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Table 111. Change of serum tumor marker level by the vaccine therapy
(phase I/II study).

Evaluation! Number of patients
Continuous decrease 0 (0%)
Transient decrease? 11 (73%)

No change 1(7%)
Continuous increase 2 (13%)
Inability 1 (7%)

IA representative tumor marker was measured by ELISA
every month after the vaccine therapy.
2Decrease lasted more than one month

reactions occurred. Low-grade fever, recovering within 24
h after the DC vaccine, was found in 8 patients. A
transient increase of eosinophils was found on the first
day after the third DC vaccine therapy in 1 patient, but
recovered to the normal level within 3 days without
treatment.

A Kaplan-Meier survival analysis indicated the presence
of long survival patients who lived for more than 6 months.
Based on the laboratory data common to these long
survivors, the eligibility criteria for this tumor-pulsed DC
vaccine therapy was determined as described in Materials
and Methods. According to this eligibility criteria, 19
patients were divided into 6 suited patients (responders)
and 13 unsuited patients (non-responders). The 6
responders showed a longer overall survival compared with
the 13 non-responders (p=0.0018, Figure 1).

Phase I/II study. Using the above eligibility criteria, a
phase I/II trial was again performed with cancer patients
with multiple metastases. Fifteen patients, including 4
large intestinal cancer, 4 gastric cancer, 2 pancreatic
cancer, 2 breast cancer, 1 lung cancer, 1 thymic cancer and
1 cancer of unknown origin were entered into this trial.
Eleven patients had received prior second-line
chemotherapy and 11 patients had received prior surgery.
In addition, 3 patients had received prior radiotherapy. All
of these patients were evaluated as PD at the time of
entering the study (Table II). No particular adverse
reactions, including autoimmune reactions, were found
during this observation period (4-22 months). These 15
patients again showed a longer overall survival compared
with the 13 non-responders who were treated in the above
phase I study (p<0.0001, Figure 2). The 50% survival time
of the 13 non-responders and the 15 patients was 3.0
months and 10.0 months, respectively. The serum levels of
tumor markers were measurable in all the 15 patients and
estimable in 14 of the 15 patients (Table III). In 11
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Table 1V. Clinical outcome (phase I/1] study).

Response Number of patients
CR 0(0%)

PR . 0 (0%)

SD 6 (40%)
Long SD! 8 (53%)

PD 1(7%)

ISD continuing for more than 6 months.

Table V. Immune response (phase I/II study).

Number of patients

DTH reaction (+) DTH reaction (-)

ELISPOT
assay (+) 9 . 0
ELISPOT
assay (-) 0 4

The DTH reaction and ELISPOT assay were assessed at 3 months
after the therapy.

patients (73%) there was a continued decrease for at least
1 month, while 2 patients (13%) and 1 patient (7%)
showed a continuous increase and no significant change,
respectively. Although neither CR nor PR was found, it is
noteworthy that 14 patients showed SD and that § of the
14 SD patients maintained this SD for more than 6
months, i.e., long SD (Table IV).

The patients’ immune responses against tumor-pulsed
DCs were evaluated by both the DTH skin reaction and
IFN-y ELISPOT assay before and after the DC
vaccination. Both the DTH reaction and ELISPOT assay
were assessed at 3 months after the tumor-pulsed DC
vaccine therapy in 13 of the 15 patients (Table V). Nine
of the 13 patients became positive for both the DTH
reaction and ELISPOT assay, while the remaining 4
patients were negative for both. In 3 of the 4 negative
patients, however, the DTH reaction became positive
within 6 months after the therapy.

Most DCs induced from each patient were shown to
develop high levels of MHC class II and costimulatory
molecules CD80 and CD86, and showed the absence of
CD14 (data not shown). However, the expression levels of
these molecules were significantly low compared to the DCs
induced from healthy volunteers’ PBMCs, as previously
reported (16). '
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Discussion

The initial purpose of this clinical trial was to evaluate the
feasibility and toxicity of tumor-pulsed DC vaccine therapy
against far-advanced cancer patients. Low-grade fever or
eosinophilia were observed in only limited cases
throughout the phase I trial and the phase I/II trial (Tables
I and II). These adverse reactions did not require any
particular treatment. As a result, the vaccine therapy did
not need to be cancelled for adverse reactions. In the
phase I/II trial, the maximum duration of treatment was in
a patient who received 36 DC vaccinations in 22 months
during the observation period. After the thirtieth vaccine
therapy, edematous erythema without itching appeared at
the injection site immediately after the intradermal
injection of tumor-pulsed DCs for the DTH skin test.
Erythema was accompanied with an increased serum IgE
and was macroscopically similar to a type I allergic
reaction. The erythema and IgE elevation recovered to
normal within one hour and on the next day, respectively.
Rheumatoid factor, anti-nuclear antibody and anti-
thyroglobulin antibody in the sera were all negative
throughout this trial period.

The second purpose of the study was to assess if tumor-
pulsed DC vaccine therapy can induce some immune
reactions against autologous tumor cells in patients. In
order to evaluate the induction ability of tumor antigen-
specific cytotoxic lymphocytes (CTLs) of this vaccine
therapy, both the DHT skin test and IFN-y ELISPOT assay
were used as surrogate markers (17). In this study, the
positive rate of the DTH reaction was significantly higher in
responders than non-responders (data not shown). In this
phase I/II study, both a positive DTH reaction and
increased ELISPOT reaction were markedly induced by the
vaccine therapy. Interestingly, the DTH reaction completely
harmonized with the ELISPOT reaction (Table V). The
high induction rate of positive D'TH reaction and increased
ELISPOT reaction indicates a potent CTL induction ability
of this vaccine therapy.

