

実施医療機関双方での有害事象に関する情報管理の効率化が進むことが期待できる。

文 献

1) 古川裕之, 内瀬将宏, 石崎純子, 松嶋由紀子, 長田幸恵, 松田静枝, 横山英子, 清水栄, 分校久志, 宮本謙一. 臨床試験における有害事象報告の問題点の分析. 臨床薬理 2001; 32(6) : 287-94.

2) 古川裕之, 内瀬将宏, 松嶋由紀子, 長田幸恵, 横山英子, 松田静枝, 石崎純子, 清水栄, 分校久志, 宮本謙一. 治験依頼者における有害事象情報の管理体制に関する調査. 臨床薬理 2002; 33(6) : 281-86.

3) 川井絵美, 古川裕之, 旭満里子, 松下良, 市村藤雄. 治験薬有害事象に関する標準的情報項目の検討. 病院薬学 1999; 25(2) : 196-203.

FORUM

Construction of an Efficient Transmission System for Information on Adverse Events in Clinical Trials

Hiroyuki FURUKAWA^{*1,2,3} Masahiro UCHIKATA^{*4} Yukiko MATSUSHIMA^{*1,2}
Sachie OSADA^{*1,2} Eiko YOKOYAMA^{*1,2} Junko ISHIZAKI^{*1,2}
Sakae SHIMIZU^{*4} Akira KAMIYA^{*3,5} and Ken-ichi MIYAMOTO^{*1,2}

^{*1} Department of Pharmacy, Kanazawa University Hospital
13-1 Takara-machi, Kanazawa 920-8641, Japan

^{*2} Clinical Trial Control Center, Kanazawa University Hospital

^{*3} Clinical Trial Special Committee, Japanese Society of Hospital Pharmacists

^{*4} Division of Pharmacy and Health Science, Graduate School of Natural Science and Technology,
Kanazawa University

^{*5} Department of Pharmacy, Yamaguchi University Hospital

The major problem in the management of information on adverse events is found in both the clinical trial sponsor and the trial institution. The primary cause is inconsistency in the sponsors and trial institutions due to the use of original management methods which differ among sponsors or among trial institutions.

In order to solve this problem, it is proposed to classify adverse events into three groups : "Case Report A", "Case Report B" and "Accumulated Information" based on the detected place (Japan or foreign country), the detected phase (clinical trial or post-marketing), unknown or known event, and the degree of severity. "Case Report A" and "Case Report B" will be evaluated individually, and "Accumulated Information" will be evaluated collectively in the institutional review board.

Electronic list data is provided to the trial institution as the standard version only, and individual alteration request to the list data from institutions should not be accepted. Therefore, each institution should arrange the list data for creating its own database, if needed. The list data is presently provided by electronic media which are currently used widely such as the floppy disk or CD-R etc, but it might be necessary to plan for use by electronic mail.

By classifying the adverse events and using electronic data for providing information about adverse events, more efficient information management is expected in both sponsors and trial institutions.

Key words : adverse event, information technology, clinical trial, transmission system

Management of Information about Adverse Events in Clinical Trials

Hiroyuki Furukawa*, Yukiko Matsushima, Yukie Osada, Eiko Yokoyama, Yuko Yokoi,

Junko Ishizaki and Ken'ichi Miyamoto

Clinical Trial Control Center, Kanazawa University Hospital †

{ Received September 27, 2002 }

{ Accepted November 17, 2002 }

Information about safety greatly affects the decision by patients as to whether or not they will participate in clinical trials. Therefore, it is important to keep all participants fully informed. However, it is very difficult to manage information about adverse events that are reported during clinical trials, mainly because the amount of information is large and the causal relationship with investigational drug administration is often unclear.

We sought to develop a method to effectively evaluate the clinical significance of reported adverse events and to also efficiently manage information. The adverse events reported to our institution by trial sponsors during the period between September 1999 and December 2001 were classified based on an evaluation of three factors: the degree of health hazard, the character (geographical location, previously known or new effect, clinical trial phase or post marketing phase), and causal relationship with the investigational drug.

Based on the results of this analysis and a questionnaire survey of trial sponsors, we recommended that adverse events should be routinely categorized into three classes in the manner described above, and the data regarding each event should be gathered in a standardized format, and electronic media should be used to transmit the data.

Keywords — adverse event, clinical data, clinical research coordinator, good clinical practice, information technology

Introduction

The revised Guidelines for Good Clinical Practice (new GCP) were introduced in 1997 to ensure a unified approach to both medical science and ethics in the EU, the USA and Japan^{1,2)}. The new GCP guidelines require to obtain informed consent from a subject taking part in clinical trials to be based on a written explanation of the aims and risks of the trial. The decision to conduct a clinical trial depends on the balance between the expected advantages of the new medical treatment and the various costs of the trial. In particular, information about safety is a key factor in the subjects' decision to participate.

When a previously unknown (new) adverse event is reported during a clinical trial, the sponsor has a duty to inform the Ministry of Health, Labour and Welfare and the principal investigator at the trial site. The investigator must

then consider the propriety of continuing the trial. When information that might influence on the decision of the subjects to continue their participation in the trial is provided by the sponsor, the principal investigator must immediately inform the subjects and reconfirm their willingness to continue.

However, management of information about adverse events of investigational drugs provided by sponsors is not easy. The major reasons are the vast amount of information provided by sponsors and the uncertainty of the causal relationship with administration of the investigational drug^{3,4)}.

Consequently, there is a huge workload for the principal investigator, clinical trial secretariat, clinical institutional review board (IRB) secretariat and clinical trial coordinator (CRC).

Our aim was to develop an efficient method to manage information about adverse events in clinical trials.

† 石川県金沢市宝町13-1 ; 13-1, Takara-machi, Kanazawa-shi, Ishikawa, 920-8641 Japan

Methods

Information about adverse events provided by clinical trial sponsors was examined from the viewpoints of quantity (number of reports and cases), quality (sponsor's evaluation of causal relationship), and the evaluation of the causal relationship by the principal investigator. Furthermore, the organization to evaluate adverse events and the application of information technology for information management were investigated.

1. Survey of quantity and quality of adverse event reports provided by sponsors

The adverse event reports provided by sponsors were categorized as follows: (1) character of occurrence (in Japan or overseas countries, in a clinical trial or in the post-marketing phase) and (2) previously known or new type of event, and (3) likelihood of a causal relationship. The period of the investigation was 28 months from September 1999 to December 2001. A report that was subsequently withdrawn was included as one case in this examination.

Details of all adverse event reports provided by sponsors were inputted into our database using commercial spreadsheet Microsoft Excel™ (MS-Excel).

2. Investigation of principal investigators' assessments of adverse event reports

We evaluated the principal investigators' conclusions about adverse event reports from the viewpoints of: (1) the influence on the subjects' decision to continue participa-

tion, (2) the need for explanation and reconfirmation of subjects' willingness to participate, and (3) the propriety of continuing the clinical trial. The targets of investigation were the adverse event reports provided by sponsors to our institution between September 1999 and November 2000.

3. Investigation of information management by trial sponsors

The character of adverse event reporting and application of information technology for information management in 50 sponsor companies were investigated by sending a questionnaire during the period between January 11 and January 31, 2001, which was the restricted period of the investigation.

Results

1. Survey of information about adverse events

The number of adverse event reports received from sponsors at our institution was 461(16.4 per month) and the case number of adverse events was 4,185(149.5 per month) within the investigation period(28 months between September 1999 and December 2001). All cases of adverse event notified by sponsors were recorded in our database by CRC, and the time required was about 6 hours per month.

Concerning location, 90.1%(3,770 cases) were detected in other countries and 9.9%(415 cases) in Japan (Fig. 1). Further, 66.0%(2,762 cases) were detected in the post-marketing phase, and among them, 11.7%(323 cases) were in Japan and 88.3%(2,439 cases) in other countries.

As regards a causal relationship with test drug administra-

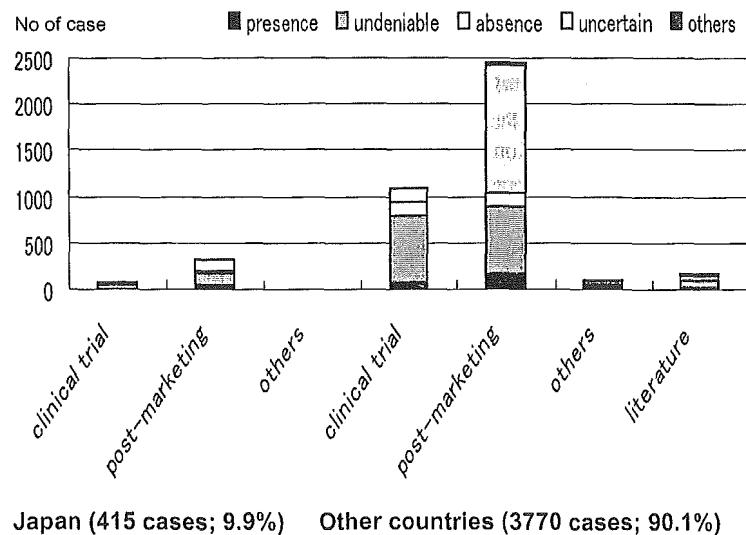


Fig. 1. Classification of Adverse Events Based on Generating Situation.

