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TV 5 (Traggiai E, et al, Science. 2004;304:104),,
IL-4 25T cell tropic 72 HIV-1 $#§%5H % up-regurate
452 L+ (Li YG, et al. Microbiol Immunol.
2005:49:155) 6, ZhbEEARDLEDL T &
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OB, Bibe b TACI 7= FEJ o— i
(11H3) Z¥shn L. 8AT HifhihE M B AT T
T AMEIRERE Lz, 5T, 8AT HilF
Iz & A NP-xB2 DiEMEAL & 11H3 iz & 2 ¥l
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WD, FT- FACS I X AHIEN IFNy ORIER &
ELISPOT 7 vt A UANDFEHIEIZ L D HIV K&
FHIR M S0 DT W T B RRETT D,
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Neutralization of HIV -1 with plasma from immunized hu-SCID mice.
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Cross-Linking Cell Surface Chemokine
Receptors Leads to Isolation, Activation,
and Differentiation of Monocytes
into Potent DCs
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Monocytes express on the cell surface several kinds of chemo-
kine receptors that facilitate chemotaxis followed by differ-
entiation in target tissues. In the present study, we found that a
large number of monocytes from peripheral blood mononuclear
cells (PBMCs) tightly adhered to plastic cell culiure plates
precoated with a monoclonal antibody (mAb, clone T312)
speclfic for human CCR5 but not an isotype control after
overnight incubation. Soluble T312 did not induce such
adhesion, indicating that cross-linking of CCRS5 is required for
the enhanced adhesion of monocytes. The adhesion was
blocked by a PI3-K inhibitor and an anti-CD18 blocking mAb.
Following the cross-linking of CCRS5, monocytes synthesized
high levels of M-CSF, RANTES, MiIP-1a, and MIP-1p assoclated
with a readily detectable downmodulation of CD14, CD4, CCRS,
and CXCR4 expression. The T312-enriched monocyles differ-
entiated into dendritic cells (DCs) in the presence of interleukin-
4 alone. Afier maturation with p-interferon, the T312-induced
DCs stimulated proliferation of allogeneic naive CD4™ T celis
accompanied by the synthesis of high levels of y-interferon in
vitro. Furthermore, the T312-induced DCs were capable of
stimulating antigen-specific human T- and B-celi immune
responses in our hu-PBL-SCID mouse system. Finally, screen-
ing of other anti-chemokine receptor mAbs showed that select
clones of mAbs against CXCR4 and CCR3 were also capable of
facilitating enrichment of monocytes similar to T312. These
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resulis show that cross-linking of chemokine receptors on
monocytes by appropriate mAbs leads to activation and differ-
entiation of monocytes and that the method described herein
provides an alternate simple strategy for adherence-based
igolation of monocytes and generation of functional DCs. Exp
Biol Med 231:000-000, 2006

Key words: dendritic cell; monocyte; chemokine receptor; human
immunodeficiency virus (HIV)

Intreduction

Peripheral blood monocytes are derived from bone
marrow progenitor cells and are recruited to tissues, where
they undergo differentiation into macrophages or myeloid
dendritic cells (DCs) (1-4). Recruitment of monocytes from
the recirculating pool into normal or inflamed tissues
involves a series of cascading events, which include the
generation of chemokine gradients and the expression of
cell adhesion molecules and their cognate ligands (5).
Ligation of the chemokine receptors activates B1- and B2-
integrins (6), which in turn mediate adhesion of monocytes
within tissues, where they differentiate into DCs. DCs are
potent antigen-presenting cells (APCs) and have a central
role in the activation and function of both innate and
adaptive immune responses against infectious microorgan-
isms (7). Dysfunction and potential loss of DCs have been
associated with decreased antigen-specific T-cell responses
and synthesis of lower levels of virus-suppressive Type-1
interferon (8-11).

