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Figure 7

Induction of apoptosis by Pseudomonas 3-oxo-C;,-HSL in macrophage and neutrophil
Macrophage cell line U-937 and mouse neutrophil were incubated with or without 3-oxo-
C45-HSL, and then morphology of cells was examined at 4 h after incubation.

a: U-937 cell, control. b: U-937 cell, 3-oxo-C,,-HSL. c: neutrophil, control. d: neutrophil, 3-
0x0-C,»-HSL [59].

Potential of macrolides as quorum-sensing inhibitors

The discovery that gram-negative bacteria employ HSL autoinducer molecules to
globally regulate the production of virulence determinants has identified a novel tar-
get for therapeutic intervention. The ability to interfere with bacterial virulence by
jamming signal generation or signal transduction is intellectually seductive and
pharmaceutically appealing, and may also be of considerable clinical importance.
Strategies to inhibit quorum-sensing systems include chemical antagonists and spe- -
cific antibody to inhibit the autoinducers, HSL-destroying enzyme lactonase, and
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Figure 8

Effects of azithromycin on quorum-sensing systems of P. aeruginosa

P. aeruginosa was incubated with or without azithromycin 2 ug/ml for 10 hours and then
autoinducer synthase expression (lasl, rhll)) and HSL production were examined [67].

suppression of quorum-sensing by interfering with associated genes and gene prod-
ucts. Several investigators have reported the feasibility of HSL-analogues [64, 65]
and synthetic derivatives of natural furanone as means to inhibit bacterial quorum-
sensing systems [66].

Clinical and experimental data described above provided a hint that certain
macrolides and their analogues may function as Pseudomonas quorum-sensing
inhibitors. As shown in Figure 8, 2 ug/ml of azithromycin significantly suppressed
transcription of lasl by 80% and rb!ll by 50% in P. aeruginosa PAO1 [67]. Addi-
tionally, the production of 3-ox0-C4,-HSL and C,-HSL was inhibited to approxi-
mately 6% and 28% of the control, respectively. In contrast, azithromycin treat-
ment did not alter the expression of the xcpR gene, which codes for a structural pro-
tein belonging to the type II secretion pathway. These data suggested that
azithromycin suppressed quorum-sensing systems in P. aeruginosa, and
azithromycin’s effects on these bacteria are somewhat selective in nature. Impor-
tantly, we have observed suppression of lasI gene expression by erythromycin, clar-
ithromycin and roxithromycin, but not by oleandomycin and josamycin. These
results suggested that the clinically effective macrolides are also the macrolides that
are active in suppressing quorum-sensing system, and are consistent with the notion
that macrolides might reduce the production of Pseudomonas virulence factors by
inhibiting the synthesis of the autoinducer molecules.
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Inhibition of HSL production by macrolides and its impact on pathogenesis of chronic P.
aeruginosa pulmonary infection [59].

Figure 9 demonstrates several potential mechanisms by which macrolide antibi-
otics may suppress quorum-sensing systems and highlight their contribution to clin-
ical efficacy in chronic P. aeruginosa pulmonary infections. Activation of the quo-
rum-sensing cascade promotes biofilm formation at the site of infection, which
make conditions more favorable for bacterial persistence in the lung. Bacterial
autoinducers, especially 3-ox0-Cy,-HSL, stimulates several types of cells, such as
epithelial cells, fibroblasts, and macrophages, to induce production of neutrophil
chemotactic factors (IL-8 in humans and MIP-2 in mice). Migrated neutrophils are
triggered to produce several toxic substances for killing of bacteria, but these mole-
cules, in conjunction with bacterial virulence factors, promote tissue destruction
that is a hallmark of the lungs of CF patients. In sites where bacteria are actively
producing autoinducers and autoinducer-regulated virulence factors, host cells come
in contact with these bacterial factors. In these sites, neutrophils begin to undergo
apoptosis, and this process may be accelerated by the presence of bacterial factors,
such as 3-ox0-Cy,-HSL. Apoptotic neutrophils, in addition to secreted mucus and
other cell debris, may serve as nutrients for the growth of bacteria and a niche for
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their survival. Macrolide antibiotics strongly suppress Pseudomonas quorum-sens-
ing systems, particularly autoinducer production, which may contribute to suppres-
sion of virulence factor expression and biofilm formation. Additionally, macrolides
may alter pathogen-driven host responses, such as IL-8 production and apoptosis in
neutrophil. Taken together, this evidence supports a potential role of certain
macrolides as Pseudomonas quorum-sensing inhibitors, which may explain at least
in part clinical efficacy of this class of antibiotics in chronic P. aeruginosa pul-
monary infections. Further research regarding the mechanisms of action and puta-
tive target molecules of bacterial quorum-sensing systems, is warranted.

