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self, others)
2L %58 (forgiveness)
2 (love)
4 & 5 EBR (meaning of life)
SEF0 (peace)

110




Bt

—_
‘.___—.

FERT R AR

B

X 1. AFLANVTTDARY v T 5 (CES & DESF|A)

3, BAZRULDETIEERNEROTAY XY
bOREREE, V) VNEE, EREE0EZLOND
EEGAEORE L LT, BADERRES
Db DIEXT BEMELPL, BWADETICL SR
T4— A4 A=YD&(L, BELOETZEND
Fenzd hoOBEENREECHT 387
TR DOWT, KNNIEEES LWR7 Fo—F &
DY, EEOBEOTHBASCELALHELT,
ZOFREHX AR SEL I ENLEMCHED
=A% 2E23Z810%5EBRRTNEY,
HEBER) I U ND=—X LT, HEEFEODL
2 1 DOEEEZIERICIT D 7o D DM OB ELHS
DEIR D, KEBABRERECBO T NEE
T Az, BEPERETTS [CAREER
RETARLIZINETILESH LD T AR
WREETIZY NREET, $IRLDIOBVDTIE
Bwb] EVoeFZEFOI NS L, EFT
NIZHIRRDELRT 2 £, £EHTFERIBELD
P2, SELEERETALELRVDTIEER
WHEWIEZ DL, ) LIRIRIZB VLTI,
BESPKBEIIR LTI NOERNLZEZFE2+5H
CBEALT, MBLTLLS I LNEETHD. Tk
Y23 FNVEDOBETH->TH, THAVF—
DIEFEE R/IRIC L $hERZ ADL 0 TR,

17N

BL5E8
e

it

BEDFEAD QOL ORI bAE S BBT 5
CEREBLTLSINENS D,

FhoHSHRAEE L TR, REBERCBT 3
fgEe, HELORENWCE T A2RE 3o kEE
R BIREREEM e W T A R E AL
EHHs AEYF a7 VEAEORMEL LT,
A22ERPEEDR, F FHzLwBET A2
EREEND,

KREAAAICBITD U hDEE

BEEPEHNE LIBBCRIGLEL o RE
2OBEANOT T OHE, TEZRD REFL
7AVT 4 — 47+ 74 7 (quality of life:
QOL)2EHMT 2 L Th 2. IHEE PADEBED
EHFIEHEZ L, SLOBVABRENBAREZ
BWOREEFETAZEHARBEE> TS,
1k Twycross DR LIc AT A NVT T DA
NI P TATHBY. BADFIHIC L T, BED
BELER-TL 3. SEBPABEFORES S
D LEEHICE, VAABEEREERE LS. BA
BB L DEEPRBOETCH>T, HEARE
DHEFVPEEEC 2 > BFTH LT, BRNE L,
BTz, @B9oe, MEETLIELRED
HEAW L =—XAMBEEI NS I LIE, £EBEK
WHEERRITT. EBETE TV IENTE
ot Al bl L T, HairIk eI
£oT, TEIRVBEEOEENTESL LS IL
TW ZEREEREWRSH 5.

Hlic

FEIBACBT B VN, Ny Ko DBER
AW, PEl, ERTFOERZ LD SR HEEED
EERHERF2 T 220 T, LDEMIZLED T
BEREENDHIH, EROEEISTIIRLT
TOHEEL TR LT LW, Lal, 5%
Db 3 EEEEL, FEEERL STRE
Bt SEEELIRCEOZEERSY v 7, HFY
B 7 7a0—F2FE L Tw e, EDS —
SFNVTTOEORECERT 2 EE2 NS



Y. =3 FNTT, 61417-420, 1996,

X 4) KRINHFE : BADYNEY F—vay, B[
1) iR, KEEH [EERACRAT 7 OEE] A VA7 FJEFRE] 2RO S-S
WOWTDMER. BERERE, 24 1 1125-1129, 1998. 77, 6. 428-436, 1996
2) I B EEENTy7(RACART7)DHEE 5) Twycross RG : Hospice care-Redressing the
EIRR. EEAKEEE, 27 1 1603-1607, 2001 balance in medicine. / R Soc Med, 73 : 475,
) FEEF . Y- A5y T7TEeUNEY FT—vs 1978.
191