Results from a number of studies have documented the
enhanced potential of DCs to process and present antigen,
and thus, DCs have been regarded as natural cellular
“adjuvants.” This functional attribute has led to clinical
trials of DC-based immunotherapy not only in a number of
animal tumor models and human malignancies (12) but also
against a number of infectious disease agents. This view is
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highlighted by the recent finding that immunization of
human immunodeficiency virus Type 1 (HIV-1)-infected
patients with autologous DCs sensitized with chemically
inactivated autologous HIV-1 led to a marked sustained
decrease in viral load (13, 14). Essentially similar data, in
terms of decreasing viral loads, were obtained using the
simian immunodeficiency virus (SIV)-infected nonhuman
primate model of human AIDS following immunization
with autologous SIV-pulsed DCs (15); the results of this
study were reasoned to be due to enhancement of both T-
cell and neutralizing antibody responses. This finding was
further supported using the hu-PBL-SCID model, in which
human peripheral blood mononuclear cell (PBMC)-en-
grafted mice, following immunization with inactivated HIV-
1-pulsed human DCs, were shown to generate high levels of
HIV-1-specific T-cell and B-cell immune responses suffi-
cient to protect these animals against challenge with virulent
HIV-1 isolates (16, 17).

Human DCs for such studies are generally derived from
culturing enriched populations of monocytes in vitro in
media supplemented with varying combinations of cyto-
kines, depending on the nature of the studies to be
performed. Evidence has been accumulating in support of
the notion that there exist subsets of DCs that differ in their
expression of cell surface markers, in vivo trafficking
patterns, and cytokines synthesized, which influences the
quality of the T-cell response that is induced by such DCs
(18). Thus, in vitro culture of monocytes with recombinant
human GM-CSF and interleukin-4 (IL-4) leads to their
differentiation into myeloid DCs, and in vitro culture of
those cultured in media containing GM-CSF and IL-3 leads
to their differentiation into lymphoid DCs (19). There also
appears to be evidence that a common precursor progenitor
cell exists that can give rise to either myeloid or
plasmacytoid DC subsequent to Flt-3 ligation (20). In the
in vitro culture of the monocytes, GM-CSF functions as a
survival and differentiation factor, whereas IL-4 induces
differentiation of DCs by blocking their differentiation into
the macrophage lineage (21, 22).

To study the biology of these DCs and to use them for
in vivo studies, a large number of monocytes need to be
isolated from the peripheral blood. This is accomplished
using a variety of techniques, such as eluiriation centrifu-
gation (23), use of antibody-conjugated immunobeads (21,
24), and the more simple method of adherence of these cells
to plastic (5, 24). Although the purity of the preparations
using such procedures varies, it is clear that the former two
techniques are expensive, requiring unique instrumentation
and/or clinically trained staff, and labor intensive. Although
the adherence-to-plastic method is simple, the yield of
monocytes in such preparations varies among donors, and
the results are difficult to reproduce.

We have previously reported that cross-linking of
CXCR4 by a monoclonal antibody (mAb) that recognizes
the extracellular loop 3 (ECL-3) region of CXCR4 induces
homologous adhesion of T cells and enhances HIV-1

infection (25). Since fresh monocytes express a variety of
chemokine receptors on their cell surface (26), we
hypothesized that cross-linking of these chemokine recep-
tors by an immobilized mAb might induce monocyte
adhesion onto culture plates, providing a simple alternative
procedure for the enrichment of monocytes from PBMCs.
Indeed, herein we present data that show that cross-
linking the chemokine receptors CCRS5, CXCR4, and CCR3
on monocytes by appropriate mAbs enhances adhesion of
monocytes to plastic plates and that these adherent
monocytes can be induced to differentiate along the
macrophage or myeloid DC lineages with the use of distinct
recombinant cytokines. This procedure will provide a
relatively efficient and a more practical alternative for the
isolation and study of monocytes and DC lineages.

Materials and Methods

Animals. SCID mice lacking functional T, B, and
natural killer (NK) cells and BALB/c—-ragZ“’“ common
gamma“/‘ mice (27) were used in the present study. These
mice were kept in the specific-pathogen-free animal facility
of the Laboratory Animal Center at the University of the
Ryukyus. The protocols for the care and use of the hu-PBL-
SCID mice were approved by the Committee on Animal
Research of the University of the Ryukyus before initiation
of the present study.

