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Abstract

Novel antigen-presenting cells {APCs) were generated
using cultured dendritic cells (DCs) and amplified tumor
mRNA, and the potential of tumor antigen-reactive T cell
induction by the tumor RNA-introduced DCs {DC/tumor
RNA) was analyzed in a patient with melanoma antigen-
encoding gene (MAGE3)-positive malignant melanoma
of the esophagus. DCs were generated from an adherent
fraction of peripheral blood mononuclear cells in the
presence of granulocyte macrophage colony-stimulat-
ing factor and interleukin-4. Tumor mRNA was purified
from tumor tissue, amplified in vitro using a T7 RNA
polymerase system, and then introduced into DCs by
electroporation (150 V/150 wF or 100 V/200 pF). The gene
introduction efficiency was 44-55% as measured by en-
hanced green fluorescent protein reporter gene expres-
sion, and the viability of RNA-introduced DCs was ap-
proximately 80%. DC/tumor RNA could induce tumor
antigen-reactive cytotoxic T lymphocytes (CTLs) in an
mRNA-specific manner, but had no effect on the self-an-
tigen-reactive T cells. DC/tumor RNA could induce the

polyspecific antigen-reactive CTL responses mediated
by both human leukocyte antigen class | and class Il mol-
ecules, whereas MAGE3 peptide-pulsed DCs induced
only the monospecific MAGE3-reactive CTL responses
mediated by human leukocyte antigen class | molecules,
showing the superiority of the DC/tumor RNA over the

DC/peptide. Itis suggested that the use of DC/tumor RNA

as antigen-presenting cells may be more effective, con-
venient and practical for the DC-based anti-cancer im-
munotherapy.

Copyright © 2005 S. Karger AG, Basel

Introduction

The identification of the melanoma antigen-encoding
gene (MAGE) by Van der Bruggen et al. [1] has contrib-
uted greatly to the molecular understanding of antigen
presentation and recognition in the immune system [2].
When the immune system recognizes the tumor, tumor-
associated antigens (TAAs) are internalized, processed
and presented on antigen-presenting cells (APCs) as an-
tigenic epitope peptides in the context of human leuko-
cyte antigen (HLA) molecules [3]. Recently, dendritic
cells (DCs) have been the focus of anti-tumor immuno-
therapy, because they are professional APCs and can ini-
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tiate a primary immune response by recruiting and acti-
vating naive T cells [4, 5]. Moreover, functional DCs can
be easily generated in vitro from progenitors in the pe-
ripheral blood using granulocyte macrophage colony-
stimulating factor and interleukin-4 (IL-4) [6]. Many clin-
ical trials employing DCs in anti-tumor immunotherapy
have been reported [7-16]. In these trials, available
sources of TAAs include identified peptides, native or
modified proteins, tumor cell lysates and tumor cells. Pre-
viously, we reported using tumor antigen-specific CTLs
induced by autologous DCs interacting with identified
peptides in a clinical trial [17]. Results of these trials pro-
vided strong evidence for the ability of the DCs to induce
autologous tumor-specific CTL responses in vivo and in
vitro and to stimulate clinically beneficial anti-tumor im-
Mune responses.

However, a wider use of DC therapy for tumor patients
is limited by the availability of identified TAAs and HLA
phenotypes or sufficient tumor tissues for TAA prepara-
tion. Gilboa et al. [18, 19] have shown that murine and
human DCs transfected with mRNA encoding antigens
can stimulate potent CTL responses in vitro and in vivo.
‘Treatment of tumor-baring mice with DCs transfected
with tumor RNA led to a significant reduction in metas-
tases or survival benefit [20]. Use of the RNA form as
TAAs has one significant advantage since it can be ampli-
fied in sufficient amounts from only a few tumor cells by

polymerase chain reaction (PCR) [21]. In addition, the

transfection of autologous unfractionated tumor mRNA
into DCs has the clinical benefit that we must not. iden-
tify TAAs and HLA phenotypes when educating naive T
cells to tumor-specific CTLs in vitro and in vivo.

In this study, we attempted to generate novel APCs by
introducing cultured DCs with amplified RNA encoding
antigens by electroporation and analyzed them for anti-

tumor immune responses in vitro. First, the optimal elec-

troporation conditions for introducing cultured imma-
ture DCs with mRNA encoding enhanced green fluores-
cent protein (EGFP) were tested. Secondly, we tested
whether the functional APCs could be generated using in
vitro amplified mRNA and cultured DCs in healthy vol-
unteers. Finally, we generated the novel APCs using in
vitro amplified autologous tumor-extracted mRNA and
cultured autologous DCs in a patient with malignant mel-
anoma of the esophagus, in whom MAGE3 peptides were
identified as TAAs. The tumor mRNA-introduced DC
system was compared with the MAGE3 peptide-pulsed
DC system for the potential to induce antl tumor im-
mune responses in vitro.
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Materials and Methods