Available online at www.sciencedirect.com

sclsuca@omsc-r' Llfe Sciences

f.

s
ELSEV

IER Life Sciences 74 (2004) 2655-2673

www.elsevier.com/locate/lifescie

Molecular mechanism of changes in the morphine-induced
pharmacological actions under chronic pain-like state:
Suppression of dopaminergic transmission in the brain
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Abstract

In the present study, we demonstrated whether a neuropathic pain-like state induced by sciatic nerve ligation in
rodents could cause a long-lasting change in intracellular signaling in both supraspinal and spinal cord related to
the suppression of morphine’s effect. Mice with sciatic nerve ligation exhibited a significant suppression of the
morphine-induced antinociception. Under this condition, phosphorylated-conventional protein kinase C-like
immunoreactivity (p-cPKC-IR) and phosphorylated-p-opioid receptor (p-MOR)-IR were clearly increased on the
ipsilateral side in the dorsal horn of the spinal cord of nerve-ligated mice. It is of interest to note that astroglial
hypertrophy as well as its proliferation was also noted in this area of sciatic nerve-ligated mice. Like nerve injury,
the increase in cPKC activities and astroglial hypertrophy/proliferation in this region was observed by repeated
morphine treatment. These findings suggest that the phosphorylation of both ¢cPKC and MOR in the dorsal hom of
the spinal cord by sciatic nerve ligation may play a substantial role in the suppression of morphine-induced
antinociception under a neuropathic pain-like state. Sciatic nerve injury also caused a-significant inhibition of
MOR-mediated G-protein activation onto GABAergic neurons and a dramatic reduction in ERK activities onto
dopaminergic neurons in the ventral tegmental area (V TA) regulating the rewarding effect of opioids. Furthermore,
we found that the inhibition of ERK cascade in the VTA by treatment with specific inhibitors suppressed the
morphine-induced rewarding effect in normal mice. These findings provide evidence that the direct reduction in
MOR function and the persistent decrease in ERK activity of dopaminergic neurons in the VTA may contribute to
the suppression of the morphine-induced rewarding effect under a neuropathic pain-like state. Conclusively, our
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recent findings provide novel evidences for the mechanism underlying the less sensitivity to opioids under a
neuropathic pain-like state.

© 2004 Elsevier Inc. All rights reserved.
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Introduction

Pain can be an adaptive sensation, an early warning to protect the body from tissue injury.
Multiple molecular and cellular mechanisms operate alone and in combination within the peripheral
and central nervous systems to produce the different forms of pain. Pharmacological studies have
helped to identify many neurotransmitters and neuromodulators involved in pain processes in the
dorsal horn of the spinal cord. The excitatory amino acids and several kinds of peptides released by
primary afferents play a major role in nociception (Hunt and Mantyh, 2001). Increases in synaptic
transmission in the dorsal horn can begin almost immediately as a result of activity-dependent
phosphorylation and trafficking of receptors or ion channels. Primary afferent nociceptors terminate
primarily in laminae I, I and V, where they connect with several classes of second-order neurons in
the dorsal hom of the spinal cord. Structural alterations in the synaptic contacts of low-threshold
afferents with pain transmission neurons, or a reduction of inhibitory mechanisms due to a loss of
interneurons, and represent persistent changes in the central nervous system (CNS) that eventually
results in a fixed state of sensitization. The resultant action potentials are conducted to the dorsal
horn of the spinal cord, and the input is conveyed via the spinothalamic and spinoparabrachial
pathways to higher centers (Hunt and Mantyh, 2001). Activity in the spinaothalamic tract relays
through the thalamus to the somatosensory cortex and associated areas. The parabrachial nucleus of
the brainstem has connections to the ventral medial nucleus of the hippocampus and the central
nucleus of the amygdala, and the brain regions involved in the affective response to pain. Impulses
from supraspinal centers are integrated in the midbrain periaqueductal gray, which is pivotal in
modulating descending facilitation and inhibition of nociceptive input mainly via the nucleus raphe
magnus (NRM).