(Investigational period : Sept., 1999-Dec., 2001)

Axis : ordinate/number of case, horizontal/detected phase or source of adverse events. Indicated with dividing into Japan and other countries. Presense, undeniable, absence, uncertain, and others indicate the evaluation result of causal relationship by sponsors.

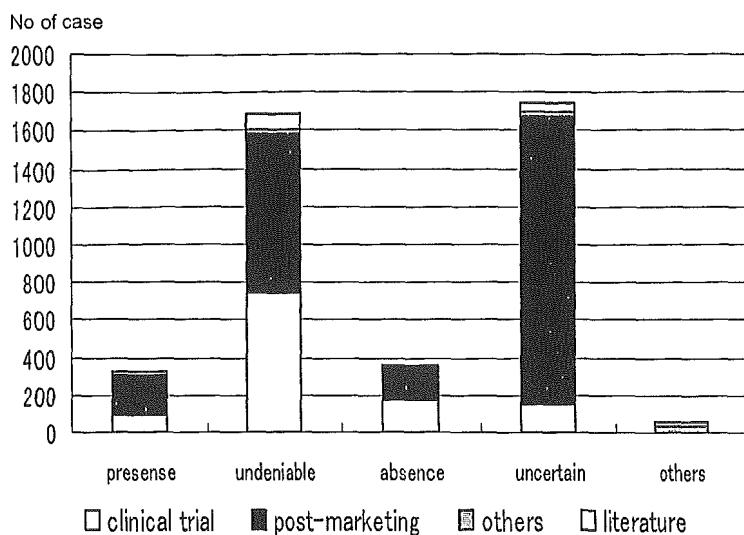


Fig. 2. Classification of Adverse Events Based Causal Relationship Evaluation.(Investigational period : Sept., 1999-Dec., 2001)
Axis : ordinate/number of case, horizontal/the evaluation result of causal relationship by sponsors.

tion, 41.8%(1,749 cases) were classified as "causal relationship uncertain". In the clinical trial phase, "causal relationship uncertain" accounted for 8.9%(156cases) of all adverse events, of which 10.3%(18 cases) were in Japan, and 88.5%(135 cases) in other countries. In the post-marketing phase, "causal relationship uncertain" accounted for 55.1% (1,522 cases), and among them, 8.3%(126 cases) were in Japan, and 91.7%(1,396 cases) in other countries. Overall, 79.8%(1,396 cases) of "causal relationship uncertain" events were detected in the post-marketing phase in countries outside Japan(Fig. 2).

2. Evaluation of principal investigators' assessment of adverse event reports

Excluding events that did not require consideration by the IRB(such as termination of a clinical trial), 151 reports were investigated between September 1999 and November 2000.

The principal investigators in our institution considered that 53.0%(80 reports) might influence on the subjects' decision to continue participation, while 46.4%(70 reports) were "not influential", and 0.6%(one report) reached no conclusion. The major reasons for evaluation as "not influential" by principal investigators were : (1)background information was insufficient, (2)the event was due to a distinct illness, and(3)it would not be expected to affect the subjects' decision(Fig. 3).

The 80 reports that were "influential on decision-making", were placed in the following categories by the principal investigators : "explanatory document needs to be revised", "explanation with supplementary document is required", "verbal explanation is required" and "unnecessary to explain", which accounted for 43.8%, 28.8%, 17.5% and

10% of this group, respectively. Thus, 90% among them was considered to require additional advice to subjects in some respect by the principal investigators.

Among the 70 reports that were "not influential on decision-making", the conclusions were "explanatory document needs to be revised", "explanation with a supplementary document is required", "verbal explanation is required" and "unnecessary to explain" in 0%, 1.4%, 8.6% and 90%, respectively. Only 10% of this group was considered to require additional advice to subjects.

One trial was judged negatively as "discontinuation of new entry" and one as "continuation to be reexamined" among the 80 reports of "influential on decision-making" adverse events by principal investigators. No negative judgment was seen in the 70 reports considered "not influential on decision-making".

3. Investigation of information management by trial sponsor

The response rate to the questionnaire survey was 100% (50 companies).

3-1. Organization for evaluation of adverse event reports in sponsor companies

According to this survey, 64%(32 companies) of investigated sponsors have standard criteria for evaluation of a putative causal relationship. Among them, 84%(27 companies) have their own criteria and two companies were also using the FDA standard. Naranjo Score and WHO standard criteria were used in some companies(Fig. 4). We found that 56% (28 companies) of sponsors have a full-time evaluation doctor and 44%(22 companies) were outsourcing.

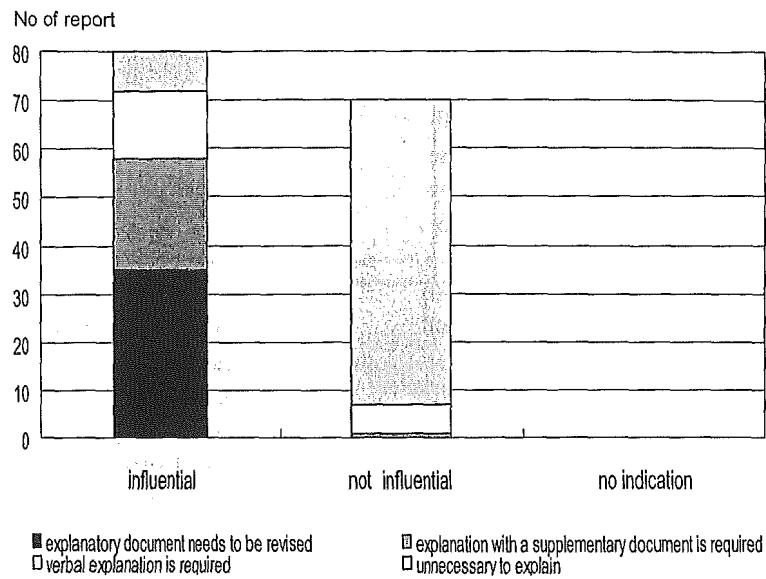
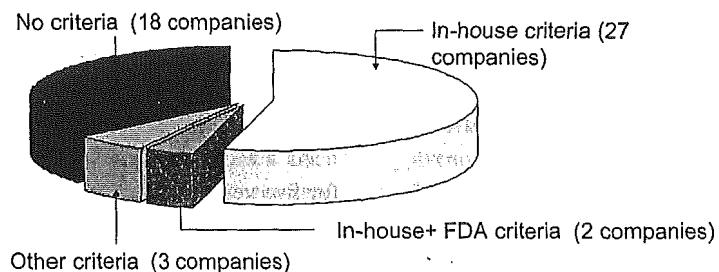



Fig. 3. Evaluation of Adverse Events Based on Influence in Subject's Decision-Making by Principle Investigators.
(Investigational period : Sept., 1999-Nov., 2000)
Axis : ordinate/number of report from sponsors, horizontal/the evaluation result of the influence on the subjects' decision to participate clinical trials by principle investigators.
The reason which is "unnecessary to explain" observed in "influential" is that there is no registration of new subject.

A. Criteria for evaluation of adverse events

B. Employment of doctor for evaluation of adverse events

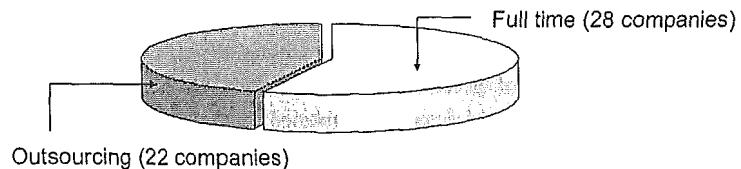


Fig. 4. Organization for Evaluation of Adverse Events in Sponsors.
(Questionnaire survey to 50 sponsors, Jan. 11-21, 2001)

Regarding the frequency of meetings of the evaluation committee, the frequencies were "once per week" and "as necessary" in 36%(18 companies) and 32%(16 companies), respectively. "Every day" was seen in 2 companies and "2 or 3 times per week" was seen in 3 among foreign-financed companies.

3-2. Application of information technology to adverse event reports

As the answer to the question "Is creating a database of adverse events useful in order to provide information quickly and exactly?", "yes", "no" and "noncommittal" replies were 88%(44 companies), 0 % and 12%(6 compa-

nies), respectively. The reason for "noncommittal" was that the features of the database were not specified.