Cells and Tissue Materials

Peripheral blood mononuclear cells (PBMCs) from 3 healthy
volunteers and a HLA-A24 patient with malignant melanoma of
the esophagus were obtained, after receiving written informed con-
sent, by the Ficoll-Hypaque (Amersham Pharmacia Biotech, Pis-
cataway, N.J., USA) density gradient separation method. Subjects
underwent subtotal esophagectomy, and tissue materials (malig-
nant melanoma and normal esophageal mucosa) were obtained and
snap frozen in liquid nitrogen. A human breast cancer cell line BT-
474 from the American Type Culture Collection was cultured in
RPMI-1640 medium supplemented with 10% fetal bovine serum
(Life Technologies, Paisety, UK).

Reagents

The following HLA-A24 restricted synthetic peptides (>90%
pure) purchased from TaKaRa (Shiga, Japan) were used, i.e.
MAGE376_34 peptides (NYPLWSQSY), MAGE3,,3_,2; peptides
(VAELVHFLL), carcinoembryonic antigen (CEA)q.;o peptides
(RWCIPWQRLL) and CEAg;_10s peptides (I'YPNASLLI) [22,
23]. Mouse monoclonal antibodies to human HLA-ABC (HLA
class I), HLA-DR (HLA class I1) and control 1mmunoglobulm were
from Pharmmgen (San Dlego Calif., USA).

RNA Extraction, Ampliﬁcation and in vitro Transcription

Total RNA from the tissue materials-or PBMCs was extracted
using the RNeasy kit (Qiagen, Valencia, Calif., USA) according to
the manufacturer’s protocol. Total RNA was reverse transcribed
using the Smart Race cDNA amplification kit (Clontech, Calif.,
USA). Briefly, first-strand full-length cDNA synthesis was primed
with a modified oligo(dT) primer (5'-AAGCAGTGGTATCAAC-
GCAGAGTAC (T)3oN_'N-3,N=A,C,GorT;N_; = A, Gor C)
and a Smart II A oligonucleotide (5’-AAGCAGTGGTATCAAC-
GCAGA TACGCGGG-3") and reverse transcribed using Power
Script reverse transcriptase for 1.5 h at 42°C. For the full-length
cDNA amplification, Universal Primer Mix A (long: 5'-CTA-
ATACGACTCACTCACTATAGGGAAGCAGTGGTATCAAC-
GCAGA-3'; short: 5-CTAATACGACTCACTATAGGGC-3"; un-
derline indicates T7 promoter sequence), Nested Universal Primer
Mix A (5'-AAGCAGTGGTATCAACGCAGAGT-3), the Advan-
tage DNA Polymerase Mix and the following cycling parameters
were used: 95°Cfor60s x [ cycle, 95°Cfor 155/65°C for 30s/68°C
for 6 min x 20 cycles, and 4°C hold. The quality of cDNA was
evaluated on ethidium bromide-stained 1.2% agarose gels. In vitro
transcription was performed using the mMessage mMachine high-
yield capped RNA transcription kit (T7 Kit; Ambion, Tex., USA).
Briefly, the transcription mix, ribonucleotide mix, amplified cDNA
and T7 RNA polymerase were mixed and incubated at 37°C for
4 h. The DNA template was degenerated by incubating with DNase
Tat 37°C for 15 min {24, 25]. Total RNA (1 jLg) was extracted from
about 5 mg of tissue materials and used for the synthesis of 50 pg
of first-strand full-length cDNA, and the latter was stored at —20°C.
The full-length cDNA was used to synthesize 500 mg of mRNA by
PCR amplification and in vitro transcription.

Preparation of mRNA-Encoding EGFP Reporter Gene

A pEGFP-NI Vector (Clontech) was doubly digested with re-
stricted enzymes Hind III and Not I (both from TaKaRa) into 0.8-
and 3.9-kbp fragments. The 0.8-kbp digested fragment (EGFP ds-
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DNA) was amplified with EGFP forward primer (5'-CGGA-
ACAAGGGAGCTTCGAATTCTGC-3'), EGFP reverse prim-
er (5-TGAGTCAAGGGCTAGCTTTACTTGTACAG-3") and
DNA polymerase, using the following cycling parameters: 94°C for
2 min x 1 cycle, 94°C for 60 s/33°C for 60 s/72°C for 60s x 8 cy-
cles, and 94°C for 60 s/61°C for 60 s/72°C for 60 s x 25 cycles.
The fragments were ligated with the T7 promoter sequence (5'-
GACTCGTAATACGACTCACTATAGGGCCCT-3') at the 5'-
end and with poly(dA) sequence (5'-GACTCAAAGGGA(A),4CC-
TAAATCGTATGTGTATGATACATA-3') at the 3'-end using
Topo tools (Invitrogen, Calif., USA). The resulting product was
amplified by PCR and followed by in vitro mRNA transcription
using the mMessage mMachine high-yield capped RNA- tran-
scription kit (T7 Kit; Ambion). The final product was used as
mRNA encoding EGFP reporter gene (EGFP mRNA).

