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leukemia cell line UT-7/GM

Wataru Takahashi,! Ko Sasaki,’ Norio Komatsu? and Kinuko Mitani'?

Department of Hematology, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293; and 2Division of
Hematology, Yamanashi University, 1110 Shimokatou, Tamaho, Nakakoma, Yamanashi 409-3898, Japan

(Received March 2, 2005/Accepted March 24, 2005/0nline publication June 15, 2005)

TEL/ETV6 accelerates erythroid differentiation in the murine
erythroleukemia cell line. To darify the effects of TEL on
megakaryocytic maturation as well as erythroid differentiation, we
chose the human leukemia cell line UT-7/GM that differentiates into
the erythroid and megakaryocytic lineages by treatment with
erythropoietin  and  thrombopoietin, respectively.  Upon
erythropoietin exposure, overexpressed TEL stimulated hemoglobin
synthesis and accumulation of the erythroid differentiation-specific
transcripts such as y-globin, 8-aminolevuiinic acid synthase-
erythroid, and erythropoietin receptor. Moreover, the glycophorin
A(+)/glycoprotein lib(-) fraction appeared more rapidly in the TEL-
overexpressing cells. Interestingly, overexpression of TEL was
associated with lower levels of the megakaryocytic maturation-
specific glycoprotein lib and platelet factor 4 transcripts under the
treatment with thrombopoietin. Consistently, the glycophorin A(-)/
glycoprotein lib(+) fraction increased more slowly in the TEL-
overexpressing cells. Finally, expression of endogenous TEL proteins
in UT-7/GM cells was down-regulated following erythropoietin and
thrombopoietin exposure. All these data suggest that TEL may
decide the fate of human erythrocyte/megakaryocyte common
progenitors to differentiate towards the erythroid lineage and
against the megakaryocytic lineage. (Cancer Sci 2005; 96: 340-348)

TEL (also known as ETV6) is a member of the E26
transformation-specific (ETS) family of transcription
factors.® The highly conserved ETS domain is located at the C-
terminal region, while a distinct domain with weak homology to
the well-described helix-loop-helix (HLH) domain (also referred
to as the pointed domain) is located at the N-terminal region. The
former serves for DNA binding to the ETS-binding consensus
site (EBS) (GGAA/T) and the laiter for homodimerization and
heterodimerization with other ETS family members.*? Through
interacting with relevant corepressors mSin3A, N-CoR and
SMRT, and histone deacetylase-3,*” TEL mediates transcriptional
repression on its target genes such as FLI-I S inhibitor of
differentiation/DNA binding-1 (Id-1),® stromelysin-1© and Bcl-
X, Transcriptional activities of TEL are regulated through
phosphorylation with mitogen-activated protein kinases® and
small ubiquitin-like modifier conjugation.!!"

The TEL gene that is mapped to 12p13 is most frequently
rearranged and fused to various partner genes by chromosomal
translocations in human leukemias and myelodysplastic syn-
dromes. The pariners include receptor type or non-receptor type
tyrosine kinases and transcription factors. Providing tyrosine
kinases, such as platelet-derived growth factor receptor B
(PDGFRB) in (5;12) (q33;p13),"® ABLI in (9;12) (q34;p13),¥
ARG (ABL2) in 1(1;12) (q25;p13),"Y JAKZ in t(9;12) (p24;p13)™
and Syk in t(9;12) (q22;p13),!'® with the HLH domain, TEL
homodimerizes them and thereby stinulates their kinase activities.
Tn contrast, TEL gives corepressor-binding domains to a transcrip-
tion factor AML1 in t(12;21) (p13;q22) and interferes with its
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transcriptional abilities."” Therefore, dysregulation of the partner
proteins by TEL functional domains seems to cause leukemia in
patients with 12p13 translocations. Moreover, inactivation of the
TEL gene is speculated to be the second hit in t(12;21) (p13;q22)
type leukemia, because the wild-type-TEL allele is deleted in
the vast majority of the patients.’®! Thus, TEL appears to be a
tumor suppressor. Consistent with its roles as a putative tumor
suppressor, expression of TEL in Ras-transformed NIH3T3 cells
inhibits cell growth in liquid and soft agar cultures,® and in
serumn-starved NIH3T3 cells induces apoptosis.®

TEL is required for mouse development as its inactivation
by homologous recombination results in embryonic lethality at
E10.5-11.5.98 The knockout embryos show defects in yolk sac
angiogenesis and intraembryonic apoptosis of mesenchymal and
neural cells, while they present normal yolk sac hematopoiesis.
Analyzing chimeric mice with TEL(—/-) ES cells, an essential
role of TEL in establishing hematopoiesis of all lineages in
neonatal bone marrow has been uncovered, although TEL(—/-)
ES cells contributed to both primary and definitive fetal hemat-
opoiesis." As for lineage-specific roles in hematopoietic systems,
we have reported that TEL accelerates erythroid differentiation of
mouse erythroleukemia (MEL) cells induced by hexamethylene
bisacetamide (HMBA) or dimethylsulfoxide (DMS0).? Because
both erythroblasts and megakaryocytes arise from common
progenitors, this observation prompted us to search for TEL’s
roles in lineage commitment of the bi-potential progenitors.