Conclusions

Clinical and basic science data summarized in this review suggests the potential of
macrolides as a prototypic inhibitor of bacterial quorum-sensing systems. Given
that clinical efficacy of macrolides is associated with suppression of bacterial viru-
lence, including quorum-sensing activity, further investigation aimed at characteriz-
ing molecular mechanisms involved may prove fruitful in identifying novel strate-
gies of antimicrobial chemotherapy against antibiotic resistant organisms and
biofilm disease.
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Abstract

Increase of multiple drug resistant Pseudomonas aeruginosa (MDRP) is becoming a serious problem in the clinical setting.
Although the checkerboard method to determine FIC index and synergistic effects of antibiotic combinations is useful, it is
not well adapted to a routine test, mainly because of its time-consuming and labor-intensive nature. Here we report ‘Break-
point Checkerboard Plate’, in which breakpoint concentrations, such as ‘S’ (sensitive) and ‘I’ (intermediate), were
combined in a microtiter plate with 8 antibiotics, including carbapenem, aminoglycoside and fluoroquinolone. The results
obtained from 12 strains of MDRP demonstrated a strong synergistic effect of some antibiotic combinations at clinically
relevant concentrations. Our data suggest a usefulness of ‘Break-point Checkerboard Plate’ to screen appropriate antibiotic
combinations against drug resistant organisms, including MDRP.

Introduction

Pseudomonas aeruginosa is an opportunistic patho-
gen that causes a wide range of acute and chronic
infections, including sepsis, wound and pulmonary
infections. Multiple drug-resistant P. aeruginosa
(MDRP) is becoming a serious problem in the
clinical setting worldwide {1}. Since MDRP demon-
strates resistance to almost all antibiotics available,
including carbapenems, amynoglycosides and fluor-
oquinolones, combination therapy is usually re-
quired empirically in the absence of any in vitro
synergy data, which can result in a less than optimal
treatment outcome for these patients.

A number of methods including the 2-dimensional
microtiter checkerboard method and the time-kill
method have been widely employed to investigate
combinations of antibiotics [2]. However, the time-
consuming and labor-intensive nature of these tests
is a disincentive to their routine use. Moreover, it
may be difficult to expect therapeutic responses if
synergistic effects were observed only in clinically
non-relevant concentrations of the antibiotics. An in

vitro method of determining the combination activ-
ity of antibiotics at clinically achievable levels, which
is simple and convenient to perform and which could
be used routinely in clinical microbiology labora-
tories, is desirable.

Methed

For these situations we have designated ‘Break-point
Checkerboard Plate’, in which combinations of 8
antibiotics were arranged in a plate (ceftazidime,-
CAZ: piperacillin, PIPC: imipenem, IPM: aztreo-
nam, AZT: gentamicin, GM: ciprofloxacin, CPFX:
polymyxin-B, PB: rifampin, RFP), and examined its
usefulness to screen appropriate antibiotic combina-
tions against clinical isolates of P. aeruginosa (n =
12, unrelated strains). The NCCLS methodology of
antibiotic susceptibility testing, such as preparation
of the plate, inoculation of the organism and
incubation time, was applied in this study [3]. We
selected 2 concentrations from each antibiotic by
considering breakpoints of these antibiotics, in
addition to tissue and serum concentrations [3-5],
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Figure 1. ‘Break-point Checkerboard Plate’ examined in this study.
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Antibiotic combinations and concentrations were designed in 96-well microplate, as shown in Figure 1A. Figure 1B shows an example of the
results, in which synergistic effects were demonstrated in several combinations of antibiotics.

as shown in Figure 1A. Figure 2 demonstrates MICs
of these antibiotics to P. aeruginosa, which were
examined in a broth micro-dilution method as
described previously [6]. All these strains were
judged to be resistant to IPM, GM and CPFX.
Additionally, the majority of these strains were
resistant to CAZ, PIPC and AZT. The ranges of
MICs of RFP and PB were 16-32 mg/l and 1-4 mg/
1, respectively.

Figure 1B demonstrates an example of the results
in ‘Break-point Checkerboard Plate’, in which sev-
eral synergistic effects were observed. As noted, we
observed suppression of growth of this strain in some
antibiotic combinations, such as GM 4-PIPC, GM +
AZT and RFP+PB. In particular, the combination
effect of RFP+PB was strong, in which growth

of bacteria was inhibited at 2 mg/l of RFP plus
0.5 mg/l of PB.