As the answer to the question "What method is regarded as useful in order to arrange and to provide information efficiently?(check all that apply)", "use of the internet", "use of facsimile" and "use of electronic media such as floppy disk or CD-R" were checked by 66%(33 companies), 24%(12 companies) and 16%(8 companies), respectively.

As the answer to the question "What are the problems of automatic report transmission via the internet ? (check all that apply)", "security of transmission", "security at the trial site", "adjustment of internal database" and "no opportunity to explain items that are difficult to document" were checked by 78%(39 companies), 42%(21 companies), 40%(20 companies) and 16%(8 companies), respectively.

Discussion

The problem on information management about adverse event in clinical trials was shown, and then, the method for problem solution was discussed.

1. Problems of information management

As the number of adverse event reports from sponsors is about 150 per month, it is very difficult to manage them efficiently for a clinical trial secretariat and IRB secretariat, and to evaluate them quickly for the IRB.

Although 64%(32 companies) of sponsors have criteria to evaluate the causal relationship of adverse events to the investigational drug, 84%(27 companies) of this group use their own criteria, i.e., no standard criteria common to all sponsors. The principal investigators thought that it was difficult to evaluate the clinical significance of some adverse events because of insufficient background information.

Information concerning adverse events is considered as one of the most important factors in the decision of subjects about participation or continued participation in clinical trials. So, it seems important to create a set of standard criteria to evaluate the existence of a causal relationship as soon as possible.

The new important problem was observed, recently. According to the official notification "The handling of adverse drug reactions and infection case reports concerning investigational drugs (No. 1249)⁵⁾" by the Ministry of Health and Welfare / Pharmaceutical and Medical Safety Bureau (currently the Ministry of Health, Labour and Welfare Pharmaceutical Bureau), the CIOMS (Council for International Organizations of Medical Sciences) report style⁶⁾ and MedWatch report style⁷⁾ (Food and Drug Administration, U.S.A.) written in English are to be adopted for transmission of reports of adverse drug reactions detected in the post-marketing phase in overseas countries from sponsors to trial sites. Transmission using the style 2 sheet regulated by the Ministry of Health and Welfare / Pharmaceutical and Medical

Safety Bureau (notification No. 403, May 15, 1998) has become unnecessary⁸⁾.

In a survey on sponsors' response to the notification No. 403, the replies were "use of English data", "no use of English data" and "no answer" from 44%(22 companies), 48%(24 companies) and 8 %(4 companies), respectively. Among the 22 companies which answered "use of English data", 9 companies noted that a document written in Japanese was also attached, and 13 noted that a document written in Japanese was not attached⁹⁾. The amount of prescribing in overseas countries is huge, and the number of adverse event reports is large, so the management of information about adverse events provides a high workload for both sponsors and trial sites. If the information is only provided in CIOMS report style or MedWatch report style written in English, linguistic difficulties can be expected to cause confusion at trial sites.

2. Method for problem solution

2-1. Classification of adverse event

For efficient evaluation by the IRB at our institute, adverse events have been classified from three points of view since September 1999 : these are (1) previously known or new, (2) the degree of severity, and (3) causal relationship is clear or not. Since an event which is new, severe and in a causal relationship with the test drug must affect the subjects' intention to continue participating in clinical trial, the explanatory document must be revised (addition of a new adverse event), and the subjects' willingness to continue must be confirmed. In our institution, about 22% of notified adverse events can be classified into the group for which reconfirmation of the subjects' intention is necessary.

As a result of information management of adverse events for five years, we have arrived at the conclusion that the influence of events detected in the post-marketing phase is not equal to that of events detected in clinical trials with strict restriction on patient selection and use of combinations of medicines. Thus, further categories (Japan or overseas, clinical trial phase or post-marketing phase) were needed in our classification¹⁰⁾. In fact, we have introduced a new procedure in which classification by detection characteristics is performed initially, followed by distinction of previously known or new event and the degree of severity (Fig. 5). Fortunately, we found that this procedure was very similar to that examined by the JPMA (Japan Pharmaceutical Manufacturers Association), and we have started to discuss planning adjustments with the PMS Committee and Clinical Evaluation Committee of the JPMA from the autumn of 2001. Agreement should be reached by the end of 2002 and the transmission of information about adverse events by the new procedure will be started in early 2003.

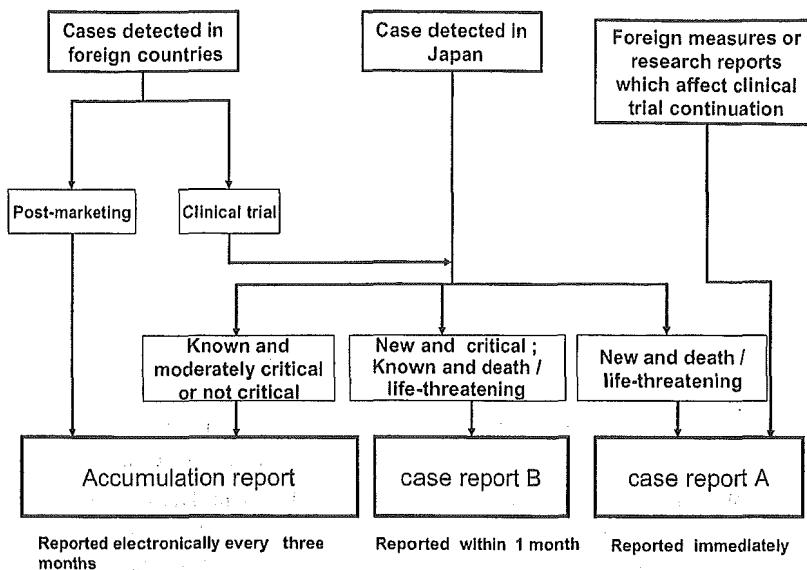


Fig. 5. Classification of the Adverse Events Information for Efficient Information Management and Transmission.

2-2. Transmission by standard electronic data

In our institution, a database of adverse events was set up in 1997 using spreadsheet software (MS-Excel™), and the data were provided on electronic media (floppy disk) by some sponsors³⁾. However, the major problem that remains for sponsors is responding to requests from trial sites (e.g., requests for data to be reformatted in the individual style of each institution). To solve this problem, it is considered that standard data items on which sponsors and trial sites can agree should be set up, and the information should be provided only as standard data from sponsors to trial sites. Each trial site can then make its own modifications, if necessary. A possible data set is being reviewed with the Exploratory Committee of the JPMA (Japan Pharmaceutical Manufacturers Association) and will be put forward for common use as the standard data item set approved by the Clinical Trial Taskforce of the Japanese Society of Hospital Pharmacists¹⁰⁾.

Since insufficient information makes evaluation of a causal relationship difficult, requests from the sponsor side, such as enforcement of SDV (Source Document Verification ; collation of source material and case report) for every case and simplification of the SDV operating procedure need to be discussed between sponsors and trial sites.

According to the MHLW notification "The handling of the side effects and infection case reports concerning an investigational drug (No. 1249)", terms given in MedDRA/J can be used to describe adverse drug reactions. When a different term is used for a condition considered as the same, it is treated as another unknown event. Since the use of the Japanese translation (MedDRA/J) of MedDRA¹¹⁾ allows stan-

dardization of the terminology for adverse drug reactions, this makes the creation of database about adverse events relatively easy. Our experience over five years indicates that the creation of a database from which data can be modified individually for each trial site based on the standard data provided by the sponsors is rapid and effective. The database can also respond easily to a request for the latest information about adverse events from a subject.

By standardizing the procedure of providing information, it is expected that information management about adverse events can efficiently be done for both sponsor and trial site. For the transmission of information to the clinical site from the sponsor, electronic media such as floppy disk, CD-R, etc., are presently desirable, but the use of electronic mail and browsing software should be considered. Further, discussion should be started between sponsors and trial sites about communication of adverse events detected in trial sites to sponsors.

In the near future, information about safety currently covered by ICH E2b/M2¹²⁾ will be available on electronic media, and a database for common use of the information will be installed on the internet. Although sufficient security is required, it is expected that there will be considerable advantages in information management about adverse events for both sponsors and trial sites.

References

- 1) Guideline for good clinical practice, ICH (International Conference on Harmonization of Technical Requirements for Registration of Pharmaceutical for Human Use) harmonized tripartite guideline, May, 1996.