A human tri-factor dependent hematopoietic cell line UT-7/
GM®@D is a subline of UT-7 that was originally established from
a patient of acute megakaryoblastic leukemia.® UT-7/GM cells
show absolute dependence for growth and survival on granulocyte-
macrophage colony-stimulating factor (GM-CSF), erythropoietin
(EPO) or thrombopoietin (TPO). They differentiate into the
erythroid or megakaryocytic lineage in the presence of EPO or
TPO, while they keep immature phenotypes and proliferate in
the presence of GM-CSFE.?" Thus, UT-7/GM cells are considered
to mimic erythrocyte/megakaryocyte common progenitors and
differentiate along two distinct lineages in relatively physiological
conditions. We employed this cell line and examined influences
of TEL overexpression on erythroid differentiation and
megakaryocytic maturation. As judged from higher percentages
of benzidine positivity in TEL-overexpressing cells under treat-
ment with EPO, TEL accelerated erythroid differentiation in
UT-7/GM cells similar as in MEL cells. The TEL-overexpressing
cells showed increased expression of the transcripts for y-globin,
S-aminolevulinic acid synthase-erythroid (ALAS-E) and EPO
receptor (EPO-R) during the erythroid differentiatior. Moreover,
accumulation of the glycophorin A(+)/glycoprotein (GP) 1Ib(-)
fraction was more prompt in these cells. Interestingly, expression
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levels of the transcripts for GPIIb and platelet factor 4 (PF 4) under
the treatment with TPO were lower in the TEL-overexpressing
cells. Consistent with this, accumulation of the glycophorin A(~)/
GPIIb(+) fraction was delayed and appearance of platelet
peroxidase (PPO)-positive cells was reduced in these cells.
Endogenous TEL proteins disappeared after 14 and 21 days upon
EPO and TPO exposure, respectively. We conclude that TEL
stimulates erythroid differentiation while opposing megakaryo-
cytic maturation in human hematopoietic system.

Materials and Methods

Cell culture. Parental UT-7/GM cells, the mock (M-1 and M-4)
and the TEL-overexpressing (T-5 and T-6) clones were maintained
in Isocove’s modified Dulbecco’s medium (IMDM; Gibco
Laboratories, Grand Island, NY) supplemented with 10% fetal
calf serum (FCS) and 1 ng/mL of recombinant human (rh) GM-
CSE. To physiologically induce erythroid or megakaryocytic
differentiation, these cells were cultured in IMDM supplemented
with 10% FCS, and 10 U/mL of thEPO or 100 ng/mL of thTPO.
Light microscopic examination was performed on Wright-Giemsa-
stained cytospin preparations. Erythroid differentiation was
evaluated by counting percentages of benzidine-positive cells.

Isolation of stable transfectants. The expression of plasmid
pPCXN2-FLAG-TEL was described in a previous study.?® To
establish stable transfectants, 1 x 107 of UT-7/GM cells were
electroporated with 20 pg of pCXN2-FLAG-TEL at 380 V and
975 UF using Gene Pulser (Bio-Rad, Hercules, CA). Transfected
cells were selected with 0.8 mg/mL of G418 (Sigma-Aldrich, St.
Louis, MO) and cloned by limiting dilution. Expression of FLAG
tagged-TEL proteins was confirmed by the western analysis
method using anti-FLAG antibody (Sigma-Aldrich).

Immunoprecipitation and western analysis. UT-7/GM cells were
lyzed on ice in lysis buffer composed of 20 mM Tris pH 8.0,
50 mM sodium fluoride (NaF), 2 mM ethylenediamine-N, N, N’, N'-
tetra-acetic acid (EDTA), 1% NP-40, 500 U/mL aprotinin, 1 mM
sodium orthovanadate (Na;VO,), and 1 mM phenylmethylsulfonyl
fluoride (PMSF). Immunoprecipitation and western analysis were
performed as described in a previous study,?® using anti-TEL
(N-19 for immunoprecipitation and H-214 for western analysis;
Santa Cruz Biotechnology, Santa Cruz, CA) or mouse anti-FLAG
monoclonal (Sigma-Aldrich) antibodies. The blots were visualized
by ProtoBlot AP system (Promega, Madison, WI).

Northern analysis. Total RNA was extracted from the mock
and the TEL-overexpressing cells using ISOGEN (Nippon Gene,
Tokyo, Japan) under the manufacturer’s instruction. Twenty ng
of each RNA sample was resolved by electrophoresis on agarose
formaldehyde gels, transferred to Hybond-N+ nylon membranes
(Amersham, Piscataway, NJI) in 20 x standard sodium citrate
(SSC) and hybridized to human ¢DNA fragments for ALAS-E,
EPO-R, y-globin, GPIIb and PF 4 that were labeled with [0,-*2P]
dCTP using the Megaprime DNA labeling system (Amersham).
Human glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
¢DNA probe was used as a control. After overnight incubation
at 42°C in the presence of 50% formamide, membranes were
washed with 0.1 x SSC containing 0.1% sodium dodecyl sulfate
(SDS) at 42°C and autoradiographed using Fujix BAS2500
Bio-image Analyzer (Fuji Photo Film, Tokyo, Japan). Relative
expression levels to the level at day 0 in each clone were
quantified.

Fluorescence activated cell sorter (FACS) analysis. The mock and
the TEL-overexpressing cells were incubated for 30 min at 4°C
with appropriately diluted fluorescein-labeled antiglycophorin A
and anti-GPIIb (CD41b) antibodies (Beckman Coulter, Fullerton,
CA). After washing, cells were analyzed using Becton Dickinson
FACS Calibur.

Electron microscopic analysis. Ultrastructural PPO activity was
detected by a conventional method.®
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Fig. 1. Establishment of UT-7/GM sublines overexpressing FLAG-
tagged TEL proteins. Clones T-5 and T-6 were obtained from UT-7/GM
cells that were transfected with pCXN2-FLAG-TEL and selected by G418
resistance. Clones M-1 and M-4 were established from UT-7/GM cells
that were transfected with the empty pCXN2 vector and selected by
G418 resistance. Expression of FLAG-tagged TEL proteins was confirmed
by western analysis with anti-FLAG antibody. An arrow indicates
overexpressed FLAG-TEL proteins.