Figure 3 demonstrates the results of 12 strains of
MDRP in B-lactam +GM (A) and p-lactam + CPFX
{B). The shaded area indicates concentrations of
antibiotics used in ‘Break-point Checkerboard
Plate’. Closed circles in this area demonstrate
suppression of growth in these combinations, and
the circle was connected to another closed circle
by-line, which indicates MICs of each aniibiotic
(non-combination). For example, a closed circle
with asterisk in Figure 3A demonstrates that MICs
of AZT and GM to this strain are > 64 and 64 mg/l,
respectively, and a combination of AZT (8 mg/l) plus
GM (8 mg/l) inhibited growth of this strain. In con-
trast, open circles exhibit MICs of each antibiotic,
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Figure 2. MIC distribution of several antibiotics against MDRP.

MICs of several antibiotics against 12 strains of MDRP were examined in a micro-broth method, as described in the text. Dotted lines

indicate break points of ‘S’, ‘I, ‘R’ in each antibiotic.
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Figure 3. The results of ‘Break-point Checkerboard Plate’ in f-lactams plus GM, CPFX.
Figure 3A and 3B show the results of combinations of B-lactams+GM or B-lactams+ CPEX, respectively.

in which inhibition of growth was not observed in
any combination of this plate. In AZT+GM and
PIPC+ GM, suppression of growth was observed in
8 and 5 of 12 strains, respectively, whereas no
combination effect was observed in CAZ+GM and
IPM +GM (Figure 3A). Figure 3B demonstrates the
results of combination of f-lactams+CPFX, in
which there was no synergy in P. aeruginosa exam-
ined.

Figure 4 demonstrates the results of PB -+ f-lactam
(A) and PB+other class antibiotics (B). Interest-
ingly, we observed strong synergy in all antibiotics
examined in the presence of PB. A concentration of
1 mg/l of PB, which is one quarter of MIC of all
strains except 1, decreased MICs of counterpart
antibiotics to lower levels in a majority of the strains.
In particular, drastic combination effects were ob-
served in PB +RFP, in which growth inhibition was
observed at 0.5 mg/l of PB plus 2 mg/l of RFP in 9 of
12 strains examined.

These data suggest that the ‘Break-point Checker-
board Plate’ may be useful to screen appropriate
antibiotic combination against MDRP. Since anti-
biotic concentrations used were clinically relevant
and achievable at the site of infections, the synergy
observed strongly suggests effectiveness of this
combination in the clinical setting. On the other
hand, we could not evaluate antagonism, post-
antibiotic effects and antibiotic sequencing effects
in combinations, which may be weak points of this
plate. Other points of consideration for this method
may include how to prepare the plate (freeze or
freeze-dry), shelf-life, and quality control, in addi-
tion to comparison with and complementation by a
regular microbroth dilution method.

Owing to the problems of increasing antibiotic
resistance in P. aeruginosa, it is now standard clinical
practice to use 2 or more antibiotics to treat these
patients with MDRP infections. As a result, a less
time-consuming and convenient test for see}{ing
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Figure 4. The results of “Break-point Checkerboard Plate” in PB plus p-lactams, others.
Figure 4A and 4B show the results of combinations of PB+f-lactams or PB+others, respectively.
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an appropriate antibiotic combination is desired.
Bonapace et al. [7] have reported a new test, in
which 2 antibiotics of E-test strips were combined in
a vertical position. More recently, Tunney and Scott
have reported a broth macrodilution sensitivity
method based on breakpoint MICs in CAZ and
tobramycin [8}. The °‘Break-point Checkerboard
Plate’ presented in this study is principally in line
with these methods, and further extended to screen-
ing of multiple antibiotic combinations at clinically
achievable levels. Once the plates were prepared, the
test was easy to perform, less labor-intensive and
more feasible to daily routine test, which suggests a
potential of this plate for wide application in hospital
microbiology laboratories.

Several investigators have reported efficacy of
synergy in certain antibiotic combinations, such as
B-lactams plus aminoglycosides, against antibiotic
resistant organisms. Saiman et al. have reported
combination effects with macrolides against antibio-
tic resistant organisms, including Burkholderia ce-
pacia, Stenotrophomonas maltophilia and P.
aeruginosa [9]. Okazaki et al. have investigated
effectiveness of phosphomycin combination against
MDRP by the efficacy time index [10]. Oie et al.
have reported that the combination of AZT and
amikacin was the most effective, inhibiting prolifera-
tion in MDRP [11]. Our data also suggested
synergistic effects of GM, especially in combination
with AZT and PIPC. Although a panel of study was
done in combination with fluoroquinolones against
MDRP, a majority of those studies demonstrated
only a minor role for fluoroquinolones in combina-
tions [12-16]. In our research, no combination
effects were observed even at half MIC of CPFX
plus half MIC of AZT in MDRP examined, as
shown in Figure 3B. To confirm these results, we
need further investigation by applying more clinical
isolates of MDRP and different fluoroquinolone
antibiotics.