Generation of DCs from Peripheral Blood Progenitors

Human DCs were generated according to Romani et al. [6] with
minor modifications. PBMCs were cultured in serum-free RPMI-
1640 at 37°C and 5% CO,. After 2 h, the nonadherent cells were
removed. The adherent cells were resuspended in RPMI-1640 me-
dium supplemented with 1 mM L-glutamine, 2% autoserum,
800 U/ml granulocyte macrophage colony-stimulating factor (Os-
teogenetics GmbH, Germany), and 500 U/ml IL-4 (Osteogenetics
GmbH) in a humidified incubator at 37°C and 5% CO, for 5 days.
This immature DC preparation was used for subsequent RNA in-
troduction in order to generate APCs.

Generation of APCs

RNA was introduced into the cultured immature DCs either by
passive pulsing or electroporation. The passive pulsing procedure
was modified from the report of Heiser et al. [25]. Briefly, 10 pg of
RNA was added to 2 x 10° cells in 200 pl of serum-free RPMI-
1640 medium and incubated for 45 min at 37°C and 5% CO, in a
humidified incubator. Electroporation was done using Gene Pulser
11, as directed (Bio-Rad, Calif., USA). Approximately 2 x 10° cells
(1 x 106 celis/ml) in 200 wl of serum-free RPMI-1640 medium
were placed in a 4-mm gap chamber along with 10 g of RNA. The
mixture was placed in the Gene Pulser II and electroporated at
various electrical settings [26, 27]. Subsequently, RNA-introduced
DCs (DC/RNA) were allowed to maturate in the presence of
1,000 U/ml tumor necrosis factor-o in RPMI-1640 complete me-
dium for 2-3 days. Phenotypic analysis on the matured DCs showed
>85% HLA class I+, >75% HLA-DRg#, >95% CD80+, >75%
CD86+,>65% CD83+ and <20% CD14+. These mature DC/RNA
were treated with 50 pg/ml mitomycin C (Kyowa Hakkou Pharma-
ceutical Co., Ltd., Tokyo), washed three times with RPMI-1640
medium and used as APCs. In some experiments, peptide-pulsed
DCs (DC/peptide) were used as APCs. DC/peptide were generated
from mature DCs by pulsing them with 20 pg/ml of an antigenic
epitope peptide for 2 h [17].

Flow Cytometric Analysis

EGFP mRNA and Cellstain Double Staining Kit (Dojindo, Ku-
mamoto, Japan) were used to evaluate the RNA introduction effi-
ciency into immature DCs [24]. Briefly, the EGFP expression rate
in EGFP mRNA-introduced DCs (DC/EGFP mRNA) was assessed
48 h after electroporation by flow cytometric analysis using
FACSCalibur (Becton-Dickinson, N.J., USA). The cell viability
rate was assessed by calcein and propidium iodide (PI) double

Autologous Tumor RNA-Introduced
Dendritic Cells

staining and flow cytometric analysis. Immediately after electro-
poration, the DCs were stained using the Cellstain Double Staining
Kit according to the manufacturer’s protocol. Prior to flow cytomet-
ric analysis, calcein-acetyoxymethyl (calcein-AM) and PI were add-
ed, at a final concentration of 2 and 4 pAM, respectively, directly into
the DCs suspended in RPMI-1640 complete medium and incubat-
ed for 15 min at 37°C. The fluorescence of calcein in viable cells
was read at 490 nm excitation and 530 nm emission setting. The
fluorescence of PI in the dead cells was read at 530 nm excitation
and 590 nm emission setting. The percentage of the EGFP mRNA
introduction efficiency was calculated according to the following
formula: (EGFP expression rate) x (cell viability rate) x 100.

Induction of Effector Cells :

In order to induce effectors, the nonadherent cells of PBMCs
that had been cultured in RPMI-1640 complete medium supple-
mented with 20 U/ml IL-2 (Genzyme, Cambridge, UK) were stim-
ulated with APCs, which were prepared as above, for 5-7 days in
a responder:stimulator ratio of 10:1. This stimulation process was
repeated three times every 7 days.

