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binding or to the catalytic site responsible for strand-
transfer activity.

To understand in greater detail the substituents respon-
sible for strand-transfer inhibitory activity, we analysed 23
carbazole derivatives, and classified them into three cate-
gories according to their levels of inhibition (Table 1). Six
compounds were classified as the high-inhibition group,
which demonstrated IC,; of less than 10 puM, 12
compounds were classified as the intermediate group,
which demonstrated IC,; of greater than 10 pM and less
than 100 uM, and five compounds were classified as the
non-inhibition group, in which we did not observe signifi-
cant inhibition even at the highest concentration tested
(100 pM).

Comparing the compounds between and within these
three categories, we recognized three factors responsible for
strand-transfer inhibition. The first and most important
factor is the incidence of a 2-dimethylaminoethyl group at
position R2 (Figure 1A).

CA-8, which possesses a 2-dimethylaminoethyl group
at position R2, demonstrated high inhibitory activity (IC,:
6.61 =4.17 uM), but CA-19 (IC,: >100 pM), which
possesses a phenyl ring structure at the same R2 position,
did not demonstrate inhibitory activity. Thus, it is clear that
the incidence of a 2-dimethylaminoethyl group, which has
a basic property, is critical for strand-transfer inhibition
activity. Indeed, we recognized that all compounds in the
“high-inhibitory group” and “intermediate-inhibitory
group” had this basic substituent at position R2 (Table 1A,
1B, Figure 2). In contrast, three of five compounds in the
“non-inhibitory group” had the phenyl ring structure at R2
position. It is thought that these compounds might bind to
the acidic region on the IN molecule and compete with the
target dsDNA.

The second factor is the incidence of a methyl (Me)
group at position R5, R6 or R7. We recognized that
compounds in the high inhibitory group had at least one
Me group at the RS, R6 or R7 position (Table 1A, Figure
2). Comparing CA-1 (IC;: 7.94 4,12 pM), CA-4 (IC,;:
8.99 £3.39 uM), and CA-12 (IC;: 5.93 £3.53 pM) with
CA-15 (IC,;: 27.28 £9.10 pM), it is clear that the inci-
dence of an Me group within the R5 to R7 positions was
an important factor for enhanced inhibitory activity. It
seems that the position of the substituent may not be crit-
ical between R5 and R6, as we did not see significant
differences between CA-1 (IC: 7.94 £4.12 yM) and
CA-12 (IC,; 5.93 £3.53 uM), and also between CA-8
(IC,y: 6.61 4,17 pM) and CA-9 (IC,;: 4.42 =1.87 pM).

According to the IC,, levels of CA~5 (>100 pM), CA-6
(>100 pM) and CA-11 (>100 uM), it appears that bulky
substituents at the R5 position have a negative effect on
inhibition (Table 1C, Figure 2). Furthermore, the inhibi-
tion potential of the three compounds CA-1 (IC,;:
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7.94 £+4.12 M), CA-16 (IC,: 20.51 #15.11 uM) and
CA-17 (IC,;: 50.64 £19.02 uM) depended on the
molecular size of their RS substituents. It is probable that
the R5 substituents of these compounds were too large and
that they interfered with surrounding molecules forming
the binding site (Table 14, 1B, Figure 2). These data indi-
cate that the binding site of carbazole might have a space
limitation, and thus the size and shape of the molecules
may be important factors for inhibitor activity.

The third factor is the substituent at position R9.
Comparing CA-20 (IC,: >100 pM), CA-21 (IC;:
25.01£10.60 pM) and CA-22 (IC,: 16.92 £7.32 pM),
these three compounds were identical, with the exception
of the substituent at position R9 (Table 1B, 1C, Figure 2).
CA-21 and CA-22 have hydroxyl residue and a methoxy
group at position R, respectively. We noticed a significant
difference in inhibitory activity between CA-20 and
CA-21, and between CA-20 and CA-22, suggesting the
possibility that both the hydroxyl group and the methoxy
group at R9 formed hydrogen bonds with the amino acid
molecules forming the binding sites, as these two
substituents have the potential to be hydrogen bond accep-
tors. It appears that hydroxyl and methoxy groups have
similar effects on strand-transfer inhibitory activities. In
addition to the above three factors, we found that molecular
interaction between R8 and R9 substituents, and their
arrangement, are also important determinants for efficient
inhibitory activity. CA-3, with two methoxy groups at R8
and RY, appears to have a bulky arrangement of the two
side chains, and demonstrated an IC,, of 72.69 +5.44 uM,
whereas CA-14 and CA-18, which were expected to have
horizontal arrangements, demonstrated lower IC, values
of 17.37 x1.79 pM and 10.68 £8.88 uM, respectively
(Table 1B, Figure 2).

To summarize these structural elements, and to under-
stand the common structure of molecules that demon-
strated strand-transfer inhibitory activity, we superposed
inhibitor structures having significant strand-transfer inhi-
bition (CA-0, CA-1, CA-4, CA-8, CA-9, CA-12 and
CA-13) (Figure 5A), and the structures of compounds with
no inhibition (CA-5, CA-6, CA-10, CA-19 and CA-20)
(Figure 5B). In comparing these two overlapped figures, we
found that the compounds with inhibitory activity share a
largely identical structure and similar molecular size. In
contrast, the non-inhibitory compounds had larger and
more uneven-shaped side chains. Overall, the superposed
structures indicate that the molecules should be planar and
have basic diethylaminoethyl groups to demonstrate
strand-transfer inhibitory activity.

In conclusion, we have identified a2 small molecular
weight compound with a carbazole scaffold, which can be
the lead compound for developing novel IN inhibitors.
Furthermore, analysing the IN inhibitory mechanisms of
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Figure 5. A structural comparison between high/intermediate inhibitory compounds and non-inhibitory

compounds

Superposed structures of (A) five non-inhibitory compounds, CA-5, 6, 10, 19 and 20, and (B) seven inhibitory compounds, CA-0, 1, 4, 8,9, 12
and 13, are demonstrated in stereo-view images. In both figures, residue numbers are indicated beside the structures. Red, dark blue and
light blue indicate oxygen, nitrogen and hydrogen molecules, respectively. Green indicates chlorine or fluorine molecules. SYBYL software
Version 6.9.1 running on an SGI Fuel workstation was used to construct the figures.

carbazole derivatives may yield more detailed information
regarding HIV-1 IN structure and function.
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