A growing body of clinical evidence suggests that when opioid analgesics including morphine
and fentanyl are used to control pain in patients, psychological dependence is not a major concern.
We previously reported that morphine failed to induce rewarding effects in rats that had .been
injected with formalin or carrageenan into the hind paw (Suzuki et al., 1996, 1999). Furthermore, it
has been documented that chronic pain attenuates the development of tolerance to the antinociceptive
effect of morphine in rats (Vaccarino et al., 1993). These findings suggest the possibility that pain
could lead to physiological changes at supraspinal levels associated with the suppression of opioid
dependence.

It has been widely recognized that neuropathic pain, which is characterized by spontaneous buming
pain, hyperalgesia (an exaggerated pain in response to painful stimuli) and allodynia (a pain evoked by
normally innocuous stimuli), may result from hypersensitivity due to alteration of primary afferent
neurons and/or spinal dorsal horn neurons followed by nerve injury. Neuropathic pain is particularly
difficult to treat in the clinic; as it is only partially relieved by high doses of opioids such as morphine
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and fentanyl. There are many studies focused on the long-term changes in functions of the spinal cord
dorsal horn neurons, containing some receptors, protein kinases and peptides following nerve injury
(Petersen-Zeitz and Basbaum, 1999; Scholz and Woolf, 2002). However, little is known about the
molecular mechanism of the down-regulation of p-opioidergic function associated with synaptic
plasticity under chronic pain (Bessou and Perl, 1969; Beitel and Dubner, 1976; Woolf, 1983). It,
therefore, is worthwhile to investigate whether a neuropathic pain-like state induced by sciatic nerve
ligation in rodents could cause a long-lasting change in intracellular signaling in both supraspinal and
spinal cord related to the suppression of morphine’s effect. This review attempts to summarize the
molecular mechanism underlying the suppression of morphine’s effect under a neuropathic pain-like
state.

Change in the spinal transmission under a neuropathic pain-like state

Increased spinal proten kinase C (PKC) activity and astrocyte under a neuropathic pain-like state and
morphine-tolerant state