Reagents. RPMI-1640 medium was purchased from
Sigma Chemical Co. (St. Louis, MO) and supplemented
with 5% heat-inactivated fetal calf serum (FCS) (Sigma
Chemical) (referred to as RPMI medium). Serum-free
medium, AIM-V, was purchased from Life Technology
(NY). Recombinant (r) human GM-CSF and IL-4 were
produced in 293T cells transfected with pPCMhGM-CSF and
pCMhIL-4, respectively (RIKEN Gene Bank, Ibaraki,
Japan), using the calcium phosphate method. The total
protein and cytokine concentrations of the pooled culture
supernatants were determined by enzyme-linked immuno-
sorbent assay (ELISA) and a functional assay, as described
previously (16). rIL-2 was provided by the U.S. National
Institutes of Health (NIH) AIDS Research and Reference
Reagent Program. rIFN-f was purchased from Torey
(Tokyo, Japan). 1TFN-y and tM-CSF were purchased from
Peprotec (London, UK). The PI3-K inhibitor 1.Y294.002
LPS from Escherichia coli, OVA, keyhole limpet hemo-
cyanin (KLH), and bovine serum albumin (BSA, fraction V)
were all purchased from Sigma Chemical. FITC-labeled E.
coli, FITC-fibrinogen, FITC-gelatin, and FITC-collagen
were purchased from Molecular Probes (Eugene, OR).
Monocyte negative isolation kits were purchased from
Dynal (Oslo, Norway). Cell proliferation kits were pur-
chased from Roche Diagnostics (Mannheim, Germany).
ELISA kits for human IL-18, IL-4, 1L-6, IL-10, IL-12 p70,
tumor necrosis factor (TNF)-a, M-CSF, MIP-1a, MIP-18,
and RANTES were purchased from Biosource (Camarillo,
CA). ELISA kits for y-interferon (IFN—y) were purchased
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from R&D Systems, Inc. (Minneapolis, MN). Naive CD4"
T-cell isolation kit was purchased from MACS (Gladbach,
Germany).

The mAbs produced in our laboratory included two rat
anti-human CCRS5 N-terminus clones (clone T312 immu-
noglobulin [Ig]G1, clone T227 IgG2b); three rat anti-human
CXCR4 (clone A145 IgG1, clone A120 IgG2b, clone ABO
IgG1) (25); rat anti-HTLV-I (clone LAT-27, IgG2b) (28);
rat anti-HCV (clone Mo-8, IgG2b) (29); rat anti-human
0X40 (clone W4-54, IgG2b, Tanaka et al., unpublished
data), and mouse anti-human OX40L (clone 5A8, IgG1)
(30). The other mAbs used included mouse IgG anti-human
CD4, SIM-2, and SIM-4 (obtained from the U.S. NIH AIDS
Research and Reference Reagent Program), the clones
OKT-4, OKT-8, and 60-bca anti-CD14 (obtained from
ATCC, Rockville, MD). These mAbs were purified from
SCID mouse ascites fluids by Superdex G-200 gel filtration
(Amersham Bioscience, Uppsala, Sweden). Commercially
available mAbs used were mouse IgG anti-human CD4,
CDl1lc, CD80, CD83, CD86, HLA-DR (Coulter Inc.,
Hialeah, FL), and mouse IgG anti-human CD11a, CD11b,
CD14, CD18, CD29, CD51, and CD61 (BD Pharmingen,
San Diego, CA). Additional anti-human chemokine receptor
mAbs, such as anti-CCR1 (mouse IgG2b, Cat #MAB145),
CCR2 (mouse IgG2b, Cat #MAB150), CCR3 (rat 1gG2a,
Cat #MAB155), CCR5 (mouse IgG2b, Cat #MAB180), and
CCR8 (rat IgG2b, Cat #MAB1429), were purchased from
R&D Systems, Inc. (Minneapolis, MN); and the mAbs
against CXCR4 (clone 12GS5, mouse IgG2a) and CCRS5
(clone 2D7, mouse IgG2a) were purchased from BD
Pharmingen.