The third purpose of the study was to find out the
advantage of autologous tumor cells as an antigen source.
As described above, necrotic tumor cells were used as the
antigen source for induction of multiple CTLs against both
known TAAs and unknown TAAs (11). For this purpose,
the patient’s HLA-A phenotype-binding synthetic peptides
were first prepared as described in Materials and Methods.
Next, PBMCs obtained from a patient in whom the
ELISPOT reaction became positive were cultured together
with known TAA peptide-pulsed DCs. If T cells which
react to the TAA peptide exist in the PBMCs, they
produce IFN-y. For example, in this study, PBMCs from a
patient treated by CEA, MAGE-1 and HER-2/neu-
expressing tumor cells produced IFN-y by co-culture not

only with tumor-pulsed DCs, but also these peptides-
pulsed DCs (data not shown). This data indicated that the
tumor-pulsed DC vaccine therapy can elicit specific T cell
responses against multiple TAAs.

Finally, we examined whether the tumor-pulsed DC
vaccine therapy can prolong the survival time. Both the
phase I and I/II trials showed the possibility that this
therapy can prolong the survival time of far-advanced
cancer patients (Figures 1 and 2). Before the efficacy for
prognosis is evaluated, however, there are many problems
that should be solved. For example, in the current clinical
trials, the patient numbers were low and many types of
carcinoma were targeted. Therefore, a phase II study is now
under way to assess if this vaccine therapy can prolong the
survival time.
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Purification, Characterization and Biological
Significance of Tumor-derived Exosomes

KENICHIRO KOGA', KOTARO MATSUMOTO!, TAKASHI AKIYOSHI!, MAKOTO KUBO!,
NAOKI YAMANAKA!, AKIRA TASAKI!, HIROSHI NAKASHIMA!, MASAFUMI NAKAMURAL
SYOJI KUROKI?, MASAO TANAKAZ and MITSUO KATANO!

"Department of Cancer Therapy and Research and *Surgery and Oncology,
Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Abstract. Exosomes are nanovesicles that are released into the
extracellular environment during the fusion of multivesicular
bodies with the plasma membrane. Exosomes released from
dendritic cells, dexosomes, have several biological functions, for
example as immunostimulants. Some tumor cells also secrete
exosomes (Tu-exosomes). Although experimental data obtained
with the use of dexosomes suggest a biological function of Tu-
exosomes, this still remains poorly understood. To examine the
function of Tu-exosomes, we established a method for collecting
highly purified Tu-exosomes, using paramagnetic beads coated
with antibodies against tumor-specific proteins such as
HERZ2/neu. With these antibody-coated beads (Ab-beads), it
was possible to collect HER2-expressing Tu-exosomes of high
purity. Tu-exosomes were also collected from malignant ascites,
which contain exosomes secreted from various types of cells
such as tumor cells, lymphoid cells and mesothelial cells. The
isolation of Tu-exosomes was confirmed by FACS analysis.
With regard to their biological functions, Tu-exosomes cultured
with a human breast cancer cell line bound to the cell surface
and increased tumor cell proliferation. These data indicate that
Tu-exosomes may have physiological functions.

Abbreviations: FACS, fluorescence activated cell sorting; HER2,
human epidermal growth factor receptor 2; MHC, major
histocompatibility complex; Mo-DCs, monocyte-derived dendritic
cells; Dexosomes, exosomes derived from DC; TCR, T cell
receptor; CTLs, cytotoxic T lymphocytes; PBS, phosphate-buffered
saline; D,0, deuterium oxide.
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Exosomes are small membrane vesicles of endocytic origin that
are secreted by most cells, including some types of tumor cells
(1-7). Exosomes can be identified morphologically by electron
microscopy; they have a characteristic saucer-like shape that is
limited by a lipid bilayer, and they range from 30 to 100 nm in
diameter (8). The presence of known cellular proteins in
exosome preparations from various cellular sources has been
analyzed mainly by Western blotting (9-12). The protein
profiles of dexosomes have been analyzed in greatest detail
(12). We reported that dexosomes prolong the survival of naive
T cells via an interaction between MHC class II molecules on
dexosomes and TCR on naive T cells (13). Recently,
microvesicles, including exosomes derived from platelets, were
found to play an important role in tumor metastasis and
angiogenesis in Jung cancer (14). In addition, it has been shown
that some tumors also secrete exosomes-like microvesicles that
contain many proteins such as MHC class I, heat-shock
proteins and HER2/neu (15). These data suggest that tumor-
secreted exosomes may play a role in tumor progression.

To analyze the biological function of tumor-secreted
exosomes (Tu-exosomes), highly purified Tu-exosomes are
required. The most common procedure for collecting
exosomes from cell culture supernatants involves a series of
centrifugation steps to remove dead cells and large debris,
followed by a final high-speed ultracentrifugation step to
pellet the exosomes (8). Recently, a good manufacturing
process for harvesting relatively pure exosomes secreted by
Mo-DCs was reported (10). However, it is difficult to obtain
dexosomes of greater than 70% purity by this procedure.
Interestingly, some tumor cells secrete exosomes expressing
tumor-specific proteins such as HER2/neu (9). This unique
characteristic of Tu-exosomes indicated that it might be
possible to selectively isolate Tu-exosomes with beads
coated with antibodies against tumor-specific proteins.

In the present study, a new technique for collecting Tu-
exosomes of high purity is described. Preliminary data
concerning the effect of Tu-exosomes on tumor cell
proliferation is also reported.
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Materials and Methods

Reagents. Herceptin (Trastuzumab), a humanized monoclonal
antibody to HER2, was purchased from Roche Pharma AG
(Reinach, Switzerland).

Tumor cell lines. The human breast adenocarcinoma cell lines BT-
474 and MDA-MB-231 were purchased from the American Type
Culture Collection (Manassas, VA, USA). BT-474 cells show high
overexpression of HER2, whereas MDA-MB-231 cells show low
overexpression of HER?2, as described previously (16). These cells
were maintained as monolayer cultures in complete medium
composed of RPMI 1640 (Invitrogen Corp., Carlsbad, CA, USA)
and 10% v/v depleted-fetal bovine serum (FBS, Sigma Chemical
Co., St. Louis, MO, USA). FBS was predepleted of bovine
exosomes by ultracentrifugation at 100,000 x g for 16 hours at 4°C.