Cytotoxicity Assay

The calcein-AM cytotoxicity assay was used to determine cyto-
toxicity [28]. Briefly, target cells (approximately 106 cells/ml) were
incubated with 10 wM calcein-AM in RPMI-1640 complete me-
dium for 30 min at 37°C with occasional shaking. Only the live
target cells can produce insoluble fluorescent product calcein from
calcein-AM in cytoplasm. Therefore, the live target cells were la-
beled, treated with 50 pg/ml mitomycin C for 30 min, and washed
three times with RPMI-1640 medium prior to cytotoxicity assays.
Effectors and calcein-labeled targets with various effector/target
(E/T) ratios were cocultured in U bottom 96-well plates in tripli-
cates for 4 h at 37°C in a total volume of 200 pl. Supernatant sam-
ples were measured using Fluoroskan Ascent (Labsystems, Chesire,
UK; exciting filter: 485 * 9 nm; band-pass filter: 530 = 9 nm).
Data were expressed as arbitrary fluorescent units. Specific lysis (%)

_ of the cells was calculated as follows: [(test release ~ spontaneous

release)/(maximum release ~ spontaneous release)] x 100. The
maximum and spontaneous release represents calcein release from
the targets in medium with and without 2% Triton X-100, respec-
tively. Each measurement was done in at least six replicate wells.

Enzyme-Linked Immunosorbent Assay for Interferon-vy

Antigen recognition of CTL precursors in PBMCs was detected
by interferon (IFN)-y secretion after stimulation with generated
APCs. PBMCs (1 x 10° cells) were cocultured with the APCs (5 X
103 cells) in 96 flat bottom plates in triplicates for 72 h at 37°C'in a
total volume of 200 pl. In some experiments, effector cells were stim-
ulated with APCs in the presence of 10 pg/ml anti-HLA class I, class
I antibodies or control IgG. Supernatant samples were tested for
IFN-y secretion by enzyme-linked immunosorbent assay (ELISA)
(Quantikine human IFN-y; R&D Systems, Inc., Minn., USA) ac-
cording to the manufacturer’s protocol. Measurements are presented
as picogram/milliliter [IFN-y released by 10° PBMCs per 72 h.

Statistics

Results are expressed as the mean + SD. Statistical analysis was
conducted by unpaired Student’s t test using StatView software
(version 5) on a Macintosh computer. A p value <0.05 was consid-
ered statistically significant.

Oncology 2005;69:399-407 401



Fig. 1. Fluorescent microscopic images of cultured dendritic cells
introduced with EGFP mRNA. Cultured DCs were introduced
with mRNA encoding EGFP using electroporation at a capacitance
of 150 pF and a voltage of 150 V, and fluorescent microscopy was
examined.

‘Results

Optimization of mRNA Electroporation into Cultured

DCs

In order to optimize the mRNA-based electropora-
tion, we used cultured immature DCs from healthy vol-
unteers and an EGFP mRNA reporter gene. Following
electroporation at various electrical settings, EGFP ex-
pression rate and cell viability rate in the electroporated
DCs were assessed as described in ‘Materials and Meth-
ods’, Of all the electrical settings tested, a voltage of either
150 or 100 V combined with a capacitance of 150 or
200 wF were found to be optimal. At these settings, intro-
duction efficiencies of 55.6 and 54.7% and 43.8 and
44.0%, with cell viabilities of 78.7 and 86.4% and 82.1
and 83.7% were observed (table 1). On the other hand,
cultured immature DCs, which were passively pulsed
with EGFP mRNA, demonstrated an introduction effi-

ciency of only 0.4 and 0.5% (table 1). Figure 1 shows the"

finding of fluorescent microscopy of the EGFP expression
in DC/EGFP mRNA.

Antigen-Presenting Capacity of RNA-Introduced DCs
To evaluate the antigen-presenting capacity of the
RNA-introduced DCs (DC/RNA), PBMCs from healthy

402 Oncology 2005;69:399-407

Table 1. Efficiencies of RNA introduction by electroporation into
dendritic cells and their viabilities

Capacitance, pF Voltage. V
0 100 150 200 250
Expt. 1
0 efficiency, % 0.4
viability, % 90.1
150 efficiency - 33.9 55.6 57.3 445
viability - 80.0 787 59.8 420
200 efficiency - 54.7 42.5 28.6 -
viability - 86.4  73.1 46.2 -
Expt. 2
0 efficiency, % 0.5
viability, % 91.5
150 efficiency - 27.1 43.8 343 18.7
viability - 79.0  82.1 64.5 455
- 200 efficiency - 440 311 132 -
viability - 83.7 76,6 51.2 -

Cultured DCs were introduced with mRNA encoding EGFP
using electroporation at various electrical settings. Efficiencies of
RNA introduction into DCs and their viabilities were investigated
as described in ‘Materials and Methods’. A setting of 0 V and 0 pF
indicates the passive pulsing.

