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Abstract

The levels of lipid hydroperoxide (LHPs) in vitreous are elevated in a variety of retinal disorders. Recently, we have shown that increased
levels of LHPs in the vitreous enhanced leukocyte-endothelium interaction in the retina, which should contribute to the initial disturbance of
the retinal microcirculation. Based upon the previous work, the purpose of the present study was to investigate the effect of polyethylene
glycol-superoxide dismutase (PEG-SOD), one of the important enzyme antioxidants, on leukocyte-endothelial interaction in the retinal
microcirculation under LHP-induced oxidative stress. Male Brown-Norway rats weighing approximately 250 g were used. LHP(18:2) was
made from linoleic acid (LA) with lipoxygenase and 10 pg of LHP dissolved in 5 pl of sodium borate buffer (SBB, 0.02 M) was slowly
injected into the vitreous using a 33-gauge needle. PEG-SOD (5000 units/kg) was given intravenously 5 min before LHP injection. At 2, 4, 6,
12, 24 and 48 hr after the vitreous injections, we evaluated the number of rolling leukocytes along the major retinal veins and the number of
leukocytes that accumulated in the retinal microvasculature with acridine orange digital fluorography. In LHP-treated rats, leukocyte rolling
along the major retinal veins was maximal at 6 hr after LHP injection. The number of rolling leukocytes in the PEG-SOD-treated rats was
decreased to 5.5% of those in the LHP-treated rats at 6 hr after LHP injection (P <0.01). No rolling leukocytes were observed in either
control or vehicle-treated eyes. The number of accumulated leukocytes in LHP-treated eyes started to increase at 12 hr, and peaked at 24 hr
which was significantly higher than in both control and vehicle-treated eyes (P <0.01). The number of accumulated leukocytes in the PEG-
SOD-treated rats was reduced by 88.0% at 24 hr (P <0.01). Intravenous injection of PEG-SOD significantly inhibited the leukocyte rolling
and its accumulation under LHP-induced oxidative stress. These results suggest that PEG-SOD might attenuate various retinal
microcirculatory disorders associated with LHP.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: lipid polyethylene-hydroperoxide; leukocyte; glycol-superoxide dismutase; retinal microcirculation

are initiated by various factors. As the eye is always exposed
to initiators such as oxygen, light, ultraviolet ray and x-
irradiation, the relationship between free radicals and ocular
diseases has attracted much attention. Many studies have
suggested important roles of free radicals and lipid peroxides
in various ocular diseases including keratitis, cataract,

1. Introduction

Free radical and lipid peroxide formation, which can
cause oxidative stress-induced damage to cell membranes,
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uveitis, retinal degeneration, diabetic retinopathy, retino-
pathy of prematurity and retinal ischemic diseases (Lakatos
et al., 1982; Sery and Petrillo, 1984; Bhuyan et al., 1986;
Armstrong et al., 1992; Alio et al., 1995; Spaide et al., 1999).

The retina contains a high proportion of polyunsaturated
fatty acids, which are susceptible to lipid peroxidation.
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Lipid hydroperoxide (LHPs) derived from oxidized unsatu-
rated fatty acids are prominent intermediates of propagative
reactions induced by activated species such as hydroxyl
radical, lipid oxyl or peroxy!l radicals, singlet oxygen, and
peroxynitrite (Girotti, 1998). It is also known that lipid
peroxidation injury to the endothelial cell membrane
provides a signal or serves as a marker that can be
recognized by circulating polymorphonuclear leukocytes
(Del Maestro et al., 1981). Patel et al. (1991) reported that
reactive oxygen species like H,O, and LHP increased the
expression of P-selectin and the adherence of neutrophils to
endothelial cells in vitro. Recently, we have shown that
oxidative stress induced by 18:2 LHP injection in the
vitreous enhanced leukocyte-endothelium interaction in the
retinal microcirculation in vivo using acridine orange digital
fluorography (Tamai et al., 2002).

LHP is associated with a variety of retinal disorders such
as diabetic retinopathy (Armstrong et al., 1992; Augustin et
al., 1993), Eales’ disease (Bhooma et al.,, 1997), prolif-
erative vitreoretinopathy (Boker et al., 1994), retinopathy of
prematurity (Lakatos et al., 1982), and age-related macular
degeneration (Spaide et al., 1999). In fact, in the vitreous
samples from patients with proliferative diabetic retino-
pathy (Augustin et al.,, 1993; Verdejo et al., 1999) or
proliferative vitreoretinopathy (Boker et al., 1994; Verdejo
et al., 1999), LHP levels were shown to be significantly
elevated. In those patients, antioxidant activity was reduced
compared with normal counterparts (Verdejo et al., 1999).
It was demonstrated that levels of superoxide dismutase
(SOD), one of the important enzyme antioxidants were
notably reduced in diabetic patients (Kernell et al., 1992)
and patients with Eales’ disease which induces retinal
vascular occlusion, inflammation and neovascularization
(Sulochana et al.,, 1999). Therefore, we hypothesize that
increasing the levels of SOD may reduce retinal micro-
circulatory disorders associated with LHP. In this study, we
have investigated the effect of intravenous injection of SOD
on rat retinal microcirculatory disorders under LHP-induced
oxidative stress in terms of leukocyte dynamics in vivo.
We used here polyethylene glycol-conjugated superoxide
dismutase (PEG-SOD) that has a longer half-life in plasma
(>30hr) than native SOD and has been proven to be
effective against ischemic conditions (Pyatak et al., 1980;
Tamura et al., 1988; Chi et al., 1989).