Isolation and purification of exosomes. Exosomes were isolated as
described previously but with minor modifications (13). Two
hundred and fifty-ml volumes of culture supernatant were
centrifuged at 300 x g for 10 minutes and then at 1,200 x g for 10
minutes to eliminate cells and debris. The cell-free supernatants
were clarified through a 0.2-um filter (Sartorius AG, Goéttingen,
Germany) to reduce the number of contaminating large vesicles
shed from the plasma membrane. The supernatants were
ultracentrifuged at 100,000 x g for 60 minutes at 4°C in a 70.1 Ti
fixedangle rotor (Beckman Coulter Inc., Fullerton, CA, USA). The
pellets were resuspended in 3.6 ml PBS. The exosomes were
underlaid with 600 pl of a 30% sucrose/D,O density cushion,
followed by ultracentrifation at 100,000 x g and 4°C for 60 minutes.
A 700-ul volume of the cushion layer was collected and pelleted at
100,000 x g for 60 minutes. The pellets were washed twice with PBS,
resuspended in 250 pl PBS and stored at —-80°C. Exosomal protein
was measured by the Bradford assay with the Bio-Rad Protein
Assay Reagent (Bjo-Rad, Hemel Hemstead, UK). A similar process
was used to isolate and purify exosomes from ascites of patients.

Herceptin beads. For further purification, the exosomes were isolated
with Herceptin-coated paramagnetic beads. Briefly, Protein G-coated
Dynabeads (Dynal Biotech, Oslo, Norway) were washed with PBS,
and 10 pl of the beads was mixed with 100 pg Herceptin and
incubated overnight at 4°C on a rotating plate. The Herceptin-coated
beads (referred to as Ab-beads) were washed twice with PBS on a
magnetic rack to eliminate unbound or excess Herceptin. Exosomes
suspended in PBS were then mixed with the Ab-beads. The mixture
was incubated overnight at 4°C on a rotating plate, and the beads
were collected and washed twice with PBS on a magnetic rack to
eliminate unbound or excess exosomes. Exosome-bead complexes
were then used for FACS and electron microscopy analyses.

FACS analysis. The exosome-bead complexes were washed with PBS
containing 3% bovine serum albumin (Sigma) and 0.1% NaN,
(Sigma) to eliminate unbound or excess exosomes. The presence of
HER? protein on exosomes attached to the Ab-beads was examined
by single-color immunofluorescence labelling with FITC-conjugated
anti-HER2 monoclonal antibody (Becton Dickinson, San Diego, CA,
USA) or FITC-conjugated isotype-matched monoclonal antibody
(Becton Dickinson). After a 30-minute incubation at 4°C, labelled
exosome-bead complexes were washed twice with PBS on a magnetic
rack and the fluorescence intensity was measured with a FACSCalibur
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Figure 1. FACS and Western blot analysis of HER2. A. HER2 protein in
BT-474-derived exosomes. Filled histogram, Tu-exosomes with FITC-
conjugated anti-HER2 antibody; open histogram, Tu-exosomes with
FITC-conjugated isotype-matched antibody. B. Western blot analysis of
proteins extracted from Tu-exosomes with anti-HER2 antibody and anti-
actin antibody.

Figure 2. Phase contrast images of Ab-beads cocultured with breast
cancer cell lines. (4, MDA-MB-231 cells; B, BT-474 cells). Experiments
were performed in triplicate with similar results. Bar=10 um.
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Figure 3. FACS analysis of HER2 protein. A. Tu-exosomes, bound 10 Ab-
beads, derived from BT-474 cells (gray) or MDA-MB-231 cells (black)
with FITC-conjugated anti-HER2 antibody. Tu-exosomes, bound to Ab-
beads, derived from BT-474 cells with FITC-conjugated isotype-matched
antibody (open). B. BT-474 cells (gray) or MDA-MB-231 cells (black)
with FITC-conjugated anti-HER2 antibody. BT-474 cells with FITC-
conjugated isotype-matched antibody (open).

flow cytometer (Becton Dickinson) and analyzed with CellQuest
software (Becton Dickinson).

Electron microscopy. The exosome-bead complexes were fixed in 3%
glutaraldehyde in 0.1 M cacodylate buffer (CB) at pH 7.3 for 3 hours
at 4°C and washed in 0.1 M CB. The complexes were resuspended
and embedded in 4% agar, as described previously (17). The agar was
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Figure 4. Electron microscopic image of exosomes derived from BT-474
cells. Ultrathin sections of exosomes derived from BT-474 cells bound to
Ab-beads were viewed with a transmission electron microscope. Small
vesicles (arrows) are bound to the surface of an Ab-bead; bar=500 nm.
Inset, two vesicles at higher magnification; bar=100 nm.
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Figure 5. FACS analysis of HER2 protein in exosomes isolated with Ab-
beads from ascites of an ovarian cancer patient. Filled histogram,
exosome-bead complexes with FITC-conjugated anti-HER2 antibody;
open histogram, exosome-bead complexes with FITC-conjugated isotype-
matched antibody. :
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Figure 6. Data from cell proliferation assay (MTT assay). A, Fluorescence microscopic image of exosomes derived from BT-474 cells cocultured with BT-
474 cells. PKH26-labelled exosomes (Red) bound to PKH67-labelled BT-474 cell surface (Green); bar=10 um. B, Exosomes derived from BT-474 cells

increase tumor cell proliferation.

cut into 1-mm3 pieces, and the pieces were fixed in 1% osmium
tetroxide in 0.1 M CB overnight and then washed in distilled water.
The specimens were dehydrated in a graded series of ethanol and
embedded in Epon 812. Ultrathin sections were treated with uranyl
acetate followed by lead citrate and were examined with an electron
microscope (JEM-1200EX, JEOL, Tokyo, Japan).