The polypeptide antibiotics, such as PB and
colistin, were first made available for clinical use in
the late 1950s and early 1960s. However, as a result
of concerns about adverse reactions, such as nephro-
and neuro-toxicity, the parenteral use of these agents
has been rather limited. Worldwide increases in
antibiotic resistant bacteria, in addition to no intro-
duction of new effective antibiotics to combat these
organisms, have changed the strategy of antimicro-
bial chemotherapy. These pressures forced us to look
for new antibiotic combinations and to rediscover
older agents, such as the polypeptide antibiotics.
Recent accumulating evidence from basic science
and clinical data has shown a resurgence of these
agents as an important salvage therapeutic option for
patients with otherwise untreatable serious infections
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[17,18]. Several in vitro data have demonstrated
strong synergy of the polypeptide antibiotics with
other antibiotics against multidrug-resistant organ-
isms, such as A. baumannii and MDRP [19-21].
Although the number of patients is still limited,
Levin [22], Linden {23] and Sobieszczyk [24] have
reported the use of parenteral polypeptide antibiotics
for the treatment of serious infection due to anti-
biotic resistant organisms in 60, 23 and 25 patients,
respectively.

The present data demonstrate that 1 mg/l of PB,
one quarter of MICs for most strains, drastically
decreased MICs of counterpart antibiotics to clini-
cally susceptible levels. The probable role of PB in
such synergy is its rapid permeabilization of the
outer membrane, allowing enhanced penetration
and activity of other antibiotics [4]. Clinical trial
data of intravenous (2.5-3 mg/kg on d 1) and/or
aerosolized PB (—2.5 mg/kg/d) to critically ill
patients (n = 25) with antibiotic resistant organisms
demonstrated efficacy of this compound, although
nephrotoxicity was observed in 10% and did not
result in discontinuation of therapy [24]. The
pharmacokinetic data of colistin in patients with
cystic fibrosis showed serum peak concentrations of
21.4 and 23 mg/l in first dose (# =30) and steady
state (n = 27), respectively, when the patients were
started on colistin 5-7 mg/kg/d administered intra-
venously in 3 equally divided doses [25]. Although
clinical and pharmacokinetic data of PB are limited,
it is critical to seek for appropriate counterpart
agents to maximize combination effects, which may
reduce exposure and toxicity of the polypeptide
antibiotics. Our data further stress potential of the
polypeptide antibiotics as an enhancement of anti-
bacterial activities of counterpart antibiotics in
combination.

In the present study, we have observed the
strongest combination effects in PB plus RFP
against MDRP examined. Previously, several re-
searchers have reported the potential of combina-
tion of polypeptide antibiotics and RFP as a
therapeutic regimen for infections with multiple-
resistant organisms [21,26-28]. QOur data are
substantially consistent with the previous results
and further confirmed synergistic effects of combi-
nation of PB and RFP at clinically relevant
concentrations against MDRP. Given the large
number of patients with MDRP infections who
are treated empirically, the results of this study are
of great clinical importance. In this respect, Tascini
et al. have reported clinical efficacy of a colistin
and RFP combination in 4 patients with MDRP
infections [29]. Further studies for evaluation of
‘Break-point Checkerboard Plate’ in multiple
strains, in addition to modification of antibiotic
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concentrations and its association with clinical
responses in patients with MDRP infections, are
warranted.
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The kinetic activity of KPC-3, a plasmid-encoded class A carbapenemase, was studied. It hydrolyzed
penicillins, cephalosporins, carbapenems, and even sulbactam. The best substrate was cephalothin (X, =

3.48 pM ' s71). The efficiency of the enzyme was similar for imipenem and meropenem (k_,,

pM ™! 571 respectively).

K,., 1.4 and 1.94

m?