Several lines of evidence have demonstrated that the activation of PKC plays a critical role in the
modulation of synaptic plasticity as characterized by long-term potentiation (Abellovich et al., 1993).
PKC is a key regulatory enzyme that modulates both pre- and post-synaptic neuronal function,
synthesis and release of neurotransmitters, and the regulation of receptors. It has been recognized that
PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate
requirement, expression and localization, therefore, may underlie diverse physiological functions
(Nishizuka, 1992; Way et al., 2000). Recent studies have provided evidence for an important role of
PKC expressed on dorsal horn neurons in regulating pain hypersensitivity in a number of different pain
models (Codderre, 1992; Sluka and Willis, 1997; Ohsawa et al., 2000). It is considered that the
activation of PKC in the dorsal horn of the spinal cord may be responsible for the release of excitatory
amino acids and neuropeptides, resulting in the initiation of central sensitization. We documented that
thermal hyperalgesia induced by sciatic nerve ligation was markedly suppressed by repeated i.t.
pretreatment with the selective PKC inhibitor (Fig. 1), but not the specific protein kinase A (PKA)
inhibitor, in mice (Yajima et al., 2003). We also found that the level of membrane-bound PKCy
isoform, which is identified in neurons of the brain and inner part of laminae II of the spinal cord, was
significantly increased in the ipsilateral side of the spinal cord in sciatic nerve-ligated mice (Fig. 2,
Yajima et al., 2002). It is of interest to note that mice lacking PKCry isoform exhibit normal responses to
acute pain stimuli, but they almost completely inhibit the development of neuropathic pain-like
behaviors after sciatic nerve ligation (Malmberg et al, 1997, Ohsawa et al., 2001). We recently
reported that the immunoreactivity to activated form of conventional PKC (cPKC), including PKCa,
PKCpI, PKCRII and PKCry, was clearly increased on the ipsilateral side of the superficial layers of the
L5 lumbar spinal dorsal hom in sciatic nerve-ligated mice (Fig. 3). The increased phosphorylated-
cPKC-like immunoreactivity (p-cPKC-IR) observed in the spinal dorsal horn was obviously overlapped
with microtubule-associated protein 2a/b (MAP2a/b), which confined to neuronal cell bodies and
dendrites (unpublished data). Collectively, these findings provide further evidence that the activition of
neuronal cPKC in the dorsal horn of the spinal cord by nerve injury may play a key factor for the
development of neuropathic pain-like state in mice.
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Fig. 1. (A) Time course changes in the latency of paw withdrawal from a thermal stimulus induced by partial sciatic nerve
ligation in mice. Partial ligation of sciatic nerve caused a marked decrease in the latency of paw withdrawal from a thermal
stimulus only on the ipsilateral (nerve-ligated) side of the hind paw of mice. Each point indicates the mean * S.EM. of 67
mice. ***p < 0.001: Sham-Ipsilateral side vs. Ligation-Ipsilateral side. (B) Effect of repeated intrathecal (i.t.) injection of the
selective PKC inhibitor RO-32-0432 on latencies of paw withdrawal from a thermal stimulus on the ipsilateral side of nerve-
ligated mice. Groups of mice were injected i.t. with RO-32-0432 (RO; 0.3 and 1.0 nmol/mouse) or its vehicle (VEH) 30 min
prior to nerve ligation and once a day for 7 consecutive days. Each column indicates the mean = S.E.M. of 4—8 mice. ***p <
0.001: VEH-Sham group vs. VEH-Ligation group, ##p < 0.01 and ###p < 0.001: VEH-Ligation group vs. RO-Ligation group.
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Fig. 2. Immunofluorescent staining for protein kinase Cty (PKC+)-IR on the dorsal hom of the L5 lumbar spinal cord in nerve-
ligated rats. The PKCv-IR was clearly increased on the ipsilateral side in the superficial laminae of the L5 lumbar spinal dorsal
hom in nerve-ligated rats (B) as compared to that observed on the contralateral side (A). Scale bars; 50 um.

For years, astrocytes were considered only to have supportive and nutritive functions in the CNS.
However, advanced imaging methods show that glia communicates with one another and with neurons
primarily through chemical signals. The activated glial cells are characterized by decreased ramification,
hypertrophy, proliferation, and the up-regulation of immunoregulatory molecules, including nitric oxide,
prostaglandins, excitatory amino acids and nerve growth factors (Raivich et al., 1999). A growing body
of evidence suggests that synaptic astrocytes regulate synaptic transmission by responding to signaling
molecular. Recently, there are several lines of evidence supporting the hypothesis that spinal cord glia
are implicated in exaggerated pain states created by such diverse manipulations as subcutaneous
inflammation, neuropathy, and spinal immune activation (Watkins et al., 2001). We recently found that
the level of glial fibrillary acidic protein (GFAP)-IR, a specific astrocyte marker, was elevated mostly in
the ipsilateral side of the spinal dorsal horn in sciatic nerve-ligated mice (Fig. 4). The apparent each
individual astrocyte labeled by GFAP was hypertrophied with an enlarged cell body and was not co-
localized with the activated form of cPKC-IR in the spinal dorsal homn of nerve-ligated mice. These
findings suggest that the enhanced cPKC activity in the dorsal horn of the spinal cord is located within
the primary afferent and/or dorsal horn neurons, but not within astroglial cells. It is worthwhile to note
that, like nerve injury, the increase in cPKC activity and the astroglial hypertrophy in this area were
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Fig. 3. Immunofluorescent staining for phosphorylated-conventional PKC-IR (p-cPXC-IR) on the dorsal hom of the L5 lumbar
spinal cord in nerve-ligated mice. The p-cPKC-IR was clearly increased on the ipsilateral side in the superficial laminae of the
L5 lumbar spinal dorsal horn in nerve-ligated mice (B) as compared to that observed on the contralateral side (A). Scale bars;
50 pm.
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Fig. 4. Immunofluorescent staining for GFAP-IR on the dorsal horn of the L5 lumbar spinal cord in nerve-ligated mice. The
GFAP-IR was clearly increased with morphologic differentiation on the ipsilateral side in the superficial laminae of the L5
Jumbar spinal dorsal horn in nerve-ligated mice (B) as compared to that observed on the contralateral side (A). Scale bars;
50 pm.