Western blot analysis. Protein lysates of cells and exosomes (50 pg)
were run on 7.5% SDS-polyacrylamide gel and transferred to
nitrocellulose membrane. The blots were incubated with primary
antibody to HER2 (rabbit polyclonal anti-HER2 IgG; Upstate

Biotechnology Inc., Waltham, MA, USA) or actin (mouse anti-actin
1gG; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) at a
dilution of 1:100 at room temperature for 1 hour. The blots were
incubated with secondary antibody (FITC-conjugated goat anti-rabbit
or goat anti-mouse IgG; Santa Cruz Biotechnology) at a dilution of
1:200 for 1 hour at room temperature. Visualization was performed
with a Molecular Imager FX System (Bio-Rad Laboratories).

3-(4,5-Dimethylthiazol)-2, 5-diphenyltetrazolium bromide assay. Cell

proliferation was determined by the 3-(4,5-dimethylthiazol)-2,5-
diphenyltetrazoliumbromide (MTT) assay (18). BT-474 cells (7.0x103
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cells) were seeded onto 96-well plates and cocultured at 37°C with
the indicated concentrations of exosomes in 1% Alb-RPMI. After
incubation for 72 hours, cell proliferation was measured. The percent
cell viability is expressed as the mean=SD for four independent wells.

Fluorescence microscopy. To examine exosomes cocultured with
cancer cells by fluorescence microscopy, the exosomes were labelled
at room temperature with the fluorescent membrane dyes PKH26
and PKH67 (Sigma), according to the manufacturer’s instruction, and
washed in PBS . PKH26-labelled exosomes (Red) and PKH67
labelled BT-474 cells (Green) were seeded onto 24-well plates and
cocultured in 1% Alb-RPMI for 6 hours at 37°C, and random x400
fields were photographed with a fluorescence digital camera
(VB7010, Keyence Corp., Osaka, Japan) coupled with a phase-
contrast microscope (ECLIPSE TE300, Nikon, Tokyo, Japan).

Statistical analysis. The Student’s t-test was used for statistical analyses.
A p-value less than 0.05 was considered statistically significant.

Results

HER2 protein in Tu-exosomes. To isolate Tu-exosomes, high
HER2-expressing BT-474 cells were used. The Tu-exosomes
were collected from the culture supernatants by successive
centrifugation steps, as described in Materials and Methods.
HER? protein in the Tu-exosomes was identified by FACS
and Western blot analyses. Both the FACS (Figure 1A) and
. Western blot (Figure 1B) analyses confirmed the presence of
HER?2 protein in Tu-exosomes. FACS also revealed that
Tu-exosomes contain HER2-negative components.

Isolation of HER2-containing Tu-exosomes. To selectively
isolate HER2-containing Tu-exosomes, Herceptin-coated
paramagnetic beads (Ab-beads) were used, as described in
Materials and Methods. The Ab-beads were cocultured with
low HER2-expressing MDA-MB-231 cells or high HER2-
expressing BT-474 cells for 6 hours at 37°C. Phase contrast
microscopy revealed that the number of Ab-beads bound to
BT-474 celis (Figure 2B) was much greater than the number
of Ab-beads bound to MDA-MB-231 cells (Figure 2A).

The Ab-beads were then mixed with Tu-exosomes
overnight at 4 °C and collected with a magnetic rack. The
bead-exosome complexes were incubated with FITC-
conjugated anti-HER2 antibody or FITC-conjugated isotype-
matched antibody. FACS analysis showed that almost 100%
of the Ab-beads stained for HER2 and that the intensity of
HER? staining was narrow, suggesting that HER2-containing
exosomes bound uniformly to Ab-beads (Figure 3A). HER2
protein in the cells themselves correlated well with the
fluorescence intensity of the Tu-exosomes (Figure 3B).

Electron microscopic analysis confirmed that the exosomes
bound to Ab-beads (Figure 4). At higher magnification
(Figure 4, inset), bound entities showed the characteristic
saucer-like morphology of exosomes ranging from 30 to
120 nm in diameter.
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Isolation of HER2-containing Tu-exosomes from malignant
ascites. To determine whether Ab-beads are useful as ap
experimental tool, we attempted to selectively isolate the
HER2-containing Tu-exosomes from the ascitic fluid of a
patient with advanced ovarian cancer. The exosome fraction
was collected from ascitic fluids by several centrifugation
steps. The presence of HER2-containing Tu-exosomes was
confirmed by FACS analysis. The exosome fraction was then
mixed with Ab-beads. FACS analysis indicated that the
Ab-beads bound HER2-containing exosomes (Figure 5).

Effect of Tu-exosomes on the proliferation of BT-474 cells. To
determine whether Tu-exosomes have biological functions, the
effect of Tu-exosomes, derived from BT-474 cells, on BT-474
cell proliferation was examined by MTT assay. When the
Tu-exosomes were cultured with BT-474 cells at 37°C, they
attached to the cell surface (Figure 6A) and slightly, but
significantly, increased the proliferation of the BT-474 cells
(Figure 6B).