volunteers were stimulated in vitro with the DC/RNA,
and IFN-y secretion in the supernatant was determined.
First, we compared IFN-y secretion by stimulating
PBMCs with DCs introduced with four different RNAs:
(1) autologous total RNA from PBMCs (auto-tRNA), (2)
allogeneic total RNA from the BT474 cell line (BT474
tRNA), (3) allogeneic amplified mRNA from the BT474
cell line (BT474 mRNA), and (4) xenogenic amplified
EGFP mRNA. Here, passive pulsing was used as an RNA
delivery system into cultured DCs. Experiments were
performed independently in 3 volunteers and repeated
three times. Representative data of similar results are
shown in figure 2. It was observed that stimulation of
PBMCs with DC/BT474 tRNA, DC/BT474 mRNA, and
DC/EGFP mRNA resulted in significant IFN-y secre-
tions from PBMCs. On the other hand, DC/auto-tRNA,

- aswell asmock DCs, failed to stimulate PBMCs to secrete

IFN-y (fig. 2a). Next, to test whether the RNA delivery
system could-influence the antigen-presenting capacity of
DC/RNA, two different delivery systems of passive puls-
ing and electroporation were compared. BT474 mRNA
was used as a transgene. PBMCs secreted twice as much
IFN-y when stimulated with electroporation than pas-
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Fig. 2. Priming of CTL precursors in PBMCs using DC/RNA in
vitro. PBMCs from healthy volunteers were stimulated with au-
tologous mock DCs (control), DC/auto-tRNA, DC/BT474 tRNA,
DC/BT474 mRNA or DC/EGFP mRNA (a), and with mock DCs
(control), passive pulsing-based DC/BT474 mRNA (pulse) or elec-
troporation-based DC/BT474 mRNA (electroporation) (b), for
72 h. The responder (PBMCs):stimulator (DC/RNA) ratio was
20:1. Supernatants were tested for IFN-y secretion by ELISA. Ex-
periments were performed independently in 3 volunteers and re-
peated three times. Representative data of similar results are shown.
* p < 0.03, significant differences from the value of mock DC.

“sively. pulsed DC/BT474 mRNA, showing a significant
difference (p < 0.05) (fig. 2b).

. EGFP-Specific CTL Induction by DC/EGFP mRNA

To assess whether DC/RNA can induce CTL respons-
es specific to introduced RNA, cytotoxicity assays were
conducted using one CTL line as an effector and two dif-
ferent DC/RNAs as targets. The effector CTLs (CTL/
EGFP) were induced by stimulating PBMCs from healthy
volunteers with DC/EGFP mRNA. Target cells used were
DCs introduced with DC/EGFP mRNA and DC/BT474
mRNA. Experiments were repeated three times, and rep-

resentative data of similar results are shown in figure 3.

It was observed that the effector CTL/EGFP was capable
of recognizing and lysing only DC/EGFP mRNA in a
dose-dependent manner. However, CTL/EGFP did not
at all recognize or lyse DC/BT474 mRNA.

Autologous Tumor RNA-Introduced
Dendritic Cells

Fig. 3. RNA-specific cytotoxic activity of CTLs induced with DC/
RNA. CTLs were induced with DC/EGFP mRNA and cytotoxic-
ity assay was performed against DC/EGFP mRNA .or DC/BT474
mRNA as targets at various E/T ratios. Cytotoxicity assay was as-
sessed by calcein-AM release assay. Experiments were repeated
three times, and representative data of similar results are shown.
* p<0.05.

Tumor-Specific CTL Induction by Autologous DC/

Tumor RNA

To demonstrate whether DCs that were introduced
with amplified autologous tumor mRNA can induce the
tumor-specific CTL responses, effector CTLs were in-
duced in a patient with malignant melanoma of the
esophagus. Effector cells, designated as control CTL,
CTL/muc and CTL/mel, were generated by stimulating
patient’s PBMCs with patient’s mock DCs, patient’s nor- -
mal mucosa mRNA-introduced DCs (DC/muc-RNA)
and patient’s melanoma mRNA-introduced DCs (DC/
mel-mRNA), respectively. The DC/mel-mRNAs were
substituted for the tumor cells as the target cells. Experi-
ments were repeated three times, and representative data
of similar results are shown in figure 4. It was observed
that the cytotoxic activity of CTL/mel showed 73% at an
E/T ratio of 80 against the target cells and decreased in a
dose-dependent manner. However, the cytotoxic activi-
ties of control CTL and CTL/muc were only 13 and 11%
at an E/T ratio of 80 (fig. 4a). There were significant dif-
ferences in the cytotoxic activities between control CTL,
CTL/muc and CTL/mel (p < 0.05).
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Fig. 4. Cytotoxic activity of CTLs induced with DC/mel-mRNA.
Effector CTLs were induced from patient’s PBMCs with autolo-
gous mock DCs, autologous DC/muc-RNA or autologous DC/mel-
RNA. Effector CTLs were described as control CTL, CTL/muc or
CTL/mel, respectively. DC/mel-RNA were used as the target cells.
Cytotoxicity assay was performed at various E/T ratios (a). Cyto-
toxic activity. of CTL/mel was tested against mock DCs, DC/muc-
RNA, MDC/MAGE37, DC/MAGE3,3, DC/CEAy and DC/
CEA 0. The E/T ratio was 40/1 (b). Experiments were repeated
three times, and representative data of similar results are shown.
*p<0.05

