal hair (»,=0.77, p<0.001) (Dalgard
et al. 1994; Akagi et al. 1998).
our Japanese children, it would be possible to reduce exposure imprecision for risk

Also, it has been demonstrated that the mercury concentration in

Although we obtained only 50 umbilical cords from

assessment of methylmercury if we could collect more umbilical cords in the same
subjects. And, it will enable us to conduct a retrospective cohort study on the effects

of prenatal methylmercury exposure on neurodevelopment in Japanese children.
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Introduction

From several epidemiological studies, it has been reported that there are some associations
between perinatal exposures to PCBs, dioxins and heavy metals and neurobehavioral defects such
as poétnatal growth delay and poorer cognitive function. In this study, we designed a prospective
cohort study to examine the effects of perinatal exposures to environmentally persistent organic
pollutants on neurobehavioral development in Japanese children. This report showed some
preliminary data regarding the results of the Neonatal Behavioral Assessment Scales (NBAS), in .
which we examined the effect of maternal smoking during pregnancy as the confounding factor to
the infant neurobehavioral development.

Maternal smoking is well known to have various influences on birth outcome and growth
parameters. Children of smoking mothers are often born with a lower birth weight than expected for
gestational age. In addition, there is an increased chance of premature labour, intrauterine growth
retardation, and perinatal mortality. Recently, the concern on the effects on the neurobehavioral
development has been also increased. In studies of the effects of teratogens, NBAS has been
recommended and is commontly used as a measure of central nervous system (CNS) development in
the neonates. Several investigators have reported that prenatal exposure to tobacco adversely affects
CNS development, as measured by the NBAS. Even though, there is no report on this association in
Japan.

Methods and Materials

Three hundred forty-four pregnant healthy women attending two obstetrics clinics in Sendai
gave their consents to participate in this study according to guidelines established by the ethical
committee established by the Tohoku University Graduate School of Medicine. The mean age at the
time of delivery was 31.85 (SD 4.69). Women were asked about tobacco use before and during
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pregnancy. They were then classified as Nonsmokers, Ex-smokers and Smokers; the women who
ceased to smoke prior to or throughout pregnancy were defined as the Ex-smokers. Information was
obtained about pregnancy, labour, and delivery conditions from their medical records.

The NBAS was administrated at three days of after birth to 344 (179 boys and 165 girls)
infants. They were all singleton and full-term (37 to 42 weeks) infants. In addition, their birth
weight was 2500g or more. Examiners of the NBAS were trained and certified to administer the
NBAS at the Training Center for NBAS in the Nagasaki University School of Medicine in Japan.
Reliability checks were conducted throughout data collection to maintain a 90% level of agreement.
Examiners were unaware of the exposure status of the infants including the maternal use of tobacco.

In statistical analysis, comparison between groups of continuous demographic, health, and
growth outcomes were performed with ANOVA. For the comparison of categorical variables such
as sex and parity were performed using Fisher’s exact test. Analyses controlling for maternal age at
the time of delivery, sex, Apgar scores, gestational age, birth weight, length and head circumference
were performed using a multiple regression analysis.

Results and Discussion

Twelve (3.4%) of 344 mothers smoked an average of 13.0 (SD 6.5) cigarettes per day during
pregnancy. Of 332 mothers who did not smoke, 44 were Ex-smokers and 288 were Nonsmokers.
There was a significant difference between the infants of smoking and nonsmoking mothers in
maternal age at the time of delivery, but no differences in gestational age, Apgar scores, birth
weight, length, and head circumference were observed (Table 1).

Table 1 Maternal and infant characteristics

Maternal smoking during pregnancy

No Yes
Nonsmoker . Ex-smoker Smoker
(n=288) (n=44) (n=12)
Maternal age* 32.2(4.3) 30.4 (6.0) 29.1(4.3)
b Sex (M/F) 1457143 28/16 6/6
U Parity (first/other) 144/144 30/14 6/6
Apgar Imin 8.0 (0.9) 7.9 (0.7) 8.3(0.5)
Gestational age (weeks) 394 (1.4) 39.7 (L.3) 39.2(1.4)
Birth weight (g) 3018 (378) 3108 (380) 3184 (415)
Birth length (cm) 48.9 (2.2) 49.3 (1.3) 49.0 (2.1)
Head circomference (cm) 33.5(1.4) 334 (1.3) 33.9(1.4)
ANOVA Mean (SD)

DFisher’s exact test
* P<0.05
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There were no significant differences among three groups on any of the seven NBAS cluster
scores. When the scores of the 28 behavioral items of the NBAS were examined, the infants of
Smokers were significantly poorer than those of Ex-smokers and Nonsmoker on the three items,
“General tone”, “Peak of excitement” and “Cuddliness” (Table 2). These three items remained to be
significant after controlling for maternal age at the time of delivery, sex, Apgar scores, gestational
age, birth weight, length, and head circumference.,

Table 2 NBAS scores

Maternal smoking during pregnancy

No Yes
Nonsmoker Ex-smoker Smoker
General tone™ 4.5(1.3) 5.2 (1.6) 4.4 (2.1)
(MOTOR cluster) n=236 n=42 n=9
Peak of excitement* 5.1(1.0) 4.9 (1.0) 44 (1.1)
{(RANGE OF STATE cluster) n=254 n=43 n=11
Cuddliness* 4.6(1.3) 4.8 (1.8) 3.6 (1.5)
(REGULATION OF STATE cluster) n=254 n=43 n=11
ANOVA Mean (SD)