Carbapenem use has increased during the past 2 decades.
This is due, in part, to their broad-spectrum of antibacterial
activity and their resistance to hydrolysis by extended spectrum
B-lactamases (1, 10, 14, 17). However, the appearance of car-
bapenemases and other carbapenem resistance mechanisms is
threatening the effectiveness of this antibiotic class. In gram-
negative bacteria, carbapenem resistance has been attributed
to three main mechanisms: the combination of high-level pro-
duction of an AmpC B-lactamase and the loss of outer mem-
brane proteins (5, 13), changes in the affinity of penicillin
binding proteins for carbapenems (7, 8), and the production of
a carbapenem-hydrolyzing B-lactamase (11, 16). Although clin-
ically significant, carbapenem-hydrolyzing B-lactamases re-
main rare, but their frequency has been increasing. The B-lac-
tamases involved belong to Ambler molecular classes A, B, and
D (16, 19). A small number of class A enzymes have been
found to be able to hydrolyze carbapenems (6). They belong to
group 2f, as defined by Bush and colleagues (4, 23). They
hydrolyze ampicillin and early cephalosporins more efficiently
than carbapenems and can be inhibited by clavulanic acid.
Class A carbapenemases can be chromosomally encoded
(NMC-A, Sme-1 to -3, IMI-1) (9, 15, 21, 22, 24, 27) or plasmid
encoded (KPC-1, KPC-2, GES-2) (18, 20, 25, 26, 28, 29, 30).

KPC-type B-lactamases have become one of the most fre-
quently encountered carbapenem-hydrolyzing enzymes on the
East Coast of the United States (2). KPC-3 is the most recently
reported enzyme in that group (T. Hong, E. S. Moland, B.
Abdalhamid, et al., Abstr. 43rd Intersci. Conf. Antimicrob.
Agents Chemother., abstr. C1-665, 2003; K. Young, P. Tierno,
Jr., L. Tysall, et al.,, Abstr. 43rd Intersci. Conf. Antimicrob.
Agents Chemother., abstr. C2-50, 2003). KPC-3 is closely re-
lated to its predecessors, differing by only 1 amino acid from
KPC-2 (H272Y) and by 2 amino acids with KPC-1 (8174G,
H272Y). It has been recovered from isolates of Klebsiella pneu-
moniae (Young et al., 43rd ICAAC), Escherichia coli (Hong et
al., 43rd ICAAC), and Enterobacter cloacae (3).
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In this study we purified KPC-3 and subjected the enzyme to
kinetic characterization.

An isolate of E. coli (isolate 233) showing reduced suscep-
tibility to carbapenems was referred to Creighton University
from Hackensack University Medical Center. It was subse-
quently found to produce KPC-3 (report in press).

The isolate was grown in 4 liters of Luria-Bertani broth at
37°C (250 rpm) for 8 h, harvested, and suspended in 30 mM
Tris-HCl buffer (pH 8.0) containing 30% sucrose. The
periplasmic content was extracted as described previously (12).
Purification was achieved using a HiPrep 16/10 SP XL column
(Amersham Biosciences AB, Uppsala, Sweden) equilibrated in
10 mM acetate buffer (pH 5.0). Fractions displaying -lacta-
mase activity, observed as the initial rate of hydrolysis of ni-
trocefin (100 wM) (Ag,g, = +10,000 M~ 'em ") (Oxoid Ltd,,
Hampshire, United Kingdom) were obtained after elution with
a linear gradient of NaCl (0 to 400 mM). After concentration
using Amicon ultrafiltration membranes (Millipore Corpora-
tion, Bedford, MA) and overnight dialysis in 10 mM morpho-
lineethanesulfonic acid (MES) buffer (pH 5.5) at 4°C, the
sample was reloaded onto a Mono S HR 5/5 column (Amer-
sham Pharmacia Biotech, Uppsala, Sweden), equilibrated in
MES buffer (pH 5.5), and eluted with a linear gradient of NaCl
(0 to 300 mM). The entire purification process was done with
an AKTA purifier (Amersham Pharmacia Biotech). The purity
of the B-lactamase preparation was controlled using 10% so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis and
staining with Coomassie brilliant blue. The purity achieved was
above 90%. The purified enzyme was then dialyzed overnight
at 4°C in phosphate buffer (pH 7.0) and concentrated. Four
liters of culture yielded a total of 0.27 mg of pure enzyme.
After determination of the protein concentration using a Bio-
Rad (Richmond, Calif.) protein assay, 20 pg/mi bovine serum
albumin was added. The N-terminal sequence was determined
using a Procise 492¢1C-1 protein sequencer (Applied Biosys-
tems, Foster City, Calif.), and the kinetic parameters were
determined with the pure enzyme.