Next, antigen peptide specificity of the CTL/mel gen-
erated in the patient'was analyzed. In this melanoma, the
epitope peptides of TAAs were MAGE3_ and
MAGE31 13-1215 but not the CEAIQ_lg or CEA101_108 peEP-
tides, when identified using the host-oriented peptide
evaluation approach described in our previous report
(data not shown) [29]. Therefore, we evaluated the cyto-
toxic activity of the CTL/mel against target cells of mock
DCs, DC/muc-RNA, MAGE374_g+ peptide-pulsed DCs
(DC/MAGE37), MAGE3,5.12; peptide-pulsed DCs
(DC/MAGE3,;3), CEA 19 peptide-pulsed DCs (DC/
CEAjp), and CEA [4;_108 peptide-pulsed DCs (DC/
CEA|g;). It was observed that the CTL/mel showed 47
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Fig. 5. Comparison of cytotoxic activity between CTL/peptide and
CTL/RNA. Four different effector cells were used: (1) unstimu-

lated PBMCs, (2) LAK cells induced with 400 U/mi1 IL-2, (3) CTL/

peptide induced with DC/MAGE374 and (4) CTL/RNA induced .
with DC/mel-RNA. DC/MAGE37¢ and DC/MAGE3,,; were used
as targets. Cytotoxicity assay was performed at an E/T ratio of 50/1.
Experiments were repeated three times, and representative data of
similar results are shown. * p < 0.05.

and 32% cytotoxic activity against DC/MAGE37¢ and
DC/MAGE3,;3, respectively. However, the CTL/mel
showed only 16, 18, 7, and 14% cytotoxic activity against
the mock DCs, DC/muc-RNA, the DC/CEA,,, and DC/
CEA ¢, respectively (fig. 4b). There were significant dif-
ferences between the cytotoxic activities against mock
DCs and DC/MAGE;¢ or DC/MAGE, 5 (p < 0.05).

Polyspecific CTL Induction by DC/Tumor RNA -

Next, the TAA-presenting potential of CTLs generated
using DC/tumor RNA was evaluated. The patient’s’
PBMCs were stimulated with the DC/MAGE37¢and DC/
mel-RNA to generate the effector CTLs that were desig--
nated as the CTL/MAGE3,¢ and the CTL/mel-RNA, re-
spectively. Patient’s PBMCs alone and the lymphokine-
activated killer (LAK) cells that were stimulated with
400 U/ml recombinant human IL-2 were used as the con-
trol effector cells. Patient’s DC/MAGE3;5 and DC/
MAGE3, 3 were used as the target cells. Experiments
were repeated three times, and representative data of sim-
ilar results are shown in figure 5. It was observed that the
PBMCs showed only 11 and 14% cytotoxic activity, and
the LAK cells showed 23 and 21% cytotoxic activity

Minami/Yamaguchi/Ohshita/Kawabuchi/
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Fig. 6. Involvement of HLA class I and class II pathways in the ef-
fector cell induction with DC/peptide and DC/RNA. PBMCs were
stimulated with DC/MAGE37¢ and DC/mel-mRNA in the pres-
ence of various antibodies indicated: (1) no immunoglobulin,
(2) control IgG, (3) anti-HLA class I and (4) anti-HLA-DR antibod-
ies. The responder:stimulator ratio was 20:1. Each supernatant
sample was tested for IFN-y secretion by ELISA. Experiments were
repeated three times, and representative data of similar results are
shown. * p < 0.05.

against the DC/MAGE3,¢ and the DC/MAGE3,3; re-
spectively. The CTL/MAGE3¢ showed a 31% cytotoxic
activity against the DC/MAGE3., but only a 6% cy-
totoxic activity against the DC/MAGE3,;;3. The cyto-
toxic activity of the CTL/MAGE3,, was significantly
higher against the DC/MAGE3,¢ than against the DC/
MAGE3, 3, whereas the CTL/mel-RNA demonstrated
cytotoxic activity against both the DC/MAGE344 and the
DC/MAGES3, 3, showing an activity of 51 and 52%, re-
spectively. There was no significant difference between
the cytotoxic activity of CTL/mel-RNA against DC/
MAGE3;4 and DC/MAGE3, ;3.