Results

TEL accelerates erythroid differentiation upon EPO treatment in UT-
7/GM cells. Human leukemia UT-7/GM cells differentiate into
either erythroblasts or megakaryocytes upon cytokine exposure.
Thus, this cell line provides a useful tool to analyze the effects of
TEL on erythroid differentiation and megakaryocytic maturation
in human hematopoietic cells. We established UT-7/GM clones
stably overexpressing FLAG-tagged TEL by electroporating the
expression plasmid containing TEL ¢cDNA and selecting cells
with G418 resistance. Western analysis with anti-FLAG antibody
demonstrated that representative clones T-5 and T-6 expressed
TEL proteins at high levels (Fig. 1). Mock clones M-1 and M-4
were also isolated by introducing the empty expression plasmid.
Overexpression of TEL slightly retarded growth of the cells under
treatment with EPO or TPO, but did not influence proliferation
of the cells maintained in GM-CSF (data not shown).

We previously reported that TEL acts as an accelerator of
erythroid differentiation induced by chemical compounds such as
HMBA and DMSO in MEL cells.®® To confirm this effect of TEL
under a more physiological condition in human hematopoietic
cells, we treated the mock and the TEL-overexpressing clones
with EPO. We observed no morphological differences between
them, except a faint color difference in the cytoplasm. Figure 2
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Fig. 2. TEL accelerates hemoglobin synthesis induced by treatment with
erythropoietin (EPO) in the UT-7/GM clones. The mock (M-1 and M-4)
and TEL-overexpressing (T-5 and T-6) UT-7/GM clones were cultured in
the presence of EPO (10 U/mL). Hemoglobin synthesis was evaluated by
the proportions of benzidine-positive cells and their averages in three
independent experiments were indicated with standard deviations.
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Fig. 3. Erythroid lineage-specific gene transcription
in the UT-7/GM clones under treatment with
erythropoietin (EPO). The mock (M-1 and M-4) and
TEL-overexpressing (T-5 and T-6) UT-7/GM clones
cultured in the presence of EPO (10 U/mL) were
harvested at each time point indicated (days 0, 2,
4, 7). Total mRNA was exiracted and subjected to
northern analysis with y-globin (A), ALAS-E (B),
EPO-R (C) and GAPDH (D) probes.

indicates time courses of hemoglobin synthesis estimated by  of benzidine positivity in comparison with the mock clones.
proportions of benzidine-positive cells in these UT-7/GM  Eighty percent of the cells became positive for benzidine staining
clones. In the mock clones, proportions of benzidine-positive  after 10 days of culture and 90% after 14 days. We thus conclude
cells reached to 80% within two weeks. Interestingly, the TEL-  that TEL is also an accelerator for erythroid differentiation upon
overexpressing clones showed rapid onset and higher saturation  cytokine stimulation in human hematopoietic cells.
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Fig. 4. Erythroid and megakaryocytic lineages-specific surface antigen expression in the UT-7/GM clones under the treatment with erythropoietin
(EPO). The mock (M-1 and M-4) and TEL-overexpressing (T-5 and T-6) UT-7/GM clones cultured in the presence of EPO (10 U/mL) were harvested
at each time point indicated (days 0, 4, 7) and subjected to flow-cytometric analysis. GPIIb on X axis and glycophorin A on Y axis were

megakaryocyte- and erythrocyte-specific markers, respectively.

To further obtain evidence for erythroid differentiation
exaggerated by TEL in UT-7/GM cells, erythroid differentia-
tion-specific transcripts were analyzed using northern analysis.
As shown in Fig. 3, transcripts for y-globin, ALAS-E and EPO-
R increased upon EPO exposure in both cell types. However,
even before the treatment (at day 0), expression of these genes
appeared to be stimulated by overexpressed TEL proteins. This
tendency was maintained at all the time points examined. Next,
we performed flow cytometric analysis to assess expression levels
of erythrocyte-specific glycophorin A and megakaryocyte-
specific GPIIb in the cell surface during the course of erythroid
differentiation. Proportions of the glycophorin A(+)/GPIIb(-)
fractions were significantly higher at days 4 and 7 in the
TEL-overexpressing cells than in the mock cells (Fig. 4). The

Takahashi et al.

glycophorin A(-)/GPIIb(+) fractions disappeared more rapidly
in the TEL-overexpressing cells. These results collectively
confirm the TEL functions as an erythroid differentiation stimu-
lator and indicate the possibility that TEL might concomitantly
accelerate erythroid differentiation and repress megakaryocytic
maturation.

TEL inhibits megakaryocytic maturation upon TPO treatment in UT-
7/GM cells. To clarify the roles of TEL in megakaryocytic matu-
ration of human hematopoietic cells, we induced megakaryocytic
maturafion by treatment with TPO in the mock and the TEL-
overexpressing clones and first analyzed their morphological
changes. Differing from the mock clones, the TEL-overexpressing
clones hardly maturated into megakaryocyte-containing multi-
lobulated nuclei even after 28 days of culture with TPO
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Fig. 6. Erythroid and megakaryocytic lineage-specific surface antigen expression in the UT-7/GM clones under the treatment with thrombopoietin
(TPO). The mock (M-1 and M-4) and TEL-overexpressing (T-5 and T-6) UT-7/GM clones cultured in the presence of TPO (100 ng/mL) were harvested
at each time point indicated (days 0, 4, 7, 14) and subjected to flow-cytometric analysis. GPllb on X axis and glycophorin A on Y axis were

megakaryocyte- and erythrocyte-specific markers, respectively.