- 2) Ministry of Health and Welfare, The ministerial ordinance about the standard of implementation of a clinical trial of pharmaceutical (No.28), March 27, 1997.
- 3) E. Kawai, H. Furukawa, M. Asahi, R. Matsushita, F. Ichimura, Standardization of the Heads of Information about the adverse events of investigational drugs, *Jpn. J. Hosp. Pharm.*, 25, 196-203(1999).
- 4) H. Furukawa, M. Uchikata, J. Ishizaki, Y. Matsushima, S. Osada, S. Matsuda, E. Yokoyama, S. Shimizu, H. Bunko, K. Miyamoto, Study on the Problems of the Adverse Events Report in Clinical Trial, *Jpn. J. Clin. Pharmacol. Ther.*, 32, 287-294 (2001).
- 5) Ministry of Health and Welfare / Pharmaceutical and Medical Safety Bureau (currently the Ministry of Health, Labour and Welfare / Pharmaceutical Bureau), Notification "Handling of the adverse effects and infection case report concerning an investigational drug (No.1249)", Nov. 20(2000).
- 6) <http://www.cdc.gov/od/ads/intlgui3.html> (cited October 31, 2002).
- 7) <http://www.fda.gov/medwatch/safety.html> (cited October 31, 2002).
- 8) <http://www.hourei.mhlw.go.jp/%7Ehourei/html/tsuchi/contents.html> (cited October 31, 2002).
- 9) H. Furukawa, M. Uchikata, Y. Matsushima, S. Osada, E. Yokoyama, S. Matsuda, J. Ishizaki, S. Shimizu, H. Bunko, K. Miyamoto, Questionnaire Survey about the Management Organization for Information of Adverse Event in Clinical Trial Sponsor, *Jpn. J. Clin. Pharmacol. Ther.*, 33, 281-286 (2002).
- 10) H. Furukawa, M. Uchikata, Y. Matsushima, S. Osada, E. Yokoyama, S. Matsuda, J. Ishizaki, S. Shimizu, A. Kamiya, K. Miyamoto, Construction of Efficient Transmission System for Information about Adverse Event in Clinical Trial, *Jpn. J. Clin. Pharmacol. Ther.*, 34, 7-12(2003).
- 11) <http://www.meddramsso.com/> (cited October 31, 2002).
- 12) <http://www.nihs.go.jp/dig/ich/multi/m2/e2b-m2/E2BM2main.html> (cited October 31, 2002).

3) 治験センターの立場から

金沢大学医学部附属病院 臨床試験管理センター 古川 裕之

私に与えられたテーマは「治験センターの立場から」です。私は薬剤師ですので、薬剤師の立場からお話ししたいと思います。

まず図1です。体重48kg、身長110cmと小太りですが、これは一体何かというと、今年の1月から11月までに本センターに届いた、有害事象に関する書類の重さと高さを測ったものです。この重さはファイルの重さを除いた中身の重量ですが、ファイルがちょうど22冊に収りました。本当にありがたいぐらい毎日届きます。

報告される症例数の伸び方がすごいのです(図2)。センターの薬剤師CRCの人が黙々と働いているので何かと思ったら、1998年は年間でも1,000件行かなかったのが、2002年は11月で早くも4,000件を超しています。何とかしなければならないとずっと言い続けて、5年も経ってしまいました。特に一昨年あたりから急速に報告件数が増えており、改めて驚いています。

有害事象について考える場合のポイントですが(表1)、1として情報の管理と伝達、3は管理だけでなく、実際目の前で有害事象が起きるのですから、その対応をどうするか。さらに0というのがあり、これは今まで誰もあまり指摘していないのですが、有害事象をきっちりと検出して、正しく報告していくことがあげられます。

図3～5は、2002年1～11月までの有害事象の報告4,422症例を分類したものです。その内訳をみてみると、国内の未知・既知、海外の未知・既知、そして不明もありますが、既知のものも含めて圧倒的に海外のものが多くなっています。図4はPhaseで見てみました。治験段階、市販後、市販後臨床(日本のみ)、文献、あと不明というものをみると、治験でも市販後でも圧倒的に海外が多いという結果が出て、多少数値には差があるかもしれません、ほとんど傾向は変わっていないというのが、本院の集計結果です。

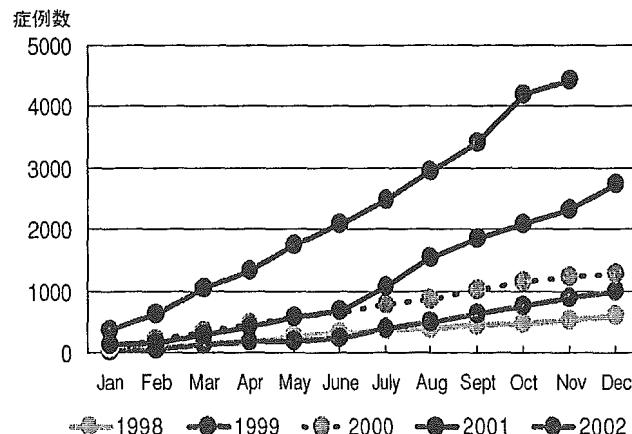


図2 依頼者からの有害事象症例報告数の推移

Weight: 48 kg

Height: 110 cm

図1

表1

POINT

- 有害事象の検出と記録
- 有害事象情報の管理
(依頼者→医療機関)
- 有害事象情報の伝達
(医療機関→被験者)
- 健康被害発生時の対応: 補償
(医療機関→被験者→依頼者)

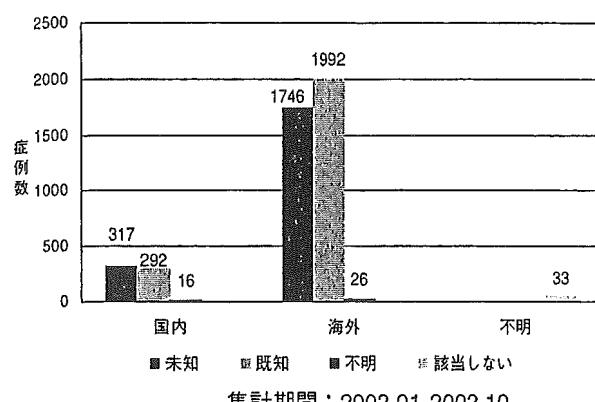


図3 有害事象報告4,422症例の構成 [1]

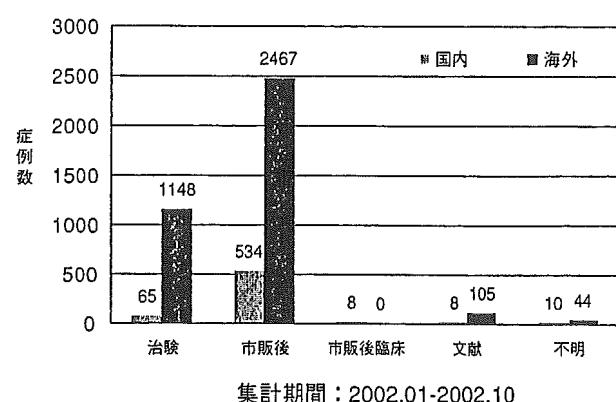


図4 有害事象報告4,422症例の構成 [2]

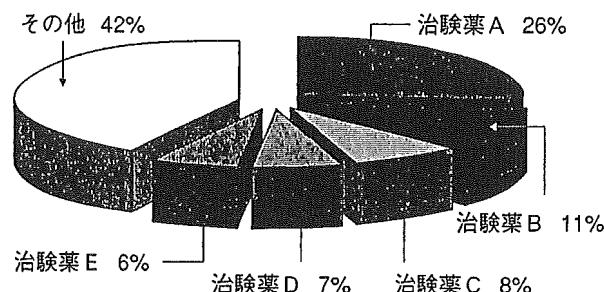


図5 有害事象報告4,422症例の構成 [3]

この4,422症例の構成を見てみると、驚くことに治験薬A, B, C, D, Eという5つだけで、50%を軽く超えてしまいました。また、治験薬Aだけで全体の1/4にもなります。受け取る方も大変ですが、資料を作っている会社の方も本当に大変だと思います。

治験における意思決定において、患者さんが治験に参加するか、あるいは継続して参加するかを決める場合の最大の因子は、自分にとってメリットがあるか、デメリットがあるかという点だと思います。有害事象はデメリットなわけです。最近は訴訟も多いので、患者さんにとつてのデメリットをしっかりと伝えておかないと、またその都度確認しておかないと、後から「そんなの知らなかった」と大きなトラブルが発生するかもしれません。そういう点で、有害事象を管理、継続して正しく伝達していくことが重要ではないかと思います。

本院は5年前から、図6のような形で有害事象の分類を進めてきました。まず未知と既知に分けて、重篤であるかないかという重篤度、そして因果関係の有無で分類し、①と②は被験者の意思に影響を与えると判断して、原則として同意文書も改訂しようというやり方です。続けてきてわかったのは、海外で市販されている薬剤が圧倒的に多いため、情報量が多くて治験審査委員会 (Institutional Review Board, 以下IRB) での審議に非常に時間がかかることです。もちろん準備にも時間がかかります。5年間続けて問題が明らかになってきたので、この苦労の結果に基づいて提案したいと思います。