* P<0.05

Using blinded developmental examinations, and adjusting for other factors, we observed
some neurobehavioral defects in infants exposed to tobacco. This result indicates that maternal
smoking during the pregnancy is an important risk factor in the infant’s neurobehavioral
development, and therefore, maternal smoking is confirmed to be a significant confounding factor
to consider the effect of perinatal exposures to PCBs, dioxins, and heavy metals on neurobehavioral
development. In the literatures, maternal smoking during pregnancy is well known to affect
neurobehavioral development, but this is the first report to demonstrate this association in Japanese
children. Although this study is not originally designed in order to clarify the risks of maternal
smoking, the results might be important to consider the smoking of pregnant women in Japan.
Several studies have recently found the reduction in IQ scores in children born to women who
smoked during pregnancy. This report represents one of our prospective cohort study to examine
the perinatal exposures to environmentally persistent organic pollutants and heavy metals on
neurobehavioral development. The long-term effects on child neurocognitive functioning such as
IQ should be also clarified in our cohort study.

The present results showed not only that maternal smoking could be a potent confounding
factor to examine the effect of perinatal exposures to PCBs, dioxins, and heavy metals to
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neurobehavioral development, but also that our NBAS seemed to be enough sensitive to detect a
small defects potentially present in the infants exposed to the pollutants.
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Mercury and its compounds have a wide
spectrum of toxicities depending upon the chem-
ical forms and mode of exposure (Clarkson
2002). Among its various chemical forms,
mercury vapor and alkylmercury compounds,
especially methylmercury, are well known as

neurotoxic agents. Inhuman subjects repeated
exposure to mercury vapor at low concentration
caused mercurial erethism, which is character-
ized by behavioral and personality changes
(Hunter 1969). Methylmercury exposure has
been repeatedly shown to cause neurctoxicity;
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the typical signs and symptoms are described as
Hunter-Russell syndrome (Hunter 1969).

Since the disasters in Minamata (Harada
1978) and Iraq (Bakir et al. 1973), in which
fetuses were more susceptible than adults to
methylmercury exposure, much attention has
been focused on prenatal exposure to mercury
and its consequence. Recently postnatal effects
of in utero exposure to methylmercury through
fish (and marine mammals) consumption by
mothers have been concerned (Davidson et al.
1995; Myers et al. 1995b; Grandjean et al. 1997).
Several epidemiological studies have been con-
ducted (Kjellstrom et al. 1986; Kjellstrom et al.
1989; Myers et al. 1995a; Grandjean et al. 1997).
The source of mercury is naturally occurring
and there are populations who depend on fish as
main protein source. Therefore, one of the
most seriously concerned issues is the postnatal
effects of in utero exposure to low levels of
methylmercury.

Based on these observations in humans,
animal experiments have heen conducted em-
ploying prenatal exposure to methylmercury at
low concentrations. In this paper, the animal
(rodents) experiments concerning “behavioral
teratology” of mercury are reviewed for better
understanding of effects of prenatal exposure to
mercury and its compounds.

What is behavioval levatology ?

“Behavioral teratology” is a field of science
where postnatal effects of prenatal exposure to
any foreign stimulant are investigated. It is
considered that the concept of behavioral ter-
atology was first established by Werboff in
1960s (Werboff and Gottleih 1963). He showed
behavioral effects on the offspring of the mater-
nal rats that had taken tranquillizers during
pregnancy (Werboff 1966). He reviewed earlier
and his studies concerning the behavior of the
offspring bhorn to mother animals given
psychotropic drugs during pregnancy and
claimed, “the behavior, functional adaptation of
the offspring to its environment, is susceptible to

teratogenic effects of drugs” (Werboff and
Gottleib 1963). This behavioral teratology has
later expanded the harmful agents by including
environmental pollutants.

The dawn of behavioval tevatology in mevcury
toxicology

Spyker and colleagues are the pioneers to
study the postnatal effects of in utero methyl-
mercury exposure. They revealed impaired
swimming ability in offspring mice exposed to
methylmercury in utero (Spyker et al. 1972).
The control mice were able to swim easily but
the treated mice showed “freezing; floating in a
vertical position with only head above water”
and swimming with legs askew. They also
found changes in behaviors in the open field test.
These results indicated the important conclu-
sion that motor dysfunction and emotional
change are detectabe postnatally. It was note-
worthy that the offspring mice did not show any
physical retardation or overt neurological signs
and were considered to he normal until being
examined by the above tests.

Spyker and colleagues (Weiss and Spyker
1974; Spyker 1975a, b) defined “behavioral ter-
atology” as the overlapping area between be-
havioral toxicology and teratology, the biologi-
cal study of malformations. This means that
the cause of abnormality occurs during preg-
nancy and the effects become overt after hirth
over the lifetime of an individual. This was
clearly shown by the “Six D's” in behavioral
teratology (Spyker 1975a):

Abnormal Development
Behavioval Deviation
Neurological Disovder
Immunological Deficiency
Generalized Debilitation
Premature Death

In gpite of prenatal exposure to an environ-
mental stimulant offspring may be bom as
“normal” at birth. During lactational period,
abnormal development may bhe observed;
examples will be shown later. When the off-