(Fig. 5a). Expression of megakaryocytic maturation-specific
genes such as GPIIb and PF 4 was also examined using northern
analysis. The TEL-overexpressing cells expressed these
transcripts at almost comparable levels to mock cells before the
treatment (Fig. 5b—d). As expected, they increased upon TPO
exposure in both cell types. It is interesting to note that levels of
these transcripts were lower in the TEL-overexpressing cells
than in the mock cells at least until day 14. We again examined
cell surface expression of glycophorin A and GPIIb during
the course of megakaryocytic maturation. Proportions of the
glycophorin A(-)/GPIIb(+) fractions were markedly lower until
day 14 in the TEL-overexpressing cells than in the mock cells,
whereas proportions of the glycophorin A(+)/GPIIb(-) fractions
higher (Fig. 6). Furthermore, fewer percentages of the cells
became positive for electron microscopic PPO in the TEL-
overexpressing clones after 14 days treatment with TPO (Fig. 7).
We hypothesize that TEL could prevent megakaryocytic
maturation and maintain expression of erythroid markers in
erythrocyte/megakaryocyte common progenitors even when
induced towards the megakaryocytic lineage.

Expression of endogenous TEL proteins decreases upon both EPO
and TPO treatments in UT-7/GM cells. Finally, we examined changes
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of endogenous TEL expression during both the courses of
erythroid and megakaryocytic differentiation in parental UT-7/
GM cells to further obtain findings for the physiological roles of
TEL. Under the presence of GM-CSF, endogenous TEL proteins
were detected at almost the same size as overexpressed TEL
proteins in the T-5 clone (lane 4, Fig. 8a) using western analysis
(lane 3) and self-immunoprecipitation assay (lane 1). When the
cells were induced to erythroid differentiation by treatment with
EPO, endogenous TEL proteins maintained steady expression
until 3 days of culture and then began to decline (Fig. 8b). At day
14, endogenous TEL proteins almost completely disappeared.
When induced to megakaryocytic maturation by treatment with
TPO, UT-7/GM cells kept constant expression of endogenous TEL
proteins until 14 days of culture and lost their expression at day 21
(Fig. 8c). These data suggest that endogenous TEL may work in the
early phase of differentiation to either lineage and accelerate erythroid
differentiation and actively repress megakaryocytic maturation.

Discussion

We demonstrated in the present study that TEL accelerates
erythroid differentiation induced by a physiological cyiokine
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Fig. 7. TEL represses ultrastructural platelet peroxidase (PPO) reactions
after 14 days of treatment with thrombopoietin (TPO) in the UT-7/GM
clones. The mock (M-1 and M-4) and TEL-overexpressing (T-5 and T-6)
UT-7/GM clones were cultured in the presence of TPO (100 ng/mi) for
14 days. PPO reactions were evaluated by electron microscopic analysis.
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EPO in human leukemia cell line UT-7/GM. Associated with
increased expression of erythroid differentiation-specific
transcripts y-giobin, ALAS-E and EPO-R, and a surface antigen
glycophorin A, the TEL-overexpressing cells accumulate hemo-
globin more rapidly than the mock cells. A megakaryocyte
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maturation-specific surface marker GPIIb disappears more
quickly during the course of erythroid differentiation in the
TEL-overexpressing cells. Importantly, morphological maturation
towards megakaryocyte with multilobulated nuclei and induction
of megakaryocyte maturation-specific transcripts GPIIb and PF
4 after TPO treatment are weaker when TEL is overexpressed.
Moreover, GPIlb accumulates and glycophorin A disappears more
slowly in the cell surface of these cells. Electron microscopic
PPO reaction is detected at fewer ratios. All these data collectively
suggest that TEL might drive erythroid differentiation and
suppress megakaryocytic maturation in erythrocyte/megakaryocyte
common progenitors. Consistently, endogenous TEL proteins
are expressed only in the early phase of either differentiation in
which TEL is expected to function, and thereafter disappear.
This paper is the first describing the unique role of TEL in the
megakaryocytic lineage.

Because TEL is a transcriptional regulator for EBS-containing
promoters, it is interesting to know whether the cis-regulatory
elements actually exist in the erythrocyte or megakaryocyte-
specific genes, the expression of which was found in this study
to be altered by overexpressed TEL. Numerous megakaryocyte-
specific genes contain EBS and GATA-1 binding sites in their
promoters.?? Of note, both ETS-1 and GATA-1 are reported
essential for positive regulation of GPIIb and PF 4 gene tran-
scription.®® Moreover, ETS-1 is demonstrated to directly bind
to their promoters by chromatin precipitation assays.®® Although
it remains undetermined whether TEL binds to EBS in the
promoters of GPIIb and PF 4 genes, overexpressed TEL could
repress it directly or indirectly. In the latter case, TEL may
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Fig. 8. Expression of endogenous TEL proteins in parental UT-7/GM cells. (a)
confirmed under the presence of GM-CSF (1 ng/mL) by western analysis (lane 3) or immunoprecipitation assay (lane 1) wi

21

5 10 28 (Day)

Expression of endogenous TEL proteins in parental UT-7/GM cells was
ith anti-TEL antibody.

Overexpressed FLAG-tagged TEL proteins in clone T-5 were shown in lane 4. An arrow indicates endogenous TEL or overexpressed FLAG-tagged
TEL proteins; (b,c) Parental UT-7/GM cells cultured in the presence of erythropoietin (10 U/mL); (b) or thrombopoietin (100 ng/mL); (c) were

harvested at each time point indicated (days 0, 1, 2, 3, 5, 10, 14, 21, 28). Cel

TEL antibody. Arrows indicate endogenous TEL proteins.
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dominantly suppress functions of other ETS family members
such as ETS-1 that show transactivation abilities on the promoters
through heterodimerizing with them by the HLH domain.
However, because EBS is not identified in the promoters of
the erythrocyte-specific genes examined in this study, we have
no ground to speculate that TEL could be involved in their
transcriptional regulation.