Discussion

One objective of this study was to develop a new procedure for
collecting specific protein-containing exosomes of high purity.
The successful isolation of exosome populations will enable the
detailed analysis of the biological functions of exosomes and
their possible use as therapeutic tools. In the present study, we
used anti-HER2 antibody-coated paramagnetic beads (Ab-
beads) to collect HER2-containing exosomes from crude
exosome fractions collected by several centrifugation steps. The
ability of these beads to specifically isolate HER2-containing
exosomes was confirmed by FACS analysis. A humanized anti-
HER2: monoclonal antibody (Herceptin) was used.
Approximately 100% of the Ab-beads bound HER?2-containing
exosomes. Herceptin coupled to the beads may be functionally
active, because the Ab-beads strongly inhibited the proliferation
of high HER2-expressing BT-474 cells (data not shown).
Several types of tumors secrete exosomes (Tu-exosomes). It

“has been shown that high levels of exosomes accumulate in

tumor ascites and pleural effusions of patients with various
types of tumors such as breast or ovarian cancer (19). In
addition, exosome-like vesicles have been collected from
human serum (20). Because Tu-exosomes contain tumor
antigens, such as melan-A/MART] in melanoma tumor cells
(9), they may act to transfer antigens from tumor cells to
dendritic cells (DCs). It has been reported that Tu-exosomes
are involved in the transfer of tumor antigens to antigen-
presenting cells and in the stimulation of specific immune
responses (15). Although these data indicate that Tu-exosomes
obtained from malignant fluids are useful as antigen sources
for immunotherapy, these fluid-derived exosomes include
those secreted from various types of cells such as tumor cells,
lymphoid cells, or mesothelial cells. To use exosomes as
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potential antigen sources, Tu-exosomes should be selectively
isolated. For this purpose we used Ab-beads to obtain, in a
relatively selective manner, HER2-containing Tu-exosomes
from ascitic fluid-derived exosomes of a patient with ovarian
cancer. Thus, it may be possible to collect Tu-exosomes with
beads coupled to antibodies to multiple tumor antigens.

Dexosomes, secreted from DCs, express both MHC class 11
molecules and costimulatory proteins such as CD80 and
CD86; they can also stimulate naive CD4+ T cells (21).
Platelet-derived exosomes also have biological functions (13).
Although the data obtained in the present study indicate that
Tu-exosomes may also have biological functions, these
functions remain unknown.

We determined whether Tu-exosomes can affect the
proliferation of parental cells. Tu-exosomes derived from BT-
474 cells stimulated the proliferation of BT-474 cells,
suggesting a biological function. Membrane transfer has been
reported in vitro in systems involving or not involving cell-cell
contact. Furthermore, it has been suggested that exosomes
bear combinations of ligands that can bind different cell-
surface receptors simultaneously and that exosomes can fuse
with target cells and exchange membrane proteins between the
two cell types. Tu-exosomes bound to the surface of BT-474
cells; thus, there is a possibility that proteins in Tu-exosomes
stimulated a proliferation-related signaling pathway in BT-474
cells. To examine the molecular mechanisms of Tu-exosome-
mediated proliferation increases, we are investigating the
expression of cell cycle-related proteins in BT-474 cells at both
the mRINA and protein levels. In conclusion, Ab-beads may be
useful as experimental and therapeutic tools in studies into the
functional roles of exosomes.
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Evaluation of a Dysfunctional and Short-lived Subset of
Monocyte-derived Dendritic Cells from Cancer Patients
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Abstract. Monocyte-derived dendritic cells (Mo-DCs) were
generated from peripheral blood monocytes of 12 healthy
volunteers (hMo-DCs) and 11 patients (pMo-DCs) with
malignancies by culture for 7 days with granulocyte-
macrophage colony-stimulating factor and interleukin-4. In
this study, we focused on the cytogram pattern by FACS
analysis. A gate (R1) was set up by which more than 95% of
hMo-DCs were contained. Mo-DCs having lower side scatter
than the R1 (R2) comprised 4.5% of hMo-DCs and 24.2% of
PMo-DCs.  Expressions of antigen presentation-related
molecules and phagocytic ability in the R2 of pMo-DCs were
lower than those in the R1 population. The R2, but not Rl in
DPMo-DCs decreased in number between days 7 and 14, and
expression levels of antigen presentation-related molecules in
the living pMo-DCs on day 14 increased. The 11 patients
received dendyritic cell vaccine therapy with autologous, tumor-
pulsed mature Mo-DCs (day 7). The low R2 group (R2<10%,
3 patients) had a significantly higher positive delayed-type
hypersensitivity reaction against autologous tumor-pulsed
Mo-DCs than that of the high R2 group (R2>10%, 8 patients)
(p<0.001). These results indicate that the R2 of pMo-DCs may
be a dysfunctional and short-lived subset.

Dendritic cells (DCs), which are known as professional
antigen-presenting cells (APCs), can induce both the
generation and proliferation of specific cytotoxic T
lymphocytes (1-6). DCs capture and process antigens, move
to the T-dependent areas of secondary lymphoid organs and
stimulate naive T cells. Only DCs are capable of inducing
primary sensitization against specific antigens in naive T cells
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(1). The ability to present exogenous antigens to CD8+ T
cells through "cross-presentation” is an important feature of
DCs (7, 8). Recent advances in biotechnology have made it
possible to generate DC-like APCs (Mo-DCs) from peripheral
blood mononuclear cells (PBMCs) with granulocyte-
macrophage colony-stimulating factor (GM-CSF) and
interleukin-4 (IL-4) (9). Thus, Mo-DCs have become popular
candidates for DC-based immunotherapy for patients with
malignancy of various types (10-19). Unfortunately, the
therapeutic efficacy of these DC vaccines has been quite
limited. One possible reason is that the antigen-presenting
capacity of Mo-DCs generated from cancer patients (pMo-
DCs) is impaired (20-26). It has been proposed that DCs
mediate both T cell immunity and T cell tolerance and that
these opposite functions may be linked to the dynamic
maturation of DCs (27). If pMo-DCs have impaired
maturation ability, pMo-DCs administered to cancer patients
may remain immature and sensitize T cells to cancer-related
antigens. Although it has been shown that several tumor-
secreted factors such as venous endothelial growth factor,
IL-6, IL-10 and transforming growth factor p1 (TGF-1) are
able to inhibit the full maturation of functional DCs (28-30),
little is known about the reasons why the antigen-presenting
ability of pMo-DCs is impaired. To potentiate the efficacy of
Mo-DC-based vaccine therapy, a greater understanding of
antigen presentation-related functions of pMo-DCs is needed.