図7にて未知・重篤という、図6中の①②について注目します。①で未知・重篤で因果関係が明らかなものというと、治験では国内が0件と海外が6件、市販後は31件と49件というように、市販後が圧倒的に多いのです。②で「未知」、「重篤」で「因果関係が否定できない」もの

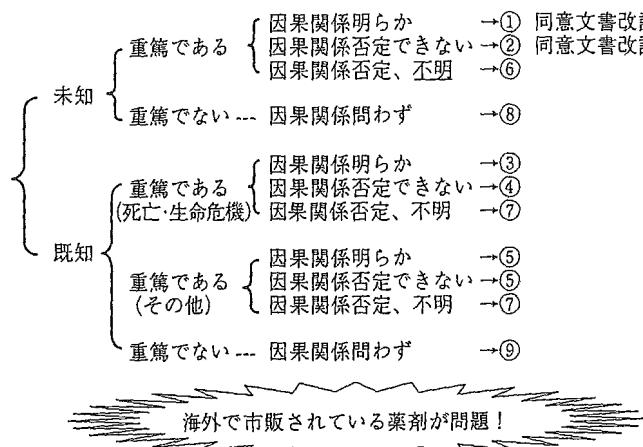


図6 有害事象情報の重要性評価基準

は治験にも多く認められます。とにかく海外の市販後が大変多い。市販後で得られた情報は、治験の段階とは条件が違うわけで、自分たちの治験を行うにあたっての判断材料になるかどうか、発現状況をよく調べることが大切です。

本院では、有害事象をIRBで効率的に審査するために、5年前からExcelデータで企業から情報をいただいたてデータベース化し、図6の分類に従って全部ソートをかけます。①と②についてはきっちりとIRBで審議し、それ以外のものはラインリストを見ながら報告していく形をとっていますが、これでも最低30分はかかります。もちろんこれを作るまでには相当な時間、だいたい月500分くらいかけています。それくらい大変な作業です(図8)。

図9は、報告された情報が、本当に患者さんの同意に影響を与えるかどうか、治験責任医師に判断してもらうためのシートのモデルです。ドクターからのコメントは、「情報不足で評価や判断ができない」というのが非常に多いのです。表1で、有害事象を検出する機能を0としましたが、医療機関としてはできる限り、評価できる情報を集めることを同時に進めないと、他の

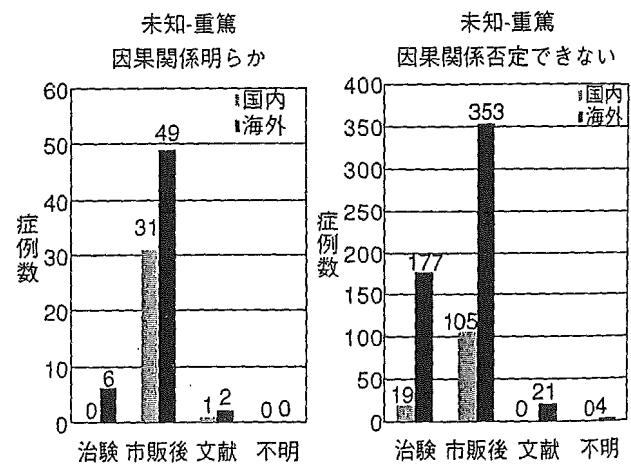


図 7

①未知で重篤な因果関係が明らかな事象 (9症例) 2000年5月IRB

図8 有害事象報告リスト例 (IRB資料)

登録番号	治験薬名
研究項目	
報告された有害事象	
責任医師の評価	
責任医師の判断理由 (必須)	
1. 同意に附連する重要な新情報 <input type="checkbox"/> はい <input type="checkbox"/> いいえ	
2. 説明と再同意取得の必要性 <input type="checkbox"/> 説明が必要 <input type="checkbox"/> 追加文書での説明が必要 <input type="checkbox"/> 説明文書の改訂が必要 <input type="checkbox"/> 説明不要	
3. 治験実施に対する評価 <input type="checkbox"/> 治験継続 <input type="checkbox"/> 治験中断 <input type="checkbox"/> 治験中止 <input type="checkbox"/> その他	
CRCのサポート <input type="checkbox"/> 必要 <input type="checkbox"/> 不要	

図9 臨床試験における有害事象報告に対する評価報告書

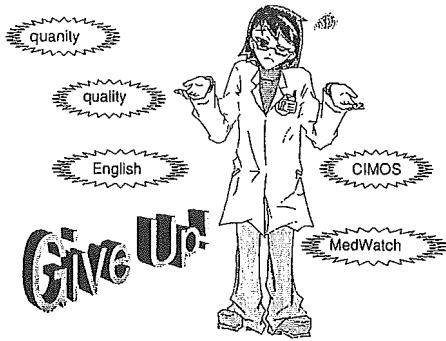


図10

施設を困らせることになります。治験においては、かなり厳しく情報を集めますが、市販後だとそうでもありません。後で安全性情報を収集するシステムについて提案したいと思います。

今までの話から、提供される情報の量は多いが、情報不足のものが多く、英語で書かれているものも最近くるようになりました。英語のままで送られてくる、量は多いが情報は不足ということで、ほとんどお手上げ状態になっているのが、金沢大学病院の実情です(図10)。

図11は、林さんが先ほど製薬協の案として出されたものと似ていますが、我々もたまたま同じようなことを考えていて、製薬協の臨床評価部会とDMS部会にご相談させていただいて考えたものです。まず、国内症例と国外症例、市販後と治験中を分ける。この前提には、因果関係が明らかでないものは、別のところにラインリストとしておくのが現実的ではないかと思っています。有害事象を「1例報告A」、「1例報告B」、「ラインリスト」の3つに分類します。情報提供のタイミングは製薬協と相談し一応合意をとりました。医療機関と企業が合致しないと物事は実現しないので、長いこと話し合いを続けてきました。

その方法で今年の報告4,422症例を分類してみると(図12)、まず「1例報告A」で因果関係ありに該当するものは0です。否定できないものは全部で30数件です。ただ、因果関係が不

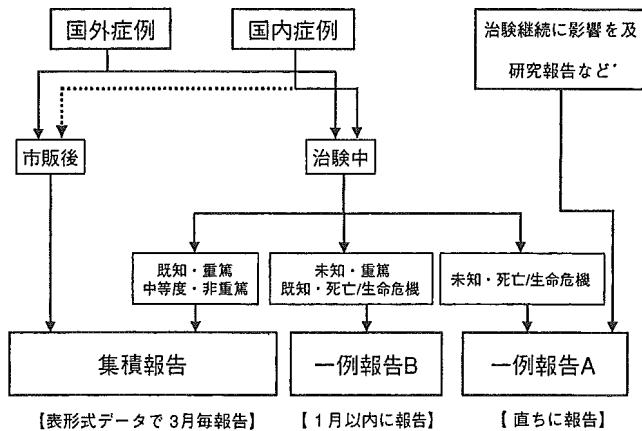


図11 有害事象報告の分類モデル

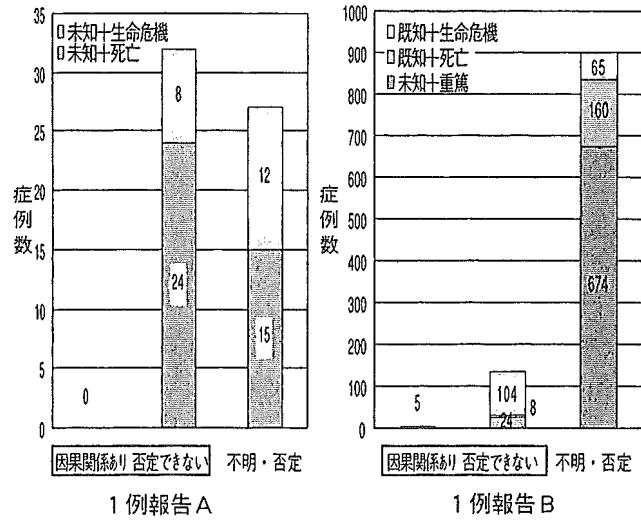


図12

明だからといって無視すればいいというわけではなく、もっと蓄積して改めて評価していく部類に入るのではないかと思います。「1例報告B」の方は、因果関係がありが5、否定できないが約130。これを、被験者にとって重要な情報としてきっちりと評価していくとなれば、ただ提供されたものを形式だけで審査するということから、もう少し焦点を絞った審査ができるようになるのではないかと思います。

ただ、ややこしい問題が出てきました。すでに市販されているゲフィチニブでの問題です(図13)。ゲフィチニブは本院でも治験をやっていますが、現在新規の症例組み入れをストップしています。このような場合にどうするかということです。治験の継続に影響を及ぼす国内の措置ということで、「1例報告A」にすることとよいのではないかと考えています。