All kinetics studies were done by measuring hydrolysis rates
with a Shimadzu (Kyoto, Japan) UV-2550 spectrophotometer
connected to a personal computer. To determine the kinetic
parameters, 6 to 10 different concentrations of each B-lactam
were used. Bach reported parameter is an average of three
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TABLE 1. Comparison of kinetic parameters for KPC-1, KPC-2, and KPC-3¢

K, orK; (P‘M) Kear (S"‘) keaidK,oy (I—Ll\dil S‘,)
Substrate
KPC-1 KPC-2 KPC-3 KPC-1 KPC-2 KPC-3 KPC-1 KPC-2 KPC-3
Ampicillin 130 239 65 (£5) 110 210 77 (+4) 0.9 0.9 1.2
Nitrocefin NA® NA 42 (*5) NA NA 107 (=5) NA . NA 2.6
Cephaloridine 560 500 261 (=1) 340 530 364 (+4) 0.6 1.1 1.4
Cephalotin 53 82 44 (£3) 75 69 153 (£5) 1.4 0.8 35
Cefotaxime 160 220 95 (=8) 14 22 52(x4) 0.1 0.1 0.5
Ceftazidime 94 NA 88 (1) 0.1 0.1 3(x0.06) 0.001 NA 0.03
Cefoxitin® 120 180 970 (65) 0.3 0.3 0.05¢ (x0.001) 0.002 0.002 0.5¢
Moxalactam® NA NA 14 (=1.6) NA NA 0.008 (£0.0002) NA NA 0.05
Meropenem 12 15 4(x1) 3 4 6 (+0.09) 03 0.3 1.4
Imipenem 81 51 23 (*6) 12 i5 45 (*+0.04) 0.2 0.3 19
Sulbactam NA NA 30 (+0.9) NA NA 4 (=0.1) NA NA 0.1

7 Kinetic values used for KPC-1 and KPC-2 were reported by H. Yigit et al. (29, 30).

5 NA, not available.
€ K; values were obtained using 100 wM nitrocefin as a reporter substrate.

9 k.. values were obtained by hydrolyzing a low concentration of substrate with a high concentration of enzyme.

separate measurements. All kinetic parameters were acquired
by measuring the initial hydrolysis rate of the B-lactam under
study at a constant temperature of 30°C, using 50 mM phos-
phate buffer (pH 7.0). Analysis of the data was done using the
Hanes-Woolf linearization of the Michaelis-Menten equation.
For all poor substrates, the competitive inhibition constant (K;)
was determined by competition experiments between the
tested B-lactam and 100 wM nitrocefin. Hydrolysis of the sub-
strate at a concentration 10 times the K,,, (K;) value or higher
yielded the catalytic constants (k.,.) for poor substrates. The
k., value for cefoxitin was obtained using 100 pM substrate
with 1.1 X 1077 M enzyme.

The N-terminal sequence of KPC-3 was determined as LT
NLVAEPFAKLE. Table 1 shows a comparison between pre-
viously reported k,,, K, (K}), and k_,/K,, values for KPC-1
and KPC-2 (29, 30) and the parameters obtained for KPC-3 in
this study. KPC-3 hydrolyzed penicillins, cephalosporins, and
carbapenems. Among the substrates tested, the highest hydro-
Iytic efficiency was seen with nitrocefin and cephalothin (k_,/
K, 2.55 uM "1 s ! and 3.48 pM ™ s, respectively). The k_,,
and K,,, values for cephaloridine were very high (k_,,, 364 s7%;
K, 261 uM). Imipenem and meropenem were hydrolyzed by
KPC-3 with good efficiencies (k.. /K, 1.94 pM ™' s and 1.40
uM™! s7', respectively), which were similar overall to those
exhibited for ampicillin and cephaloridine. The substrate pro-
files for the three enzymes were similar overall, although the
catalytic efficiency of KPC-3 appeared to be somewhat higher
with some substrates, including oxyiminocephalosporins and
carbapenems. One of the notable differences is the behavior of
this enzyme with ceftazidime. The catalytic activity (k,,,) with
ceftazidime (3.0 s~ + 0.01) was approximately 30 times higher
than those of KPC-1 and KPC-2 (0.1 s~ * for both). Due to this,
KPC-3 was 30 times more efficient than KPC-1 toward this
substrate. Moreover, KPC-3 showed a lower affinity for cefox-
itin than the other enzymes. The present findings, therefore,
suggest that the amino acid substitution that differentiates
KPC-3 from KPC-2 (H272Y) could have a functional signifi-
cance. A molecular modeling analysis based on the structure of
the TOHO-1 enzyme (25), now called CTX-M-44, suggested
that the H272Y mutation (which would be at a position similar
to that of R274 in TOHO-1) could influence the positions of

R209, which interacts with the substrate carboxylate. Further
investigation will be necessary to clarify these matters.
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Abstract

We evaluated dipicolinic acid (DPA) as a chelating agent for detection of IMP- or VIM-type metallo-p-lactamase (MBL)-producing
Pseudomonas aeruginosa clinical isolates. Using the broth microdilution testing in the presence or absence of DPA, MBL producers
exhibited 100%, 92%, or 100% of =8 times (media, 32 times) reduction of MICs in presence of DPA for ceftazidime, imipenem, or
meropenen, respectively. In disk diffusion testing, expansion of growth inhibitory zone of these clinical isolates was clearly observed. Thus,

DPA could be useful in the detection for MBL-producing P. aeruginosa clinical isolates.