2. Materials and methods
2.1. Animal model

Male Brown-Norway rats weighing approximately 250 g
were used. Only one eye of each rat was used. Rats were
anesthetized with a mixture (1:1) of xylazine hydrochroride
(4 mg/kg) and ketamine hydrochroride (10 mg/kg). The
pupils were dilated with 0.5% tropicamide and 2.5%
phenylephrine hydrochroride. LHP (18:2) was made from

linoleic acid (LA) with lipoxygenase and 10 ug of LHP
dissolved in 5 pl of sodium borate buffer (SBB, 0.02 m) was
slowly injected into the vitreous using a 33-gauge needle
(Browne and Armstrong, 2002). Vehicle-treated rats were
given the same amount of LA dissolved in 5 pl of SBB.
PEG-SOD-treated rats were injected intravenously with
5000 units’kg of PEG-SOD (Sigma-Aldrich) 5 min before
LHP injection. All experiments were performed in accord-
ance with the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research.

2.2. Acridine orange digital fluorography

Acridine orange digital fluorography was performed as
previously described (Kimura et al., 1995; Nishiwaki et al.,
1995). In this technique, a scanning laser ophthalmoscope
(Rodenstock Instrument), coupled with a computer-assisted
image analysis system, makes continuous high-resolution
images of the fundus stained with the metachromatic
fluorochrome, acridine orange (AQO; Wako Pure Chemical),
which emits a green fluorescence when it interacts with
DNA. The spectral properties of AO-DNA complexes are
very similar to those of sodium fluorescein, with an
excitation maximum at 502 nm and an emission maximum
at 522 nm (Darzynkiewicz and Kapuscinsky, 1990). An
argon blue laser was used as the illumination source, with a
regular emission filter for fluorescein angiography.

Immediately before acridine orange digital fluorography,
rats were anesthetized, and the pupils were dilated. A
contact lens was used to retain corneal clarity throughout the
experiment. Each rat had a catheter inserted into the tail
vein, and was placed on a stereotaxic platform. Body
temperature was maintained at 38+0.5 °C. Immediately
after AO (0.1% solution in saline) solution was infused
intravenously, leukocytes stained selectively among circu-
lating blood cells were observed with the scanning laser
ophthalmoscope. Nuclei of vascular endothelial cells were
also stained. AO was injected continuously through the
catheter for 1 min at a rate of 1 ml/min. The fundus was
observed to evaluate the leukocyte dynamics in the retinal
microcirculation for 5 min after AO injection in a 40° field.
AQO easily infiltrates through vessel walls and diffuses into
the retina due to its membrane permeability. Accordingly, a
few minutes after AO injection was completed, fluorescence
of circulating leukocytes was faint, due to washout. In
contrast, leukocytes that had been trapped in the retinal
microcirculation remained fluorescent for approximately
2 hr, being recognized as distinct fluorescent dots 30 min
after AO injection. At 30 min after the injection of AO, the
fundus was observed again to determine leukocyte accumu-
lation in the retinal microcirculation. The obtained images
were recorded on digital videotape at a rate of 30 frames/sec
for further image analysis. After the experiment, rats were
killed with an anesthetic overdose, and the eye was
enucleated to determine a calibration factor with which to
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convert values measured on a computer monitor (in pixels)
into real values (in um).

2.3. Experimental design

Acridine orange digital fluorography was performed at 2,
4, 6, 12, 24 and 48 hr after vitreous injections in LA and
LHP-treated rats. In PEG-SOD treated-rats, it was held at 6,
12, 24 and 48 hr after LHP injections. Non-operated rats
were used as controls. Five different rats were randomly
selected and used at each time point in each group. We
evaluated the number of rolling leukocytes along the major
retinal vessels, the number of leukocytes accumulated in the
retinal microcirculation, and the diameters of major retinal
vessels in a masked manner.

2.4. Image analysis

The digital video recordings were analysed with an
image analysis system, described in detail elsewhere
(Kimura et al., 1995; Nishiwakt et al., 1995) with a slight
modification. In brief, we used a computer equipped with
software (DVgate, SONY) which enters the digital images
in real time (30 frames/sec) to 640 horizontal and 480
vertical pixels with an intensity resolution of 256 steps into
a personal computer.