表2は我々が提案した、データベース化のためのラインリストです。これは製薬協の林さんが提案されたものと細かいところは違っていますが、大体折り合いがつきまして、それを日本病院薬剤師会の臨床試験対策特別委員会のスタンダード版にすることになりました。各医療機関がそれぞれの会社に自分達の希望を言つていたら、会社の方も対応に困つてしまうので、標準版で情報を提供するということで話がつきました。

今のところ、データ提供はフロッピーです(図14)。Excelのような表計算ソフトを使用すれば、どんな項目でもソートすることができるので、データ管理も簡単です。ただし、半角入力か全角入力かなど、入力ルールを作っていないと、検索にひっかかるなどということになりますので、きっちり詰める必要があります。

データベース化するというこ

©アストラゼネカ株式会社、読売新聞社、朝日新聞社

13

表2 有害事象情報の電子化のための標準データベース項目（案）

1 報告受付日	実施施設専用	13 治療開始段階 (段階・中止・継続・終了)	
2 製薬企業情報入手日		14 転帰	
3 治療薬名		15 因果関係評価 (報告医師)	
4 一般名		16 因果関係評価 (製薬企業)	
5 製薬企業名		17 因果関係評価 (責任医師)	実施施設専用
6 発生場所(国内、国外)		18 推定使用症候群 (市販後での検出時)	可能な限り記載
7 発生相 (治療中、市販後)		19 個別必要項目 A	依頼者専用
8 有害事象名 (MedDRA)		20 個別必要項目 B	依頼者専用
9 重複度		21 個別必要項目 C	実施施設専用
10 新規性 (未知・既知)			
11 年齢		111 個別必要項目 X	実施施設専用
12 性別			

依賴者

日本病院薬剤師会標准版 (予定)

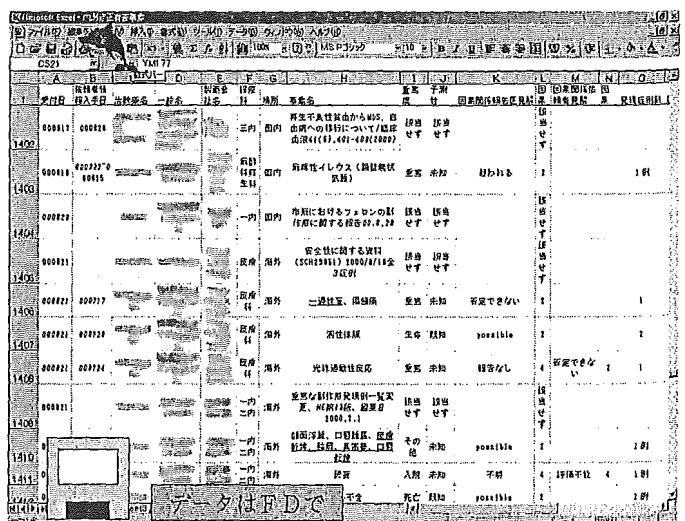


図14 依頼者から提供をうける電子データ

とは、情報管理の効率化だけでなく、患者自身、被験者の方が知りたいと思った時にいつでも簡単に最新の情報にアクセスできるというメリットがあります。これから紙の情報だけでなく、皆が簡単に使えるソフトを使ったデータベース化が必要だと思っています（図15）。

今までではデータの管理方法や伝達のことでしたが、有害事象発生時の対応もまた大切です。図16は本院で発生した重篤な有害事象の件数と因果関係評価を示しています。幸いなことに、因果関係ありは1例しかないので、健康被害が起きた時に他の施設が情報を使えるように、評価ができるような必要な情報項目はきっちり埋め込んでいくことが必要です。そういう点で、表2で示したデータベース項目を埋めていけば、その評価が可能になります。伝達方法が標準化されれば、今度は報告する側も標準化できるのではないかと期待されます。

有害事象の管理上の課題と考えていたことを表3に示します。このうち、Iの「報告システムの標準化」という課題は見通しがつきました。次のステップは、有害事象を検出していく；また検出したものを電子的な情報として企業の方に伝えていくということです。

有害事象（安全性情報）の検出について、提案をしたいと思います。私が薬剤師だから言うわけではないのですが、今、薬剤師は病棟業務をいろいろ進めていますので、安全性情報の収集に積極的に関与すべきです。医師やナース、患者さんから情報を集めて集積する。また保険調剤薬局からの情報は、病院と共有化されていないので、それも集める。企業の方は、薬剤部を定期的に訪問することによって、質の高い安全性情報の収集が可能になるのではないかと考えています（図17）。

今後大切なのは、情報をただ整理するだけではなく、提供された情報の中から何かを検出すること、あるいは未知の有害事象を、CRC業務を通して見つけていくことがこれから大事にな

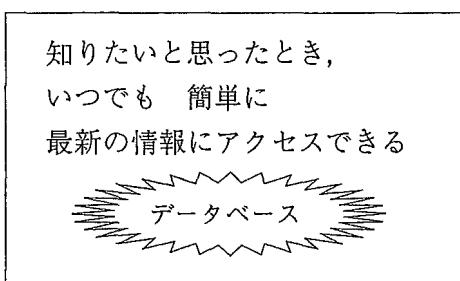
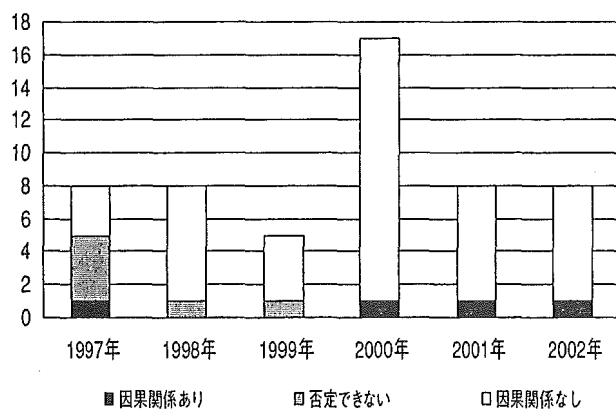



図15

表3 有害事象情報&管理上の課題

- I. 有害事象情報報告システムの標準化
 - 1. 報告様式（依頼者→実施施設）
 - 2. 報告に対する評価（実施施設）
- II. 有害事象の検出システムの標準化
 - ☆検出者：医師、薬剤師、CRC
- III. 検出事象報告システムの標準化

図16 本院で発生した重篤な有害事象
件数と因果関係評価

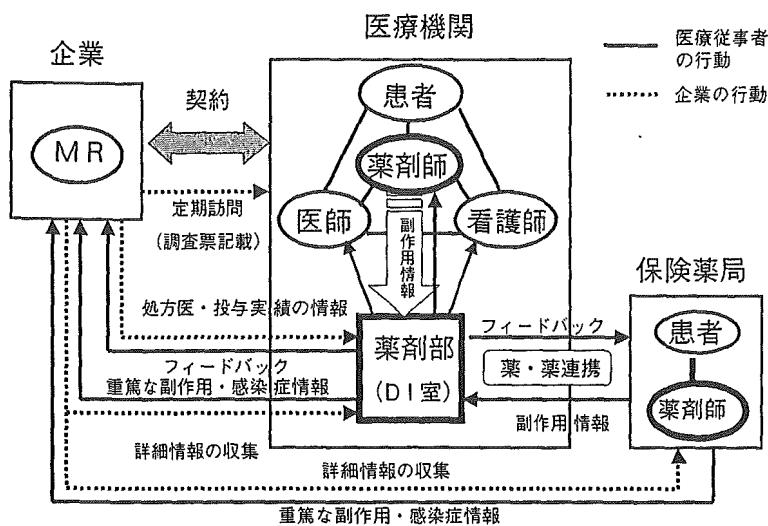


図17 提案：有害事象の検出と情報フィードバック系統図

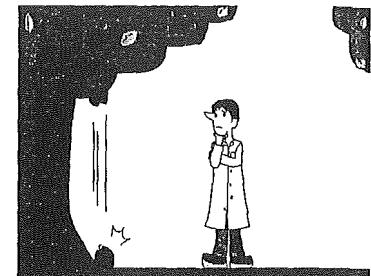


図18

ってきます（図18）。その時には、「これだけの情報で十分に評価できるかどうか」ということをしっかり考える必要があるのではないかと思います。それが出発点になるでしょう。
ご静聴ありがとうございました。