We hypothesize that TEL could trigger erythroid differentia-
tion and prevent megakaryocytic maturation through repressing
transcription of its target genes that play key roles in hematopoietic
differentiation. Among the known target genes of TEL, FLI-1 and
Id-1 are shown to have functions in erythrocyte/megakaryocyte
differentiation. The FLI-I gene was first isolated as a common
site for retroviral integration in Friend virus-induced erythro-
leukemia cells,*” and also encodes a member of the ETS family
of transcription factors. FLI-1 suppresses erythroid differentiation
partly through inhibiting transcription of the genes such as GATA-
1,%® Rb® and B-globin® that promote erythroid differentiation.
Moreover, FLI-1 knockout mice are embryonic lethal around
mid-gestation and display a marked reduction of megakaryocytes
in the fetal liver as well as a vascular developmental aberration, !
suggesting a critical role of FLI-1 in megakaryocytic maturation.
FLI-1 binds and transactivates the promoters from megakaryocyte-
specific genes including GPIX,*® GPIIb®? and TPO receptor.®
Therefore, FLI-1 appears to play opposite roles in erythroid
differentiation and megakaryocytic maturation. We analyzed
expression levels of FLI-1 proteins before and after induction of
erythroid differentiation or megakaryocytic maturation in the
mock and TEL-overexpressing UT-7/GM cells. However, over-
expressed TEL proteins did not affect the expression of FLI-1 in
UT-7/GM cells (data not shown). In spite of this, there still
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ferentiation. We observed that expression of Id-1 proteins slightly
increased after induction of erythroid differentiation or megakary-
ocytic maturation in UT-7/GM cells, but that overexpressed TEL
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to obtain evidence that FLI-I or Id-1 could be targets of TEL-
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Abstract

We have cloned a novel TEL/protein tyrosine phosphatase
receptor-type R (PTPRR) chimeric gene generated by
inv(12)(p13q13). PTPRR is the first protein tyrosine phospha-
tase identified as a fusion partner of TEL. The chimeric gene
fused exon 4 of the TEL gene with exon 7 of the PTPRR gene,
and produced 10 isoforms through alternative splicing. Two
isoforms that were expressed at the highest level in the
leukemic cells could have been translated into COOH-
terminally truncated TEL protein possessing the helix-loop-
helix domain (tTEL) and TEL/PTPRR chimeric protein linking
the helix-loop-helix domain of TEL to the catalytic domain of
PTPRR. These two mutant proteins exerted a dominant-
negative effect over transcriptional repression mediated by
wild-type TEL, although they themselves did not show any
franscriptional activity. Heterodimerization with wild-type
TEL might be an underlying mechanism in this effect. TEL/
PTPRR did not exhibit any tyrosine phosphatase activity.
Importantly, overexpression of TEL/PTPRR in granulocyte
macrophage colony-stimulating factor-dependent UT7/GM
cells resulted in their factor-independent proliferation,
whereas overexpression of tTEL did not. After cytokine
depletion, phosphorylated signal transducers and activators
of transcription 3 (STAT3) significantly declined in mock cells,
but remained in both tTEL- and TEL/PTPRR-overexpressing
cells. Loss of tumor suppressive function of wild-type TEL and
maintenance of STAT3-mediated signal could at least partly
coniribute to the leukemogenesis caused by inv(12)(p13q13).
(Cancer Res 2005; 65(15): 6612-21)

Introduction

The 12p13 translocations are one of the most commonly
observed chromosomal abnormalities in human leukemia and
myelodysplastic syndrome and fuse the TEL gene on 12pl3 with
various partner genes. The TEL gene was originally cloned as a
gene that was rearranged by t(5;12)(g33;p13) in chronic myelomo-
nocytic leukemia, and encodes a member of the ETS family
transcription factors (1). TEL shares with other ETS proteins an
evolutionarily conserved ETS domain at the COOH terminus that is
responsible for DNA binding to the ETS-binding consensus site
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(EBS; ref. 2). TEL also contains an NH,-terminal domain that is
referred to as the helix-loop-helix or pointed domain. The helix-
loop-helix domain in TEL has the unique property of inducing its
stable homodimerization or heterodimerization with other ETS
family members (3-6). Associating with the relevant corepressors
mSin3A and N-CoR as well as histone deacetylase-3 (7), TEL works
as a transcriptional repressor. Known target genes of TEL are FLI-1
(8), 1d1 (9), stromelysin-1 (10), and Bcl-X; (11).

Gene-engineered mice have highlighted critical roles of this
transcription factor in the embryonic development and hemato-
poietic regulation. The ablation of the TEL gene by homologous
recombination causes death in uteri between E10.5 and E11.5 (12).
These knock-out embryos show defect in yolk sac angiogenesis and
intraembryonic apoptosis of mesenchymal and neural cells,
although they present normal yolk sac hematopoiesis. Generating
chimeric mice with TEL—/— embryonic stem cells, the pivotal
function of TEL in establishing hematopoiesis of all lineages in
neonatal bone marrow has been clarified, whereas TEL—/—
embryonic stem cells contributed to both primary and definitive
fetal hematopoiesis (13). Moreover, a recent study shows that
inactivation of TEL in adult mice leads to decrease of hematopoi-
etic stem cells in bone marrow (14). On the other hand, TEL is
believed to function as a tumor suppressor because its over-
expression in NIH3T3 fibroblasts results in reduced cell growth in
liquid and soft agar cultures (10, 15).