Our previous study showed that pMo-DCs of advanced
gastrointestinal cancer patients are not only dysfunctional
in antigen-presenting ability, but that they also have a
relatively short lifespan (26). In this study, therefore, we
focused on the identification of this dysfunctional and short-
lived pMo-DC subset.

Materials and Methods

Fatients. Eleven patients with stage IV carcinoma (3 pancreas, 3
rectum, 2 colon, 2 stomach and 1 gall bladder carcinoma), for whom
no other standard therapy option was possible, were enrolled in the

3445



ANTICANCER RESEARCH 25: 3445-3452 (2005)

Table 1. Characteristics of study patients.

No.  Age* Gender Primary site DTH  Survival
% of R2 timeb
1 43 M stomach 2.8 + 10
2 38 M rectum 5.7 + 24
3 49 F rectum 6.2 + 16
4 64 F colon 14.6 + 5
5 65 F pancreas 18.0 + 10
6 72 M colon 234 - 6
7 45 F rectum 234 - 15
8 65 M stomach 31.7 2
9 49 M gall bladder 41.6 - 7
10 55 M pancreas 45.1 - 2
11 72 F pancreas 54.0 - 4

Eleven patients with advanced cancer (stage I'V), who were enrolled in the
present study and were not involved in any previous chemotherapy,
radiotherapy, or immunotherapy. Patients were divided into a low R2
group (R2=10%, 3 patients) and a high R2 group (R2 > 10%, 8 patients).
lyears

bmonths

phase I study; for ethical reasons, no control group was created. The
research ethics committee of the Faculty of Medicine, Kyushu
University, Japan, approved the study protocol. All patients gave
written, informed consent at the time of enrollment. Patient profiles
are shown in Table 1. Staging was done in accordance with the
American Joint Committee on Cancer criteria (31). Twelve healthy
volunteers, whose sex and age were matched with those of the
patients, were enrolled as contro] subjects. Informed consent was
also obtained from the healthy volunteers.

Generation of Mo-DCs. PBMCs were isolated from heparinized
peripheral blood from the patients and healthy volunteers by Ficoll
Paque (Life Technologies, Gaithersburg, MD, USA) density
gradient centrifugation. PBMCs were resuspended in GMP-grade
RPMI 1640 (Hy-Media, Nipro, Tokyo, Japan ) with 1% human
albumin (RPMI medium), plated at a density of 2x106 cells/m] and
allowed to adhere in 24-well culture plates (Nalge Nunk
International, Chiba, Japan). After 4-h incubation at 37°C, the
non-adherent cells were removed, and the adherent cells were
harvested and cultured in RPMI medium supplemented with
GM-CSF (200 ng/ml; Genetech Co., China) and IL-4 (500 U/ml;
Osteogenetics, Wuerzburg, Germany). On day 7, non-adherent cell
fractions were collected as immature Mo-DCs and examined.

Tumor cells. Autologous tumor cells were collected from malignant
effusions, CT-guided biopsy specimens, or probe laparotomy
specimens. Tumor specimens were minced with scalpels and passed
through metal meshes of decreasing pore size. Cells were cultured
in serum-free enriched culture medium (EBM2; Sanko Junyaku,
Tokyo, Japan) containing basic fibroblast-growth factor, epidermal
growth factors and insulin. To avoid any decrease in tumor-
associated antigens, no chemical digestion was done. This
procedure yielded a tumor-enriched cell line for Mo-DC-vaccine
therapy. A human gastric adenocarcinoma cell line, GCTM-1, was
used for in vitro experiments.
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Flow cytometry (FACS) analysis. To analyze the cytogram and the
expression of antigen presentation-related molecules in Mo-DCs, the
cells were incubated for 1 h with anti-CD80 or anti-HLA-ABC (BD
Pharmingen, San Diego, CA, USA) conjugated to FITC or anti-
CD1lc or anti-HLA-DR conjugated to PE (BD Pharmingen). The
isotype controls were 1gGl and IgG2a (BD Pharmingen). For
staining, cells were washed two times with phosphate-buffered saline
(PBS) and then incubated for 1 h at 4°C in (FACS buffer)
containing 3% BSA (Sigma, St. Louis, MO, USA) and 0.1% NaN,
(Sigma) in PBS as well as the appropriate concentration of labelled
mAb. After a washing with FACS buffer, the fluorescence intensity
of gated Mo-DC populations was measured with a FACS Calibur
flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) and
the data were analyzed by CELLQuest software (Becton Dickinson).

Cytogram pattern analysis of Mo-DCs. The cytogram pattern of
hMo-DCs was more homogeneous than that of pMo-DCs. Mo-DCs
were divided into two populations according to the cytogram
pattern. A gate was set up in which more than 95% of hMo-DCs
were contained; these hMo-DCs were designated as the Rl
population in this study; hMo-DCs in the lower side scatter (S5C)
gate were designated as the R2 population.

Capture of lysed GCTM-1 tumor cells by Mo-DCs. The membrane
components of lysed GCTM-1 cells were labelled with the PKH 67
green fluorescent cell linker kit (Sigma), and Mo-DCs were labelled
with PE-conjugated HLA-DR mAb (BD Pharmingen), according to
the manufacturers’ protocol. Fluorescence-labelled Mo-DCs and
lysed tumor cells were co-cultured at an original cell ratio of 1:1 for
4 h at 37°C or 4°C, washed, and then applied to a FACS Calibur
flow cytometer. The fluorescence intensity data were analyzed with
CELLQuest software. Both PKH 67-positive and HLA-DR-positive
cells (double-positive cells) in gated Mo-DCs populations were
defined as lysed tumor cell-captured Mo-DCs.