observed by repeated morphine treatment (Narita et al., 2004). Several studies have demonstrated that
neuronal plasticity associated with hyperalgesia and morphine tolerance has similar cellular and
molecular mechanisms, suggesting predictable interactions between hyperalgesia and morphine toler-
ance through the common mechanism. Taken together, these findings support the possibility that
astroglial hypertrophy and increase in neuronal cPKC activity in the dorsal horn of the spinal cord
induced by either neuropathy or chronic treatment with morphine leads to the change in synaptic
transmission.

Direct evidence for the suppression of morphine analgesia under a neuropathic-pain like state

Although pain produced by tissue injury can usually be controlled by opioids, neuropathic pain is
often refractory to such treatment. This clinical experience can be supported by the finding that the
antinociceptive effect by either s.c. or i.t. treatment with morphine is attenuated in rodents with sciatic
nerve ligation (Mao et al., 1995; Nichols et al., 1995; Ossipov et al., 1995; Yaksh et al., 1995). We
also comfirmed that sciatic nerve ligation caused a significant suppression of the antinociception
induced by s.c. administration of morphine in the mouse (Fig. 5). Furthermore, we found that the
antinociceptive potency and efficacy induced by i.c.v.-administered morphine were not changed by
sciatic nerve ligation (Ozaki et al., 2003), indicating the importance of the spinal area for this
suppression.

It is well-known that prolonged exposure to opioids induces adaptive changes, resulting in tolerance
or reduced responsiveness to opioids. Recent pharmacological and molecular biological approaches have
suggested that the functional change in p-opioid receptor (MOR) is one of the considerable mechanisms
underlying opioid-induced tolerance (Keith et al., 1998). The cloning of MOR reveals several
phosphorylation sites (Knapp et al., 1995). Phosphorylation of MOR at diverse sites of its intracellular
domain by PKC, G-protein-coupled receptor kinase (GRK), mitogen-activated protein kinase (MAPK)
or protein tyrosine kinase has been shown to trigger the phosphorylated (p)-MOR intemalization from
the cell surface to the cytosol (Narita et al., 1995, 2001b; Kovoor et al., 1998; Polakiewicz et al., 1998;
Kramer et al., 2000), which is thought to be an important step toward desensitization (Narita et al.,
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Fig. 5. (A) Changes in thermal paw withdrawal latencies of nerve-ligated mice. The measurement of thermal threshold was
performed 7 days after nerve ligation. Each column represents the mean + S.E.M. of 9—12 mice. ***p < 0.001: Ipsilateral
side of Naive and Sham group vs. Ipsilateral side of ligation group, **p < 0.001: Contralateral side of all groups vs. Ipsilateral
side of ligation group. (B) Antinociceptive effect produced by morphine under a neuropathic pain-like state. Groups of mice
were treated with morphine (10 mg/kg, s.c.) 7 days after nerve ligation. The antinociception was measured at 30 min after
morphine injection using the thermal hyperalgesic test. Each column indicates the mean + S.E.M. of 9—12 mice. **p < 0.01:
Ipsilateral side of Naive and Sham group vs. Ipsilateral side of ligation group, *p < 0.01: Contralateral side of all groups vs.
Ipsilateral side of ligation group.