Molecular dissecting of the TEL-related chimeric genes has
provided interesting clues to the pathogenesis of 12p13 transloca-
tion-type leukemia. In some translocations, receptor-type and non-
receptor-type tyrosine kinases are fused to the NH,-terminal
portion of TEL and are thus catalytically activated by homodime-
rization through the helix-loop-helix domain in the TEL moiety.
Examples for the former include platelet-derived growth factor
receptor B in t(5;12)(q33;p13) (refs. 1, 16, 17) and tyrosine kinase C
in $(12;15)(p13:925) (ref 18), and those for the latter Abl in
£(9;12)(q34;p13) (refs. 19, 20), Janus-activated kinase (JAK)-2 in
1(9:12)(p24;p13) (refs. 21, 22), Syk in £(9;12)(q22;p13) (ref. 23), and
Abl-related gene in t(1;12)(g25;p13) (ref. 24). In other trans-
locations, transcription factors are structurally and functionally
modified by fusing with the NH,- or COOH-terminal part of TEL.
Examples include acute myelogenous leukemia (AML)-1 in
t(12:21)(p13;q22) (refs. 25-29), MN1 in £(12;22)(p13;q11) (refs. 30, 31),
Evi-1 in £(3;12)(q26;p13) (ref. 32), PAX5 in (9;12)(q1L;p13) (xef. 33), and
CDX2 in t(12;13)(p13;q12) (ref. 34). Thus, perturbation of original
functions of the partner genes could be a mechanism in causing
leukemia in patients with such translocations. Furthermore,
disruption of tumor-suppressive function of wild-type TEL iiself
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seems to be another cause of leukemogenesis because some
chimeric molecules such as TEL/AML1 are shown to dominantly
interfere with function of wild-type TEL (35).

To obtain a new insight into the molecular mechanism in
leukemogenesis by the 12pl3 translocations, we cloned several
species of novel chimeric cDNAs generated by inv(12)(p13q13)
found in a patient with acute myelogenous leukemia [M2 according
to the French-American-British (FAB) classification]. These cDNAs
contained the NH,-terminal TEL sequence followed by the COOH-
terminal sequence from protein tyrosine phosphatase receptor-type
R (PTPRR) and were expected to produce either truncated TEL or
chimeric TEL/PTPRR protein. Both molecules lost DNA binding to
and firans-repression through EBS, but blocked the molecular
function of wild-type TEL probably by heterodimerizing with it.
TEL/PTPRR showed no tyrosine phosphatase activity. Notably,
overexpression of TEL/PTPRR in factor-dependent human leuke-
mia cell line UT7/GM led to factor-independent growth, suggesting
the oncogenic potential of this chimeric molecule.

Materials and Methods

Case presentation. A 24-year-old woman presented with slight fever
in April 2001. Her hemoglobin level was 9.1 g/dL, WBC count 4,200/uL
with 29% blasts, and platelet count 191,000/uL. The bone marrow aspirate
disclosed 79% blasts positive for myeloperoxidase, and a diagnosis of
acute myelogenous leukemia (M2 according to the FAB criteria) was
made. Flow cytometric assay revealed that the blasts were positive for
CD13, CD15, CD33, and CD34. Cytogenetic analysis showed 46, XX,
inv(12)(p13q13) (12) /46, XX (8). The patient achieved complete remission
after one course of induction chemotherapy and underwent bone marrow
transplantation in the first remission from her HLA-matched sibling in
November 2001, She has thus far been free from relapse. All the following
experiments were done under the written informed consent of the
patient.

Fluorescence in situ hybridization analysis. The metaphase samples
that were subjected to conventional cytogenetic studies were also applied
to fluorescence in situ hybridization (FISH) analysis. LL12NCO1 cosmid
probes (2G8, 163E7, and 184C4) which are located within the TEL gene
were used in the assay (36). The probes were labeled with biotin-11-dUTP
or digoxigenin-11-dUTP using PCR labeling after sequence-independent
amplification, and were hybridized to metaphase samples as previously
described (37, 38). The hybridization was detected with avium fluorescein
or anti-digoxigenin rhodamine and the metaphase cells were subse-
quently counterstained with 4'6-diamidino-2-phenylindole dihydrochlor-
ide. Images of the hybridized signals were captured under fluorescence
microscopy.

Cloning of TEL/PTPRR. Total RNA was extracted from cryopreserved
leukemic cells with inv(12)(p13q13) using RNeasy RNA miniprep system
(Qiagen, Valencia, CA). We purified mRNA by oligo-dT column. The first-
strand cDNA was synthesized from 2 pg of RNA using the Superscript first-
strand synthesis system (Invitrogen, Carlsbad, CA) with random hexamers
and Moloney murine leukemia virus reverse transcriptase. For 3-rapid
amplification of cDNA ends (RACE) procedure, we adopted Marathon cDNA
amplification system (Clontech, Palo Alto, CA). Synthesis of the second-
strand ¢cDNA and adaptor ligation were carried out according to the
instructions of the manufacturer. RACE-PCR was done for 40 cycles with
primers TELf2 and activator protein (AP)-1, followed by nested PCR for 30
cycles with primers TELf4 and AP-2 (refer to the instructions of the
manufacturer for the sequences of primers AP-1 and AP-2). PCR products
were subcloned into the pCR2.1-TOPO cloning vector (Invitrogen) and
nucleotide sequences were determined by ABI Prism 3100 Genetic Analyzer
(Applied Biosystems, Foster City, CA).

PCR amplification. To amplify TEL/PTPRR, PTPRR/TEL, wild-type
TEL, and wild-type PTPRR cDNAs, we used primer sets TELf2 and
PTPRRr7a, PTPRR6 and TELr5, TELf2 and TELr5, and PTPRRf6 and

PTPRRr7a, respectively. PCR was done for 40 cycles of 94°C for 30
seconds, 55°C for 30 seconds, and 72°C for 1 minute. Extension time was
elongated to 2 minutes when we amplified full-length TEL/PTPRR cDNA
with a set of primers TELfl and PTPRRr14. Sequences of ail PCR primers
are given in the next section.