© 2005 Elsevier Inc. All rights reserved.
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Carbapenems are the most potent B-lactam agents with
a broad-spectrum activity against Gram-negative and
Gram-positive bacteria. They are stable in the presence
of penicillinases and cephalosporinases. However, some
class A, B, and D RB-lactamase as defined by Ambler
et al. can hydrolyze carbapenems (Nordmann and Poirel,
2002). In particular, class B P-lactamases, termed
metallo-B-lactamases (MBLs), are an increasingly serious
clinical problem because they have a very broad substrate
profile that includes penicillins, expanded-spectrum ceph-
alosporins and carbapenems, and exclude only aztreonam
as a monobactam. It has been reported that IMP-1
MBL-producing Serratia marcescens was first isolated
in 1991 (Osano et al., 1994). During the past decade,
various kinds of MBLs, including IMP and VIM types,
have increased in prevalence in Pseudomonas aeruginosa
around the world (Nordmann and Poirel, 2002). There-
fore, we need a method for rapid, specific, and sensitive
detection of MBL-producing P aeruginosa. Recently,
some researchers have proposed screening methods
to detect MBL producers by using thiol compounds,
2-mercaptopropionic acid (2-MPA), EDTA or EDTA plus

* Cormresponding author. Tel.: +81-3-3762-4151x2396; fax: +81-3-
5493-5415.
E-mail address: yoishii@med.toho-u.ac.jp (Y. Ishii).
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1,0-phenanthroline (Arakawa et al., 2000; Lee et al,
2001, 2003; Migliavacca et al.,, 2002). However, a
number of these inhibitors possess action of bacterial
growth inhibition or hydrolyze some antibiotics. On the
other hand, it has been reported that dipicolinic acid
(DPA) will be an adequate chelating agent against some
MBLs chelators in biochemical studies (Murphy et al,
2003; Franceschini et al., 2000; Laraki et al., 1999). The
aim of this study is to evaluate and develop a screening
method for MBL-producing P. aeruginosa by using DPA.

The strains used in this study included 13 MBL-producing
clinical isolates of P aeruginosa. Known VIM-1- and
VIM-2-producing clinical isolate (P. aeruginosa VR-143/97
and SAP-1, respectively) were kindly provided by Rossolini
et al. (Lauretti et al., 1999; Rossolini et al,, 2000). Ten
nonduplicated MBL-producing clinical isolates (Kimura
et al.,, 2005) carried the gene encoding IMP-1-type
MBL, and 1 isolate carried a VIM-2-type MBL. Seven
MBL-nonproducing P. aeruginosa clinical isolates were also
used in this study (Kimura et al., 2005). P. aeruginosa strain
ATCC 27853 was used as the reference strain. Bacterial
strains were evaluated by antimicrobial susceptibility testing
using the Clinical Laboratory Standards Institute (CLSI)
broth microdilution method with cation—adjusted Mueller-
Hinton (MH) broth (Difco, Detroit, MI) against several
agents in the presence (200 pg/ml) or absence of DPA
(Sigma-Aldrich, St. Louis, MO). Reference antibiotic
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Table |
Measurement of hydrolysis of antibiotics B-lactams by DPA and 2-MPA

Antibiotics Hydrolyzing rate (x 10™® mol/L per min)
2-MPA DPA
Ampicillin nd nd
Ceftazidime nd nd
Aztreonam nd nd
Imipenem 5.12 nd
Meropenem 5.09 nd

nd = not detected.

powders were obtained from their manufacturers: ceftazidime
(Sanwa Kagaku, Tokyo, Japan), imipenem (Banyu Phar-
maceutical, Tokyo, Japan), meropenem (Sumitomo Pharma-
ceutical, Tokyo, Japan), and aztreonam (Eizai, Tokyo,
Japan). These antibiotics were used at concentrations of
0.06-128 pg/mL. In disk diffusion testing, we prepared the
MH agar medium with DPA and then autoclaved it for
20 min at 121 °C. A colony of each bacterial strain was
suspended and diluted with saline to 10° CFU/mL and then
spread on simple MH agar plate and on one containing DPA
(200 pg/mlL) with a cotton swab. The Kirby—Bauer disks
(Eiken, Tokyo, Japan) containing ceftazidime (30 pg/disk),
imipenem (10 pg/disk), or aztreonam (30 pg/disk) were
placed on the plate and incubated at 37 °C. Hydrolysis of
{3-lactam antibiotics was detected by monitoring the variation
in the absorbance of the p-lactam solution in 50 mmol/L
phosphate buffer (pH 7.0). Hydrolysis rates were measured
with Shimadzu UV-2550 spectrophotometer (Shimadzu,
Kyoto, Japan), connected to a personal computer. Measure-
ment of hydrolysis of B-lactam antibiotics was reported by
Kimura et al. (2004).