1996). In particular, agonist-specific phosphorylation of Ser375 in the mouse MOR is essential for its
internalization (Kouhen et al., 2001). In our recent study, we found using p-MOR (Ser375) antibody that
p-MOR-IR was clearly increased on the ipsilateral side in the superficial laminae of the L5 lumbar spinal
dorsal horn in nerve-ligated mice as compared to that found on the contrateral side (Fig. 6). These
findings suggest that, although we cannot completely exclude the possibility of long-lasting changes in

Fig. 6. Immunofluorescent staining for phosphorylated-p opioid receptor-IR (p-MOR-IR) on the dorsal horn of the L5 lumbar
spinal cord in nerve-ligated mice. The p-MOR-IR was clearly increased on the ipsilateral side in the superficial laminae of the
LS5 lumbar spinal dorsal horn in nerve-ligated mice (B) as compared to that observed on contralateral side (A). Scale bars;
50 pm.

—99—



2662 M. Narita et al. / Life Sciences 74 (2004) 2655-2673

the neuronal transmission at the supraspinal site under the neuropathic pain-like state, the phosphor-
ylation of the MOR in the spinal cord under a neuropathic pain-like state may, at least in part, contribute
to the suppression of the antinociceptive effect produced by morphine.

Change in brain dynamics under chronic pain-like state
Direct evidence for spinal PKC in the expression of chronic pain-like state

The neuropathic pain following nerve injury or tissue inflammation depends both on an increase in
the sensitivity of these first synapses at the site of injury and on an increase in the excitability of neurons
in the CNS (Bessou and Perl, 1969; Beitel and Dubner, 1976; Woolf, 1983). A growing body of
evidence suggests that several second messenger systems have been implicated in the development or
maintenance of hyperalgesia induced by nerve injury. As mentioned previously, we demonstrated that
the up-regulation of cPKC in the spinal cord was observed following sciatic nerve ligation in mice.
Furthermore, a specific PKC activator, phorbol 12,13-dibutyrate (PDBu), when given i.t., produced a
long-lasting hyperalgesic behavior as indicated by severe tail-shaking, vocalization, scratching and
biting behaviors in a dose-dependent manner in mice (unpublished data). Collectively, these findings
provide further evidence that the activation of spinal PKC is closely related to the development or
maintenance of central sensitization to nociceptive transmission. -

It is considered to be worthwhile to investigate the ascending nociceptive transmission from the
dorsal horn to brain areas involved in the processing of noxious stimuli. Second-order neurons ascend
the spinal cord to terminate in many supraspinal structures throughout the brain stem, thalamus and
cortex. In the thalamus, it is well-known that these systems are divided into two main groups such as
ventrobasal complex and intralaminar nuclei (Siddall and Cousins, 1998). Former including the
ventral posterolateral nuclei and ventral posteromedial nuclei, is involved in the sensory discrimina-
tive component of pain and further projects to the somatosensory cortex (Yen et al., 1989; Casey et
al., 1994; Siddall and Cousins, 1998). Latter including the central medial nuclei and parafascicular
nucleus (PF), is associated with the affective motivational aspects of pain and projects to- the
cingulated gyrus (CG) (Yen et al., 1989; Siddall and Cousins, 1998). To date, many researchers have
expected prompt changes at the supraspinal site during a persistent pain-like state. Previous
immunohistochemical study demonstrated that the expression of COX-2-IR in vascular endothelial
cells throughout the CNS is enhanced during capsaicin-induced allodynia, indicating that the
expression of COX-2 in the brain may be involved in induction of the inflammation-induced
hyperalgesia (Ibuki et al,, 2003). Furthermore, recent evidence has indicated that peripheral
inflammation accompanied with hyperalgesia also alters the structure and increases the permeability
of the blood brain barrier (BBB) (Wolka et al., 2003). Taken together, these findings suggest that a
persistent pain-like state may lead to functional changes at the supraspinal level as well as spinal
level.

Augmentation of c-fos expression is a well-established as a marker of neuronal activation in response
to noxious stimuli (Dragunow and Faull, 1989). We previously found that a single i.t. injection of a
specific PKC activator, PDBu, caused a marked increase in the number of c-fos-IR expressing cells in
the PF, CG and amygdala, but not hippocampus (unpublished data). These findings provide evidence
that noxious stimuli activates neurons in the PF, CG and amygdala. Our data support the possibility that
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