Procedure for Mo-DC vaccine. Autologous tumor cells were
resuspended in 2 ml of serum-free RPMI medium and lysed by 5
freeze and thaw cycles. Immature Mo-DCs were incubated with the
lysed tumor cells overnight (Mo-DCs:tumor cells=5:1). Tumor-
pulsed Mo-DCs were further cultured in the presence of 40%
monocyte-conditioned medium for Mo-DC maturation, as
previously described (32). Tumor-pulsed mature Mo-DCs ([1-10]
x10° cells) suspended in 2 ml of 1% human albumin-containing
physiological saline solution were injected subcutaneously in a left
supraclavicular lesion every 2 weeks for as long as possible.

Delayed-type hypersensitivity (DTH) skin-test reaction. For testing the
tumor-specific response, tumor-pulsed Mo-DCs (105 cells/m}) were
administered intradermally before and after the treatment. A
positive DTH skin-test reaction was defined as an induration
greater than 5 mm after 48 h.

Statistical analysis. Fisher’s exact probability test was used for
statistical analyses. Calculations were carried out with StatView
software (Abacus Concepts, Berkeley, CA, USA). All results with a
p value of less than 0.05 were considered statistically significant.

Results

Cytogram pattern of Mo-DCs on day 7. R1 and R2
populations of immature Mo-DCs on day 7 were identified
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Figure 1. (4) FACS analysis of representative cytogram patterns of hMo-DCs and pMo-DCs on day 7. The R1 gate, which contains more than 95% of
hMo-DCs, is determined by forward and side scatter on day 7. R2 comprises Mo-DCs not in R1. (B) Percentages of the R2 population of hMo-DCs
(filled column, n=12} and pMo-DCs (dotted column, n=11) on day 7. The results are presented as mean+SE (bars) values.

by the cytogram pattern of FACS analysis, and hMo-DCs
had a higher SSC pattern, whereas pMo-DCs had a lower
SSC pattern (Figure 1A). The percentage of R2 in
pMo-DCs (n=11, 24.2+5.2%) was significantly higher than
that in hMo-DCs (n=12, 4.5+0.6%) (p=0.001, Figure 1B).

The expressions of antigen presentation-related molecules in
R1 and R2 populations of Mo-DCs on day 7. The expressions
of antigen presentation-related molecules in R1 and R2
populations were compared between hMo-DCs (n=6) and
pMo-DCs (n=6) (Figure 2). The expressions of CD80,
CD11c and HLA-ABC in the R2 population of hMo-DCs
were significantly lower than those in the R1 population
(p=0.031, 0.033 and 0.020, respectively). The expressions of
CD80, CDllc, HLA-DR and HLA-ABC in the R2
population of pMo-DCs were also significantly lower than
those in the R1 population (p=0.013, 0.033, 0.028 and 0.048,
respectively). When the expressions of these molecules in
the R1 populations of hMo-DCs and pMo-DCs were
compared, only CD80 expression in the R1 population of
pMo-DCs was lower than that in the hMo-DCs (p=0.050).
Similarly, only CD80 expression in the R2 population of
pMo-DCs was significantly lower than that in the R2
population of hMo-DCs (p=0.006).

Phagocytic ability of pMo-DCs in RI and R2 populations on
day 7. A dot plot pattern of a representative case is shown in
Figure 3A. In this case, even though 47% of the R1
population-of pMo-DCs captured the lysed GCTM-1 cells,
only 7.7% of the R2 population of pMo-DCs captured the
lysed GCTM-1 cells. Data for pMo-DCs generated from 5
patients are shown in Figure 3B. The percentage
(10.0£2.2%) of Mo-DCs capturing the lysed GCTM-1 in
the R2 population was significantly lower than that

(39.0£7.7%) in the R1 population (p=0.023), suggesting
that the phagocytic ability of the R2 population was lower
than that of the R1 population. Capture of lysed GCTM-1
cells by pMo-DCs was not due to non-specific binding
because the percentage of double-positive pMo-DCs at 4°C
was less than 5%.

Cytogram pattern and expressions of antigen presentation-
related molecules of Mo-DCs on day 14. The percentage of
the R2 population in hMo-DCs and pMo-DCs on day 14
was measured. In hMo-DCs, no significant change in cell
number was found between day 7 and day 14. In pMo-DCs,
however, a significant decrease in cell number was found on
day 14 compared to day 7, as found in our previous study
(26). A representative cytogram is shown in Figure 4A. The
cytogram pattern of pMo-DCs was very similar to that of
hMo-DCs on day 14. No significant difference in the
percentage of the R2 population was observed between
pMo-DCs  (n=8, 5.1+1.0%) and hMo-DCs (n=8§,
4.9+1.1%) on day 14 (Figure 4B).

The expressions of antigen presentation-related molecules
in the R1 population of hMo-DCs (n=6) and pMo-DCs
(n=6) on day 14 are compared in Figure 5. No significant
differences in the expressions of molecules examined were
observed between hMo-DCs and pMo-DCs that survived
until day 14.

Relationship between the DTH reaction after Mo-DC-vaccine
therapy and the R2 population of pMo-DCs. Eleven patients
received Mo-DC-vaccine therapy with autologous tumor-
pulsed mature Mo-DCs. Patient profiles are provided in
Table 1. Autologous tumor-pulsed mature pMo-DCs on day
7 were injected subcutaneously every 2 weeks. Two months
after therapy, the reaction of DTH was estimated using
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Figure 3. Phagocytic ability in immature pMo-DCs on day 7. (A) The da
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(dotted bars) derived from 5 different pMo-DCs. Results are presented as m.

autologous tumor-pulsed Mo-DCs to assess the
effectiveness of the immunotherapy. The patients were
divided into a low R2 group (R2<10%, 3 patients) and a
high R2 group (R2 > 10%, 8 patients). The low R2 group
(3/3) had a significantly stronger positive DTH reaction than
that of the high R2 group (2/8) (p<0.001, Table I). Patients
in the low R2 group had a significantly longer survival time
than that of patients in the high R2 group (Figure 6).