Cultivation of Monocytes. PBMCs were isolated
from heparinized (5 U/ml) blood of normal healthy donors
by a standard density gradient centrifugation at 400 g using
lymphocyte separation medium (Sigma Chemical) for 15
mins at room temperature. The cells at the interface were
collected and washed three times in cold phosphate-buffered
saline (PBS) containing 0.1% BSA (BSA-PBS). PBMCs
were resuspended in RPMI medium or serum-free AIM-V
medium at 5 X 10° cells/ml. Then, 1 ml of the cell
suspension was dispensed into individual wells of 12-well
plates (BD Pharmingen), which were precoated with various
mAbs (5 pg/ml) for 1 hr at 37°C. PBMCs were allowed to
adhere 2 hrs or overnight at 37°C in a 5% CO, humidified
incubator. Nonadherent cells were removed by gentle
washing three times in BSA-PBS. The remaining adherent
cells were then cultured in RPMI medium. For some
experiments, monocytes were purified using a monocyte
negative isolation kit and were used at 1-2 X 10° cells/ml.
For the generation of macrophages, adherent or immuno-
magnetic bead-enriched CD14™" monocytes were cultured in
the presence of 20 ng/ml M-CSF for 6 days in a 5% CO,
humidified incubator. For the generation of DCs, the media
was supplemented with either GM-CSF (500 ng/ml) and IL-
4 (200 ng/ml) or IL-4 (25 ng/ml) alone. Immature DCs were
obtained after 5-6 days of culture. For maturation, the

immature DCs were cultured in the presence of human B-
interferon (IFN-B) (1000 U/ml) for an additional day. For
sensitization with antigens, the immature DCs at Day 6 were
cultured in the presence of either 100 pg/ml OVA or KLH
for 1 day and then matured with IFN-B for an additional
day. Viable cell number was assessed on an aliquot of such
cells using staining with 0.1% eosin-Y.

Flow Cytometry. Phagocytosis and cell surface
markers were determined using FACS Calibur and Cell
Quest software (BD Pharmingen). Cell samples were Fc-
blocked by incubation in media containing 2 mg/mli of
human IgG in PBS containing 0.1% NaNz and 2% FCS
(FACS buffer) on ice for 15 mins and were then stained with
appropriate fluorescent dye-conjugated reagents on ice for
30 mins, according to the manufacturer’s instructions. After
washing with FACS buffer, cells were fixed in 1% PFA-
containing FACS buffer and analyzed. For quantitation of
phagocytosis, sample cells (1 X 10% in 0.2 ml of RPMI
medium were cultured in the presence of FITC-labeled E.
coli at a cell to bacterium ratio of 1:10 to 1:100 for 1 hr at
37°C in a 5% CO, humidified incubator. After incubation,
these cells were washed once in FACS buffer, fixed with 1%
PFA, and then analyzed.

There were significant individual variations in the
percentage of CCR5-positive cells in PBMCs. The percen-
tages of T312-posiiive cells were as follows: 6%—-14% of
CD14" monocytes, 11%-43% of CD3" T cells, 6%~15% of
CD3" CD4* T cells, and 5%-14% of CD20" B cells.
Overnight incubation of PBMCs in medium alone led to a
marked increase in the frequency of monocytes that
expressed CCR5 (up to 70%), as detected using the T312
mAb. However, there was no detectable change of CCRS5
expression in the other cell subsets (data not shown).

DC Functional Assays. Several assays were em-
ployed to determine whether the cell population that was
being cultured belonged to the DC lineage. This included
quantitation of the levels of IL-12 p70 and IL-10 produced
in the culture supernatants of the potential DCs, as
determined by ELISA; ability of the cells to induce allo-
proliferation; and a unique in vivo assay. For the assessment
of allo-proliferative potential, the mature or immature DCs
to be tested were cultured at 1 X 10° cells/ml in RPMI
medium in the presence of LPS (1 pg/ml) and IFN-y (100
ng/ml) for 24 hrs. The ability to induce allogeneic
stimulation was determined by co-culturing naive CD4" T
cells (1 X 10%) with these potential DCs (0.5 X 10% in
triplicate in a 96-well plate in a final volume of 0.2 ml in
RPMI medium containing 20 U/ml IL-2 for 7 days. The
level of proliferation of the CD4™ T cells was assessed by
the bromodeoxyuridine (BrdU)-incorporation ELISA meth-
od (31).

The in vivo function of DCs was determined using the
hu-PBL-SCID mouse system, as previously described (16).
Briefly, a SCID mouse received antigen-pulsed mature DCs
(35X 10° cells) with autologous fresh PBMCs (3 X 105 cells)
in a final volume of 0.1 ml in RPMI medium injected