Involvement of HLA Class I and II Pathways in

Stimulation of PBMCs by DC/mel-RNA

To determine the involvement of HLA class I or class
II pathways when stimulating PBMCs with two different
APCs, blocking studies with monoclonal antibodies were
performed. The patient’s PBMCs were stimulated with
the DC/MAGE34¢ and the DC/mel-RNA in the presence
or absence of the antibodies indicated, and IFN-y secre-
tion in the supernatant was determined. Experiments
were repeated three times, and representative data of

Autologous Tumor RNA-Introduced
Dendritic Cells

similar results are shown in figure 6. The control immu-
noglobulin had no effect on the IFN-y secretion of
PBMCs when stimulated with DC/MAGE34¢ or DC/
mel-RNA. The addition of anti-HLA class I, but not the
anti-HLA-DR monoclonal antibodies resulted in a sig-
nificant inhibition of IFN-y secretion of PBMCs stimu-
lated with DC/MAGE3,. However, when stimulated
with DC/mel-RNA, not only the addition of anti-HLA
class I but also of anti-HLA-DR monoclonal antibodies
resulted in a significant inhibition of IFN-v secretion of
PBMCs.

Discussion

In this study, we have shown the generation of tumor
antigen-reactive CTL using the tumor RNA-introduced
DCs. Tumor mRNA that was obtained from tiny tumor
mass could easily be amplified in vitro and efficiently in-
troduced into DCs by an electroporation-based mRNA
delivery system. Here, laser capture microdissection
(LCM) may be of value to be introduced into our system,
because LCM can avoid the contamination of normal
cells when tumor RNA is extracted [30]. The LCM may’
augment-the CTL induction in-our system by obtaining
pure tumor RNA, although no induction of CTLs reactive
with normal tissue mRNA-introduced DCs was observed
in this study even when normal RNA was used. The ben-
efit of LCM remains to be addressed.

The approach using amplified tumor RNA and an elec-
troporation-based mRNA delivery system has several ad-
vantages: (1) DCs can be introduced to levels comparable
with transduction by recombinant viruses, such as pox-
viruses [31] or adenoviruses [32], without the problems
associated with viral vectors [33, 34]; (2) DCs can be in-
troduced with the total antigenic spectrum using mRNA
extracted from the tumor tissues without prior identifica-
tion of TAAs; (3) RNA can be amplified by PCR to pro-
vide an unlimited supply of TAAs from an often small
amount of clinical tumor tissues [24], and (4) RNA has a
short cellular half-life and lacks the potential to integrate

_into the host genome, and thereby, we can avoid the po-

tential safety hazard in the context of clinical therapeutic
trials [35, 36]. Our results showed that the electropora-
tion-based mRNA delivery system had sufficient mRNA
introduction efficiency and low cell toxicity against cul-
tured immature DCs under optimal electrical settings
(table 1). This observation is consistent with other reports
showing that the electroporation-based mRNA delivery
system is superior to the commonly used techniques of
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lipofection or passive pulsing in providing better RNA

transfection efficiency [26, 27].

By using DC/RNA, we could generate excellent effec-
tor cells, CTL/RNA, which were capable of recognizing
the DC/RNA. This was also evidenced using the samples
from a patient with malignant melanoma of the esopha-
gus. Moreover, CTL/EGFP mRNA could only recognize
DC/EGFP mRNA but not DC/BT474 mRNA, indicating
the RNA-specific target recognition of CTL/RNA effector
cells. This is consistent with other reports showing that
exogenous DC/mRNA. can prime precursors and induce
antigen-specific CTLs in an introduced mRNA-specific
manner [37, 38]. It indicates that tumor RNA which may
contain numerous tumor antigen-coding genes must be
able to stimulate numerous CTL precursors that have T
cell receptors reactive with each tumor antigen, and sug-
gests that DC/RNA are superior to DC/peptide in terms
of tumor-reactive T cell activation. Actually, our results
showed that the DC/mel-RNA induced polyspecific CTLs
that were reactive with both MAGE3,5 and MAGE3, 3,
whereas the DC/MAGE3,¢ induced monospecific CTLs
reactive only with MAGE3. Since the malignant tumors
have heterogeneity, CTLs induced with the DC/tumor
RNA can reduce the chance of clonal tumor escape more
effectively than CTLs induced with the TAA peptide-
pulsed DCs. Heiser et al. [25] demonstrated that the am-
plified prostate tumor RNA-transfected DC-stimulated T
cell responses were directed against the multiple TAAs,
including the prostate-specific antigen and the telomerase
reverse transcriptase. They also suggested that tumor
RNA-transfected DCs might minimize the risk of clonal
tumor escape [25]. ‘