Oligonucleotides. TELfl [nucleotide (nt) 25-47 of TEL]: 5-ATGTC-
TGAGACTCCTGCTCAGTG-3; TELf2 (nt 88-111 of TEL). 5-AGCC-
CAGTGCCGAGTTACGCTTCC-3; TELf3 (nt 328-347 of TEL): 5
TTTCGCTATCGATCTCCTCA-3; TELf4 (nt 376-405 of TEL): 5-CAGCA-
TATTCTGAAGCAGAGGAAACCTCGG-3; TELr5 (complement, nt 637-660 of
TEL): 5-GAGGCGGCGGATCATGTTGTCCAG-3; PTPRR6 (nt 971-992 of
PTPRR): 5-ACCAGGAGATCCACCTATCGCC-3'; PTPRRr7a (complement, nt
1,313-1,334 of PTPRR): 5-ACGACGTCCCTCAGCTGAGACC-3; PTPRRr7b
{complement, nt 1,193-1,216 of PTPRR): 5-TCATGTCCAATGTAAGAGA-
TACGT-8; PTPRRS10 (nt 1,565-1,580 of PTPRR): 5-CCACGCAGGGCCCCAT-
3; PTPRRr10 (complement, nt 1,565-1,584 of PTPRR): 5-GATCATGGGGCC-
CTGCGTGG-3; PTPRRr14 (complement, nt 2,126-2,148 of PTPRR): 5-TCA-
CTGGACAGTCTCTGCTGAAA-3.

Plasmid construction. Constructions of pMEI18S-HA-TEL, pME18S-
FLAG-TEL, pcDNA3-HA-TEL, (EBS)stkLuc, and pSRoeMSVtkneo-FLAG-wild-
type-TEL were previously described (39, 40). Hemagglutinin or FLAG tag
was inserted at both ends of TEL/PTPRR chimeric cDNAs by the PCR
amplification method. The resultant cDNAs were subcloned into the EcoRI
sites of pME18S, pcDNA3, and pCXN2 expression plasmids in the sense
orientation. To obtain hemagglutinin-tagged wild-type PTPRR c¢DNA, a 5
fragment spanning the initiation codon (nt 175 according to GenBank
accession number U42361) and the Apal site (nt 1,567) was amplified
from a human brain total cDNA library (Clontech). Together with a 3’ Apal
(nt 1,567 in PTPRR cDNA)/Xhol (nt 355 in pCR2.1-TOPO vector) fragment
derived from pCR2.1-TOPO-TEL/PTPRR-HA, it was subcloned into the Xhol
site of pME18S. FLAG-tagged human SUMO-1 cDNA was obtained by the
PCR amplification method, and was subsequently cloned into the Xbal site
of pMEI8S.

Cell culture. COS-7 cells were cultured in DMEM (Sigma, St. Louis, MO)
containing 10% FCS and transfected with various expression plasmids by
the DEAE-Dextran method. NIH3T3 fibroblasts were grown in DMEM with
10% bovine serum. HeLa cells were cultured in Eagles MEM (Sigma)
supplemented with 10% FCS and 1% nonessential amino acids. Human
leukemia cells UT7/GM were maintained in Iscove’s modified Dulbecco’s
medium (Invitrogen) containing 10% FCS and 1 ng/mL of human
recombinant granulocyte macrophage-colony stimulating factor (GM-CSF;
Kirin, Gunma, Japan). KASUMI-1 cells were cultured in RPMI 1640 (Sigma)
with 10% FCS.

Establishing bulk transfectants of NIH3T3 cells. NIH3T3 bulk
population constitutively overexpressing FLAG-tagged wild-type TEL and
its control were obtained by retroviral infection and G418 (Sigma)
resistance as previously described (41).

Generating bulk and stable transfectants of UT'7/GM cells. To obtain
bulk transfectants for experiments, 1 x 107 of UT7/GM cells suspended in
500 L PBS were electroporated at 380 V and 975 pF with pCXN2 plasmid
carrying the aimed gene. Forty-eight hours after the electroporation, cells
were selected with 0.8 mg/mL of G418. Stable UT7/GM clones over-
expressing TEL/PTPRR were established by the limiting dilution method.
For factor deprivation, UT7/GM cells were washed with PBS at least thrice
and were finally suspended in factor-free media.

Metabolic labeling. Forty-eight hours after transfection, COS-7 cells
were washed with phosphate-free DMEM and then cultured for 2 hours in
DMEM supplemented with 400 nCi [*?P]orthophosphate/mL (Amersham
Biosciences, Piscataway, NJ) and 10% dialyzed FCS.

Subcellular loealization. NIH3T3 cells were transiently transfected with
expression plasmids using TransFast (Promega). Forty-eight hours later, cells
were suspended in hypotonic suspension buffer [10 mmol/L sodium
phosphate (pH 7.0), 5 mmol/L EDTA, 1 mmol/L sodium orthovanadate,
1 mmol/L DTT, and 1 mmol/L. phenylmethylsulfonyl fluoride], and were
separated into nucleic and cytoplasmic fractions using Dounce homogenizer
(Wheaton, Millville, NJ). Equal volumes of aliquots were applied to Western
blot analysis.
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Western blot analysis and immunoprecipitation. Western blot
analysis and immunoprecipitation were done as previously described (42).
Anti-FLAG (M2) and anti-hemagglutinin (CH-7 or rabbit) antibodies were
purchased from Sigma, and antibodies against TEL (N-19 and C-20), histone
HI, actin, Bel-Xy, signal transducers and activators of transcription (STAT)-3,
and phospho-STAT3 were from Santa Cruz Biotechnology (Santa Cruz, CA).