Firstly, to address whether the compound DPA possesses
growth inhibitory effect against P. aeruginosa, we demon-
strated that P aeruginosa strain ATCC 27853 was grown in
the MH medium containing various concentrations (from
3.9 to 1000 pg/mL) of DPA. The growth of the strain was
not significantly inhibited by less than 400 pg/mL DPA
(data not shown). Therefore, 200 pg/mL of DPA was used
for the following experiments. Next, we demonstrated
whether the PB-lactam antibiotics were stable against
chelators. The hydrolysis of B-lactam antibiotics by DPA
or 2-MPA (Wako Pure Chemical Industries, Osaka, Japan)
was monitored by a spectrophotometer (Table 1). 2-MPA

Table 2

hydrolyzed imipenem and meropenem, but did not hydro-
lyze ampicillin, ceftazidime, and aztreonam. However, DPA
did not hydrolyze all of the selected antibiotics. Thus,
B-lactam antibiotics are not affected by DPA, suggesting
DPA may be a suitable inhibitor to detect MBL-producing
P aeruginosa. We next demonstrated that MBL-producing
clinical isolates of P. aeruginosa were detected by using
microdilution method with DPA.. MBL-producing strains
showed a decrease of >8-fold dilution of R-lactam MICs
for ceftazidime (100%), imipenem (92%), and meropenem
(100%) in the presence of DPA (200 pg/mL) when
compared with that of the B-lactam alone, whereas no
reduction or 2 times reduction of aztreonam MIC was
observed in the presence or absence of DPA (Table 2). In
MBL-nonproducing P. aeruginosa clinical isolate, no
reduction or 2-fold reduction of these antibiotic MICs were
observed except for 1 case which showed 4-fold reduction
of meropenem MIC in the presence of DPA (Table 3). These
results clearly show that DPA is a suitable compound for
detection of the MBL-producing P. aeruginosa clinical
isolate by using microdilution method. Next, we developed
a simple screening test for detection of MBL producers in
clinical microbiology laboratory: a disk susceptibility test
carried out using a disk containing ceftazidime, imipenem,
or azfreonam on agar plate containing DPA (200 pg/mL).
Fig. 1 shows that expansion of growth inhibitory zone of
P aeruginosa carrying blapgp., was clearly observed by
using ceftazidime or imipenem disk, whereas no influence
was observed with aztreonam disk. Among a total of
20 clinical isolates screened by DPA, all MBL-producing
P aeruginosa were clearly detected by this method (data not
shown). Interestingly, false-positive or false-negative strains
by the broth microdilution method previously mentioned
were also significantly detected by this method. This result
indicates that this could be a suitable simple method to
detect MBL-producing P. aeruginosa clinical isolates.

In some biochemical studies, it has been reported that
purified MBL such as IMP-1, VIM-1, and SPM-1 appeared
to be more susceptible to DPA than EDTA or other chelators
(Murphy et al., 2003; Franceschini et al., 2000; Laraki et al.,
1999). In particular, the detailed mechanism of inactivation
of IMP-1 by each chelator has been well studied by Siemann
et al. (2002). They reported that 6 types of chelators

Evaluation of DPA against MBL-producing clinical isolates by broth microdilution testing in the presence or absence of DPA

Antimicrobial MIC (ug/mL) for

1630 1631 1672 1673 1682 1683 1708 1709 1710 1721 1732 1733 1757
Imipenem 128 128 >128 8 64 64 64 64 >128 64 64 >128 64
Imipenem + DPA? 8 8 1 0.13 1 4 2 2 4 16 4 8 8
Meropenem 128 64 >128 64 >128 >128 >128 >128 >128 >128 >128 > 128 >128
Meropenem + DPA 4 4 4 0.5 4 16 4 4 16 16 8 4 4
Ceftazidime >128 32 64 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128
Ceftazidime + DPA 4 4 2 1 4 8 4 4 8 8 4 4 4
Aztreonam 16 16 32 8 32 64 32 32 64 32 128 32 16
Aztreonam + DPA 8 8 32 8 16 64 32 32 64 16 128 16 16

* Evaluated by CLSI broth microdilution method against several agents in the presence of DPA (200 pg/mL).
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