Interestingly, IFN-y response of PBMCs stimulated
~ with DC/mel-RNA was inhibited not only with anti-HLA
class I antibody but also with anti-HLA class II antibody,
indicating that DC/tumor RNA cannot only stimulate

potent CTL responses but also antigen-reactive CD4+ T -

cell responses. Nair et al. [19] and Weissman et al. [38§]
demonstrated that the antigenic mRNA transfection of
DCs delivers encoded antigen to major histocompatibil-
ity complex class I and class I molecules; on the other
hand, DC/TAA peptide can only stimulate potent CTL
responses, but not CD4+ T cell responses, suggesting that
the DC/tumor RNA is superior to the DC/peptide for a
potent induction of the antigen-reactive CTLs and the
antigen-reactive helper T cells. Furthermore, Zhao et al.
[39] demonstrated that a short incubation of mRNA-
transfected DCs with the antisense oligonucleotides
(against the invariant chain) enhances the presentation of
mRNA-encoded class II epitopes and the activation of

406 Oncology 2005;69:399-407

CD4+ T cell responses in vitro and in vivo, and that im-
munization of mice with antisense oligonucleotide-treat-
ed DCs stimulates potent and longer-lasting CTL re-
sponses and enhances the anti-tumor efficacy of DC-
based tumor vaccination protocols. More recently,
Bonehill et al. [40] reported the presentation of MAGE-
A3 antigen simultaneously in HLA class I and class II
molecules by mRNA-electroporated DCs. The induction

‘of CD4+ T cell responses plays an important role in the

induction and persistence of HLA class I-restricted anti-
gen-reactive CTLs. These observations indicate the im-
portance of activating class II as well as class I pathways
by DC/tumor RNA in DC-based tumor immuno-
therapy.

If tumor RNA contains numerous antigen genes and
if DC/tumor RNA can stimulate numerous CTL precur-
sors, the application of DC/tumor RNA for immunother-
apy could potentially have several drawbacks. For exam-
ple, unfractionated tumor mRNA contains self-antigen-
encoding RNAs, and the use of DC/tumor mRNA in-
clinical trials can induce autoimmune toxicity by reduc-
ing tolerance to self-antigens. However, our results dem-
onstrated that there was no induction of CTLs reactive
with normal tissue mRNA-introduced DCs as targets.
Several phase I clinical trials showed no apparent adverse
effects or dose-limiting toxicities including autoimmune
toxicity [41, 42]. Therefore, there is a strong possibility
that the DC/tumor RNA may not stimulate the forbidden
clones that react with self-antigens. This may augment
the possible clinical application of DC/tumor RNA in
tumor immunotherapy. . ‘

In summary, the use of autologous tumor mRNA-in-
troduced DCs can stimulate the induction of anti-tumor
immune responses against the multiple tumor-derived
antigens without inducing autoimmunity against self-an-
tigens. An immunotherapeutic approach using DC/tu-
mor RNA permits broad applicability against various tu-
mor-bearing patients without prior identification of HLA
phenotypes and TAAs. This approach offers unlimited
supply of tumor mRNA by in vitro amplification from a
limited source of tumor tissue. Collectively, the approach
using DC/mRNA offers novel possibilities for DC-based
antigen-specific immunotherapy of cancer.
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guanidinium thiocyanate-phénol-chloroform extraction A . %

method [7). RNA (3 pg) was reverse-transcribed to U D
¢DNA with the Superseript TM 1I' RNaseH-reverse : = —
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results strongly suggest that NF-xB plays a key role in’ tumor necrosis tactor-’x!pha and um,rlr,ukm-l in mucrophages:
paclitaxel-induced perforin production. cukoc Biol 3 :
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Abstract

Dendritic cell-like cells (Mo-DCs) generated from peripheral blood monocytes with interleukin-4 (IL-4) and granulocyte-
macrophage colony-stimulating factor (GM-CSF) have been used as tools to treat cancer patients (DC-vaccines). Because Mo-
DCs have multiple antigen presentation-related functions, including phagocytosis, migration, cytokine production, and T cell
stimulation, establishment of a method for simultaneously evaluating the various functions of Mo-DCs is important. We
developed a new 1n vitro three-dimensional two-layer collagen matrix culture model that consists of a collagen gel containing
Mo-DCs as the lower layer and a collagen gel containing necrotic GCTM-1 tumor cells and/or T cells as the upper layer. We
used this system to observe simultaneously multiple functions of Mo-DCs by phase-contrast or fluorescence microscopy and to
assess JL-12 secretion during more than 2 weeks of culture. We also observed interactions between Mo-DCs and necrotic
GCTM-1 or T cells on an individual cell basis by time-lapse videomicroscopy. In addition, we collected Mo-DCs from the
collagen gels by collagenase treatment and analyzed the expression of antigen presentation-related molecules such as HLA-DR,
CDg0, CD83, and CD86 on Mo-DCs. This model may be a useful tool for evaluation of the various functions of Mo-DCs used
as DC vaccines and for studies of the complex behaviors of Mo-DCs in vivo.
© 2004 Elsevier B.V. All rights reserved.
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