Electrophoretic mobility shift assay. The procedures for electropho-
retic mobility shift assays (EMSA) were previously described (43). Lysates
were in vitro prepared by TNT-Coupled Wheat Germ Extract System
(Promega). The EBS oligonucleotide used as a probe or a specific competitor
and its mutant used as a nonspecific competitor were previously described
(2). End labeling of the double-stranded oligonucleotide was carried out with
[-**P]dCTP (Amersham Biosciences) and Klenow enzyme (Takara, Shiga,
Japan) at room temperature for 30 minutes. Unincorporated nucleotides were
removed by G-50 Sephadex columns (Amersham Biosciences). Protein-DNA
complexes were separated on a 4% polyacrylamide gel and visualized by
autoradiography. In competition studies, a 300-fold molar excess of unlabeled
oligonucleotide was added to the reaction. In supershift assays, we employed
anti-TEL (N-19) supershift antibody of which epitope is encoded by NH,-
terminal TEL sequence in tTEL and TEL/PTPRR cDNAs. The antibody was
preincubated with the lysates at 4°C for 1 hour.

Luciferase assay. Hela cells in 24-well tissue culture plates were
transfected with 1 pg of (EBS)stkLuc or (mEBS)stkLuc along with 1 pg of
expression plasmids by using Tfx-20 (Promega). To equalize transfection
efficiencies, total amounts of expression plasmids were kept constant in
terms of weight by adding empty pME18S vector. Luciferase assays were
done with Dual-Luciferase reporter assay system (Promega) as previously
described (39, 42).

In vitro phosphatase assay. Lysates of COS-7 cells overexpressing
hemagglutinin-tagged wild-type PTPRR, tTEL, or TEL/PTPRR were
immunoprecipitated with anti-hemagglutinin (CH-7) antibody conjugated
with Sepharose A beads (Amersham Biosciences). The immunoprecipitates
were washed and finally suspended in 150 pL of assay buffer [20 mmol/L
Tris-HC] (pH 7.4), 150 mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L DTT, and 1
mmol/I phenylmethylsulfonyl fluoride]. One third of the mixture (50 pL)
was added to 100 pL of assay buffer containing 15 mmol/L p-nitrophenyl
phosphate (Sigma-Aldrich), followed by incubation at 37°C for 10 minutes.
The reaction was stopped by adding 25 uL of 2.5 N NaOH. The absorption at
405 nm was read on a 96-well microtiter plate.

Resulis

Cloning of the TEL/PTPRR chimeric gene. Because the TEL
gene on 12pl3 is fused to various partners in a variety of
hematologic malignancies, we suspected that inv(12)(p13q13)
implicated it. To look whether the TEL gene is rearranged by the
chromosomal abnormality, we first did FISH analysis using some
cosmid probes spanning the TEL gene (Fig. 14; ref. 36). Split signals
were observed in bone marrow metaphases with inv(12)(p13q13)
when we used cosmid 184C4 (Fig. 1B) or 163E7 (data not shown) as
a probe. Because the procedure with cosmid 2G8 did not yield split
signals (data not shown), it was likely that the inversion breakage
occurred between introns 5 and 6 of the TEL gene. Subsequenitly,
we adopted the 3'-RACE method to identify a fusion partner of the
TEL gene. RACE-PCR products shown in Fig. 1C were subcloned
into the pCR2.1-TOPO vector and resultant five clones were
sequenced. Among them, four clones contained the wild-type
TEL sequence only, but the last one included TEL exon 4-derived
sequence followed by an unknown sequence. BLAST database
searching revealed that the chimeric cDNA joined TEL exon 4 and
PTPRR exon 7 with frameshift (human TEL was referred to
GenBank accession number U11732 and human PTPRR to U42361;
Fig. 24).

Then, we did reverse transcription-PCR (RT-PCR) analysis to
examine whether TEL/PTPRR, PTPRR/TEL, wild-type TEL, and
wild-type PTPRR transcripts were expressed in the leukemic cells
with inv(12)(p13q13). To detect each transcript, we used primer
sets TELf2 (in TEL exon 2) and PTPRRr7a (in PTPRR exon 7) for
TEL/PTPRR, PTPRRI6 (in PTPRR exon 6) and TEL5 (in TEL exon 5)
for PTPRR/TEL, TELf2 and TELr5 for wild-type TEL, and PTPRRf6
and PTPRRr7a for wild-type PTPRR. As for TEL/PTPRR, two smaller
bands (416 and 251 bp) besides a product of the expected size
(551 bp) were observed (Fig. 1D). Sequencing revealed that these
smaller cDNAs lacked exon 4 or exons 3 and 4 of the TEL gene,
strongly suggesting the presence of alternative splicing mecha-
nisms. On the other hand, reciprocal PTPRR/TEL mRNA was not
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Figure 1. Detection of the fusion gene TEL/PTPRR. A, physical
map of the TEL gene. The cosmid probes used in FISH analysis
are shown. B, FISH analysis of metaphases with inv(12)(p13qg13).
Split signals of cosmid 184C4 were observed on the der(12)
chromosome. C, 3-RACE method adopted to identify the fusion
partner for the TEL gene. A fraction of RACE-PCR products

was electrophoresed on a 2% agarose gel. C, control cell line
(HLB0); P, patient’s leukemic cells. D, RT-PCR analysis of
inv(12)(p13q13)-carrying leukemic cells. Transcripts for wild-type
TEL, TEL/PTPRR, PTPRR/TEL, wild-type PTPRR, and GAPDH
were amplified. Asterisks, two minor TEL/PTPRR isoforms lacking
exon 4 or exons 3 and 4 of the TEL gene. Primers used are
described in Materials and Methods. C, control cell line (HL60); P,
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