有害事象情報の有効利用を目指した情報評価・管理システムの構築

横井祐子^{*1,2} 古川裕之^{*1,5} 永平廣則^{*3}

林 修嗣^{*4} 長田幸恵^{*1,2} 松嶋由紀子^{*1,2}

石崎純子^{*2} 神谷 晃^{*5} 宮本謙一^{*1,2}

【目的】依頼者から医療機関に報告される有害事象報告数は年々増加しており、双方が情報評価と管理において多くの問題を抱えている。問題解決のため、金沢大学医学部附属病院(以下、当院)における5年間の情報分類化とデータベース(以下、DB)化の経験を基に、依頼者と医療機関の双方が合意できる情報評価・管理方法の具体策について、日本製薬工業協会(以下、製薬協)の担当部会とともに検討を進めてきた。今回、具体的な解決策である標準的情報項目の電子媒体による伝達と情報管理ツールの運用試験結果について報告する。

【方法】
 ①情報項目の設定: 依頼者が提供する有害事象情報を評価するために必要な情報項目を設定した。その際、依頼者と医療機関の立場の違いから必要と考える項目の相違が生じたが、各々の個別部分を共存させる形で、製薬協の担当部会との合意を図った。
 ②入力ルールの取り決め: 過去の当院でのDB化における入力方法の問題点を調査し、これを考慮した解決策を作成し、製薬協の意見を聴取した。
 ③情報管理ツールの構築: 提供された情報項目において、当院医療情報部の協力を得て、MS-Accessを用いた情報管理ツールを作成した。
 ④運用試験における問題点の検出及び依頼者との意見交換の実施: 2003年9月1日~10月31日受付分の有害事象情報において、標準項目、入力ルールを用いた運用試験を行い、その結果を受けて当院と契約関係にある依頼者との意見交換会を設けた。

【結果】
 ①情報項目の設定: 依頼者入力項目
 ②企業管理番号
 ③治験薬名・販売名
 ④一般名
 ⑤製薬企業名
 ⑥発生場所
 ⑦発生相
 ⑧有害事象名
 ⑨重篤性
 ⑩予測性
 ⑪年齢
 ⑫性別
 ⑬原疾患
 ⑭治験薬投与
 ⑮併用被疑薬
 ⑯転帰
 ⑰因果関係(報告医師)
 ⑯推定投与症例数
 ⑯開録の有無
 ⑯備考 A)依頼者情報入手日
 B)治験実施診療科
 C)因果関係分類(報告医師)
 D)因果関係(依頼者)
 E)因果関係分類(依頼者)
 F)前回報告日
 G)追加報告(予測性)
 [医療機関専用の入力項目]
 ①報告受付日
 H)評価報告書番号
 I)同意医師への影響
 J)再同意取得の必要性
 K)治験実施の評価
 L)CRCのサポート
 M)IC文書のIRB承認日とした。

②入力ルールの取り決め: 基本ルールと各情報に分けて設定した。

金沢大学医学部附属病院 臨床試験管理センター^{*1}, 薬剤部^{*2}

〒920-8641 金沢市宝町13番1号

金沢大学医学部附属病院 医療情報部^{*3},

日本製薬工業協会^{*4},

日本病院薬剤師会臨床試験対策特別委員会^{*5}

③情報管理ツールの構築: MS-Accessを用いることで、検索画面全ての項目について任意一致にて検索できる。当院では、限られた時間内で重点的にIRB審議を行うため、全事象をランク別に再分類し審議の効率化を図っている。このランク別検索機能も兼ね備えた。

④運用試験における問題点として、選択肢にない語彙の使用や数字入力項目に文字列が入力されている等、入力ルール違反が全体の94%を占めた。また、厚生労働省への報告文書とDB化のデータとの相違による入力ミスが4%が認められた。

【考察】
 ①情報項目の設定: 意見交換会において、依頼者からE2B/M2との兼ね合いに关心が示された。可能な限り項目のすり合わせを行うことが重要であるが、立場の異なる者同士で内容の全てを一致させることは困難と思われる。ICHでは医療機関への報告についてはほとんど検討されていないことから、重複部分を最大にする必要はあるが、医療機関個別の項目が発生することはやむを得ないと考える。

②入力ルールの設定、運用試験での問題点の検出: 今回、詳細な入力ルールを設定したものの、情報項目の修正箇所の94%が入力ルール違反であった。入力ルール違反防止対策の一つとして、これまでのMS-Excelを使用した入力方法に替え、MS-Accessでの入力を用いることで入力データ形式の精度を高めることができると考える。ただし、入力内容については、依頼者自身がフォーマットに準じた入力がなされているか否かを確認する必要がある。入力ルール違反以外の問題点として、「入力ミス」があるが、正確な有害事象情報を提供することは依頼者の責任である。また「その他(2%)」としては、報告単位を「症例毎」か「事象毎」にするかという点がある。医療機関の44%が「症例毎」を望み、依頼者は「事象毎」を希望しているため、今後検討を重ねる必要がある。

今回作成した有害事象管理ツールは様々な機能があるが、現時点では提供されるデータの入力に問題があるため、完璧な検索は出来ないのが現状である。しかしながら、他の医療機関も当院と同様に有害事象の効率的な管理に関しては強い関心を示しており、有害事象情報のDB化に対し90%、システムの導入に対しては76%が前向きな反応を示している。本システムが実運用された場合、他の医療機関への受け入れは容易と思われる。今後の課題としては、伝達ツールの検討(MS-Excelを使用した入力方法→MS-Accessでの入力を用いることで入力データ形式の精度を高める)、同一症例において、複数事象を有する場合の有害事象情報の伝達方法、E2B/M2への対応が挙げられる。

新GCPには、安全性情報はIRBにて審議することが義務付けられている。当然のことながら、これはIRBにて事務的に審議することを目的とするわけではなく、あくまでも被験者の安全性を確保した上で治験を継続することを目的としたものでなければならない。今回構築したシステムにより、情報管理の効率化(依頼者内・依頼者間の情報管理の標準化、IRB資料作成時間の短縮、情報検索機能の充実)が期待される。CRCが被験者対応等の業務において有害事象情報を有効利用することで、被験者がより安心して治験に参加できる環境の構築を目指したい。

小規模医療施設向けの電子副作用報告処理システムの開発

○河本 晃宏1) 松岡 真希子2) 小池 大介3) 岡田 美保子1) 小出 大介4) 開原 成允5)

川崎医療福祉大学 大学院 医療技術学研究科1)

太田川病院 地域医療連絡室2)

川崎医療福祉大学 医療福祉マネジメント学科3)

東京大学 大学院 医学系研究科4)

国際医療福祉大学 大学院5)

Software system development to facilitate electronic pharmaceutical safety reporting from clinical institutions

Akihiro Kawamoto1) Makiko Matsuoka2) Daisuke Koike3) Mihoko Okada1) Daisuke Koide4)

Shigekoto Kaihara5)

Graduate School of Medical Professions, Kawasaki University of Medical Welfare1)

Community Medical Network Center, Otagawa Hospital2)

Health Welfare Services Management, Kawasaki University of Medical Welfare3)

Graduate School of Medicine, University of Tokyo4)

Postgraduate School, International University of Health and Welfare5)

Abstract: A software system to facilitate creation, transfer, and accumulation of pharmaceutical safety reports is presented. The system has been developed based on ICH standards, including the data elements guideline and the electronic specification. A standard personal computer with a web browser is the minimum requirement, and the system may be introduced easily into small-sized clinical institutions. The system will help promote electronic safety reporting from clinical institutions.

Keywords: pharmaceutical safety reporting, SGML DTD, ICH guidelines

1. 背景と目的

医薬品の安全性報告(副作用報告)については、電子的手段により、迅速に伝達し、これを蓄積して検索、分析、評価等に利用できることが望まれる。そのためには、安全性報告の標準仕様が重要となる。医薬品安全性報告の国際的標準として、ICH(日米EU医薬品規制調和国際会議)により、データ項目と、SGMLに基づいた電子書式が策定されている1)2)3)4)。我が国では、製薬企業については平成15年10月よりICHガイドラインに準拠した電子副作用報告が制度化された。一方、診療施設については平成15年7月に副作用報告の制度が整備されたところであるが、ICHの様式は導入されていない。今後は医療関連組織の間で、安全性報告の様式が共通化されることが望ましいと考えられる。

安全性報告の作成にソフトウェアによる入力支援は必須と考えられ、また安全性報告は蓄積して利用できることが必要である。近年、ICH標準に準拠したソフトウェアが製品化されているが、これらの市販のソフトウェアシステムは一般に、サーバ・クライアント形式で設計されている、非常に高額である。製薬企業向けの各種医薬品情報の管理機能を備えている場合が多いなど、医療施設には必ずしも適当であるとは言えない。

そこで本研究では、医療施設における医薬品安全性報告の蓄積、管理、利用を支援することを目的として、SGML電子安全性報告ファイルをデータベース化するシステムを開発した。本システムは特に、小規模医療施設等でも高額な設備投資をすることなく、標準的なパソコンがあれば、専門的な情報技術の知識を要することなく、容易に利用できることを条件として設計している。