Discussion
The results of our previous study indicated that Mo-DCs

from patients with advanced cancer contain a dysfunctional
and short-lived Mo-DC subset (26). In this work, we focused

3448
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on the specification of the dysfunctional and short-lived Mo-
DC subset to estimate the nature of pMo-DCs.

It is known that the cytogram pattern of FACS analysis
differs between monocytes and Mo-DCs. When monocytes
differentiate to Mo-DCs, the Mo-DC cytogram moves to the
upper right. Based on these findings, to identify this short-
lived Mo-DC subset, the cytogram pattern of Mo-DCs was
analyzed by FACS. A gate (R1) was set up in which more
than 95% of Mo-DCs generated from 12 healthy volunteers
(hMo-DCs) were contained. The area having lower side

-scatter than R1 was named R2 and is similar to a gate for
monocytes. On day 7, the percentage of the R2 population in
pMo-DCs was significantly higher than that in hMo-DCs
(Figure 1). In addition, pMo-DCs in R2 had significantly
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Figure 4. (4) FACS analysis of representative cytogram patterns of hMo-DCs and pMo-DCs on days 7 and 14. (B) Percentages of R2 population of hMo-
DCs (filled column, n=8) and pMo-DCs (dotted column, n=8) on day 14. The results are presented as mean=SE (bars) values.

lower expressions of MHC and costimulatory molecules and
a lower phagocytic ability than those in R1 (Figures 2 and 3).
On day 14, however, the number of pMo-DCs decreased to
three-quarters of that of day 7. The cytogram pattern of
pMo-DCs also changed between day 7 and day 14 (Figure 4);
the percentage of R1 in pMo-DCs increased. In hMo-DCs,
however, neither cell number nor cytogram pattern changed
between day 7 and day 14 (Figure 4). The cell number in R1
of pMo-DCs did not change significantly between day 7 and
day 14, suggesting that mainly pMo-DCs in R2 were dying
between day 7 and day 14. If so, R2 is a short-lived subset.
Nevertheless, we cannot rule out completely the possibility
that pMo-DCs in R2 changed to those in R1. This latter
possibility is unlikely since it requires that Mo-DCs in R1
are short-lived.

Consistent with our previously reported findings (26),
expressions of antigen presentation-related molecules of
pMo-DCs were weak compared with those of hMo-DCs
(Figure 2). Interestingly, most pMo-DCs in R2 disappeared
between day 7 and day 14, and the difference in expressions
of antigen presentation-related molecules between pMo-DCs
and hMo-DCs also disappeared on day 14 (Figure 5). We
conclude that the R2 population of pMo-DCs is
dysfunctional and short-lived. Some investigators have
shown that tumors impair dendritic cell differentiation from
monocytes (33). In the present study, the R2 population had
almost the same cytogram pattern as monocytes. We now
speculate that those pMo-DCs which belong to R2 are

insufficiently differentiated Mo-DCs. In fact, the mean
fluorescence intensity of CD14 in R2 was higher than that in
R1 (data not shown).

DC vaccine therapy with autologous tumor-pulsed Mo-DCs
for patients with advanced malignancies is being evaluated in
our laboratory. Based on our hypothesis that pMo-DCs that
belong to R2 are insufficiently differentiated Mo-DCs, we
analyzed the relationship between the percentage of the R2
population in pMo-DCs and the induction of tumor-specific
immunological response. We used the DTH skin-test reaction
against tumor-pulsed Mo-DCs as a tumor-specific response.
As expected, a higher DTH-positive reaction after the
therapy was induced in patients whose Mo-DCs contained a
smaller R2 population (Table I). This suggests that Mo-DCs
containing a smaller R2 population have a higher antigen
presentation ability in vivo. This possibility is partly supported
by the finding of a longer survival time in patients who
received Mo-DCs containing a smaller R2 population (Figure
6). Our results indicate that we may be able to improve the
efficacy of DC vaccine therapy by treating the R2 population
in pMo-DCs. When anti-TGF-B1 antibody was added to the
initial culture of monocytes, Mo-DCs in R2 significantly
decreased, and both the expressions of MHC and co-
stimulatory molecules as well as the phagocytic ability of

- pMo-DCs were improved (data not shown). It has been

reported that the overexpression of TGF-B1 enhances cell
invasion of fibrosarcoma, prostatic carcinoma and mammary
adeno-carcinoma cells, with a consequent increase in the
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Figure 5. Expressions of antigen presentation-related molecules in R1
populations of hMo-DCs (filled column, n=6) and pMo-DCs (dotted
column, n=6) on day 14. The results are presented as mean=+SE (bars)
values.

metastatic potential of the tumor (34-36). In addition, it has
been shown that tumor-derived TGF-B1 reduces the efficacy
of DC vaccine (37, 38). Although these findings suggest that
TGF-B1 may partly contribute to generation of the R2
population in Mo-DCs obtained from patients with
malignancies, we have no definite recommendation for
overcoming this problem.

In conclusion, Mo-DCs in the R2 population are a
dysfunctional and short-lived subset. The percentage of R2
population in Mo-DCs may be a useful index for evaluating the
quality of Mo-DC:s to be used in DC-based vaccine therapy.
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Summary .

We propose that tumors discovered in a clinical setting are already in the world of immune tolerance. in
order to induce powerful antitumor immunity, therefore, we will have to develop a new immune surveillance
system in the body. We focused on the ongoing noteworthy devices to improve antigen—presenting ability
of dendritic cells (DCs) which play a key role in the world of immune surveillance. One approach is to de-
velop strategies capable of prolonging both the activation state and life span of DCs. A second way is to
adjust the immunological environment of tumor sites to the immune surveillance world. Finally, we briefly
introduce the ongoing trials concerning artificial antigen-presenting systems.
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