2. 方法

方法としては、ICHによる医薬品安全性報告のSGML DTDと、厚生労働省が無償で配布している電子安全性報告ファイル(SGMLファイル)作成のソフトウェアツール3)および、データベースシステムとして、Microsoft Accessを用いた。本システムは、ネットワークに接続された標準的ブラウザを有するパソコンがあれば、容易に導入することができ、院内で電子安全性報告ファイルを登録して蓄積することも可能となる。

3. システムの概要

本システムで実装した基本的機能は次の通りである。

3.1 SGMLファイルのデータベース化

安全性等報告作成ツールから出力されたSGMLファイルを読み込み、データベースに登録する。

3.2 データベースからSGMLファイルの生成

本システムでデータベースに格納された安全性報告のデータから、SGMLファイルを作成する。こ

の機能は、他の場所で作成されたデータベースを共有した場合などに、電子的標準形式であるSGMLファイルを作成する状況を想定したものである。

3.3 Webブラウザによる報告の閲覧・検索

Webブラウザから安全性報告を検索し、SGML形式(タグ形式)ではなく、各値が何を示しているかが明確にわかるよう、表示を行う。また、データベースへの登録件数などの基本的な情報も、Webブラウザから閲覧が可能である。システムを構築する際、規模による違いや環境による違いにも汎用的に対応できるようにするために、閲覧するツールとしてWebブラウザを用いた。

4. 考察と結論

本システムにより医薬品安全性報告の作成と閲覧が可能となり、施設内の端末からの操作で容易に安全性情報を共有することが可能となった。また本システムはICHのガイドラインに沿って開発されているため、施設内で発生した安全性情報のみならず、企業や他の医療機関等から電子的に伝達される安全性報告についてもICH安全性報告の形式であれば、同様にデータベース化することが可能である。

今後、SGMLファイルの読み込みに際し、データの相互関係を考慮した入力項目の妥当性をチェックする機能と、MedDRAの利用支援機能の開発を予定している。

開発したシステムの導入により、容易に院内の端末等から電子安全性報告の登録ができ、登録された情報の閲覧や検索も可能となる。また、SGMLファイルをデータベース化することにより、様々な二次活用が可能となる。本システムは医療施設における医薬品安全性報告の作成、二次利用の促進に貢献するものと考える。

参考文献

- [1] 小出大介、岡田美保子、開原成允: 国際標準に則った医薬品安全性報告システムの開発と評価、第21回医療情報学連合大会論文集、770-771、2001
- [2] 岡田美保子、小出大介、開原成允: ICHに準拠した医薬品個別症例安全性報告の国内仕様-実証実験を通じて、医療情報学、22 (Suppl.)、91-92、2002。
- [3] 医薬品医療機器情報提供 - <http://www.info.pmda.go.jp> (2004/09)
- [4] 独立行政法人 医薬品医療機器総合機構 - <http://www.pmda.go.jp> (2004/09)

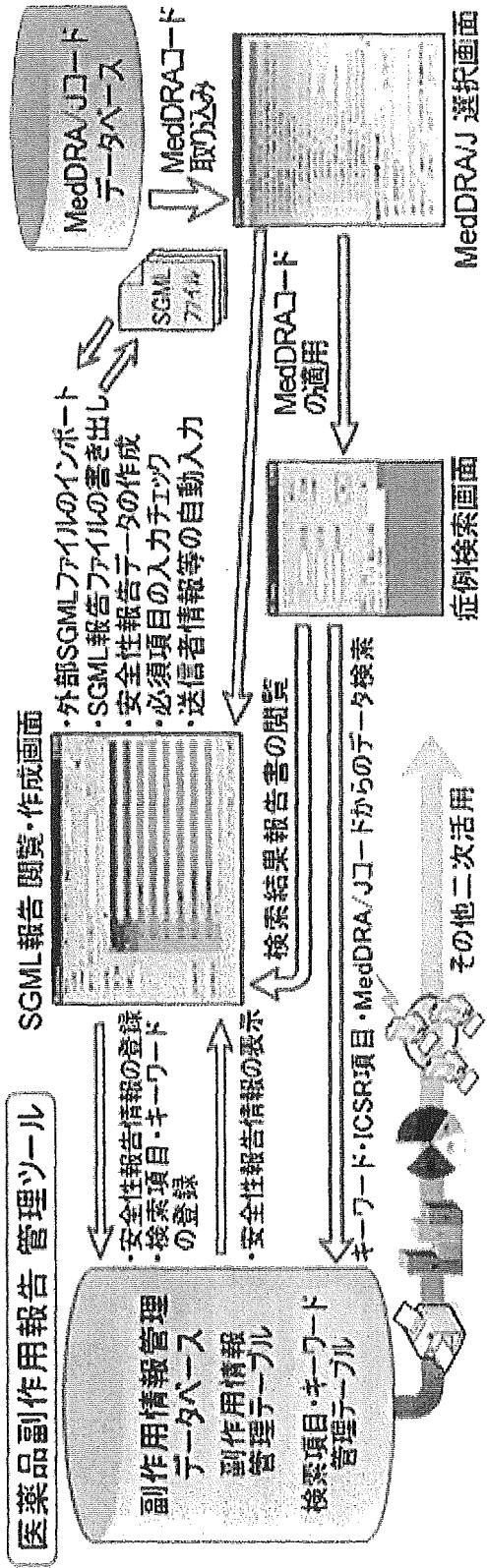

図 1 システムの概略

図 2 データベースへの登録

図 3 安全性報告の検索・閲覧

【講義 1】

ひと月分厚さ25cmの 有害事象情報とのナイスな付き合い方

金沢大学医学部附属病院

臨床試験管理センター 古川 裕之

はじめに

1997年4月に、新薬開発のための臨床試験（以下、治験）を倫理的かつ科学的に実施するための新しい基準GCP（Good Clinical Practice）が施行され、新しい基準での治験実施経験もすでに7年となった。新GCP後の治験を進めてきた施設においては、実施体制も安定状態に入り、科学的で倫理的な治験が順調に進行している。また、治験に対する一般的な理解と認識も、治験依頼者と医療機関の啓蒙努力により少しづつ進んできているように感じられる。しかし、一般娯楽誌（特に、漫画週刊誌）などマスメディアでの取り上げられ方に、問題点が認められている。

2002年11月、ある大手出版社の人気漫画週刊誌に連載中の大学病院を舞台にした作品の中に、読者に大きな誤解を与える治験に関する不適切な描写を発見した。すぐに編集部に電話をかけ、不適切な表現である理由を説明し、訂正を求めたところ、出版社の担当責任者は、単行本化する時に訂正することを約束してくれた。そして、2003年3月に発売された単行本において、不適切と指摘した部分の描写が約束どおり書き改められたことを確認した。また、2003年になって、別の大手出版社の人気漫画週刊誌に連載中の医療関係の作品の公式ガイドブック中にも、不適切な表現を発見し、編集部に訂正を求めた（改訂の有無は未確認）。残念ながら、一般社会では、治験を「人体実験」としてのイメージで捉えてしまう傾向が今なお残っている。被験者を含む一般市民に誤解を与えることのないよう、治験に関する者は、一般娯楽誌において治験がどのように描写されているのかを監視する必要がある。

1. 何のために医療機関へ安全性情報を伝達するのか？

2003年に全国3地域（神奈川、金沢、大分）の3大学病院を中心とした合計320人の被験者を対象に、治験に関する意識調査を実施した（回答者は283名）。その結果によると、治験参加の理由として、回答者の約90%が「自分の病気が良くなることへの期待」をあげている。また、治験への参加を決めるうえで心配なこととして、全体の47%が「有害反応（いわゆる副作用）」をあげている¹⁾。

治験参加時の被験者の意思決定に大きな影響を与える因子は、治験で得られる利益と治験で受け不利益のバランスであると思われる。治験で得られる利益は、新しい治療やていねいな医療サービスが受けられることであり、一方、治験で受け不利益は、安全性が確立していないこと（未知の有害事象発現による健康被害）と制約の多さ（通院・検査回数の増加、日記記載など）である。医療機関にとっても、依頼された治験実施の必要性と被験者の安全性のバランスを考慮して、治験実施の可否を判断する。つまり、被験者と医療機関の双方にとって、安全性に関する情報は非常に重要なものである。

被験者と直接に顔を合わせる治験実施医療機関（以下、医療機関）においては、治験依頼者である製薬企業（以下、依頼者）から安全性に関する情報の報告を受けるだけでなく、被験者の安全確保のために被験者へ確実にフィードバックする必要がある。この一連の伝達において重要なことは、依頼者から報告された情報を被験者にそのまま伝達するのではなく、依頼者から報告された安全性情報の内容を十分に評価し、被験者の安全確保の観点から伝達が必要と判断されたものについて被