Rolling leukocytes were defined as leukocytes that moved
at a velocity much slower than that of free-flowing
leukocytes. The process of differentiating rolling leukocytes
from free-flowing leukocytes has been described in a
previous article (Tsujikawa et al., 1998). In brief, leukocytes
rolling along the major retinal veins were easily recognized
on the video monitor, because even the fastest rolling
leukocyte moved almost 300 times more slowly than the
average for free-flowing leukocytes. Since no leukocytes
with intermediate velocity were observed, it was not difficult
to distinguish rolling leukocyte from free-flowing leuko-
cytes. Their numbers were calculated from the number of
rolling cells passing a fixed line in all major veins (4-7 veins)
at a distance of 1 disk diameter from the center of the optic
disc per minute. The average number of rolling leukocytes in
individual major veins was used as the value for each rat.

The number of leukocytes accumulated in the retinal
microcirculation was evaluated at 30 min after AO injec-
tion. The number of fluorescent dots in the retina within 8
areas of 100 pixels square at a distance of 1 disk diameter
from the edge of the optic disk was counted. The average
density of leukocytes in individual areas was used as the
value for each rat.

The diameters of major retinal vessels were measured at
1 disk diameter from the center of the optic disk in
monochromatic images recorded before AO injection. Each
vessel diameter was calculated in pixels as the distance
between the half-high points determined separately on each
side of the density profile of the vessel image and converted
into real values using the calibration factor. The averages of

the individual arterial and venous diameters were used as
the arterial and venous diameters for each rat.

2.5. Satistical analysis

All values are presented as meanzXs.n. Data were
compared by ANOVA, with post hoc comparisons tested
using the Bonferroni procedure. Probabilities of P<0.05
were considered to be statistically significant.

3. Results

3.1. Leukocyte rolling

Immediately after AO was infused, many free-flowing
leukocytes were visualized. No rolling leukocytes were
observed along the major retinal veins in control and LA-
treated rats. In all eyes injected with LHP, a few leukocytes
rolling along major retinal veins were observed initially at
2 hr after the injection. The number peaked at 110.6 1
11.4 cells/min at 6 hr after the injection and decrease
thereafter. The number of rolling leukocytes was signifi-
cantly less in PEG-SOD-treated rats than in LHP-treated
rats (P=0.0104). In PEG-SOD-treated rats, the number of
rolling leukocytes was 61 0.3 cells/min at 6 hr after LHP
injection, which was significantly reduced by 94.5%
compared with that in LHP-treated rats (P <<0.01) (Fig. 1).
There weren’t any rolling leukocytes along retinal arteries
in all groups throughout the experiments.

3.2. Leukocyte Accumulation in the retinal microcirculation

Leukocytes accumulated in the retinal microcirculation
were recognized as distinct fluorescent dots 30 min after AO
injection, although no circulating leukocytes fluoresced
(Fig. 2). In LA-treated rats, a few leukocytes could be
recognized at any time point. The number of accumulated
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Fig. 1. Time course of the number of rolling leukocytes in major veins.
Values are mean+s.p. *P<0.01, compared with LA-treated rats. P<
0.01, compared with LHP-treated rats. Five different rats were used at each
time point in each group.
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Fig. 2. Representative fundus images of leukocyte accumulation at 24 hr after vitreous injection. Leukocyte accumulated in the retina were observed as
fluorescent dots 30 min after acridine orange injection. A small number of leukocytes could be found in control (A) and L.A-treated rats (B). In LHP-treated
rats, increasing number of leukocytes accumulated at 24 hr after LHP injection (C). Significant reduction of leukocyte accumulation was seen in PEG-SOD-

treated rats (D).

leukocytes in LHP-treated eyes started to increase at 12 hr
(152.2+37.3 cells/mm?), and peaked at 24 hr (919.0+
223.1 cells/mm?) which was significantly higher than in
both conirol and LA-treated eyes (21.3+5.0 and 45.3+
9.8 cell/ mm?‘, respectively, P<C0.01). The number of
accumnulated leukocytes was significantly less in PEG-
SOD-treated rats than in LHP-treated rats (P=0.0105).
With the treatment of PEG-SOD, the number of accumu-
lated leukocytes was significantly reduced by 73.7% at 12 hr
(P<0.01) and 88.0% at 24 hr (P<0.01) after LHP
injections (Fig. 3).

3.3. Diameters of major retinal vessels

In arteries, a slight vasodilation appeared to occur at 4—
24 hr after LHP injection; however, no significant differ-
ences were observed among any experimental groups
(Fig. 4(A)). In veins, significant vasodilation was observed
at 6—24 hr after LHP injection (P <0.05, versus LA-treated
rats). The vasodilation peaked at 12 hr after LHP injection
(122% in LHP-treated rats, P <0.03, versus LA-treated rats)
and subsided at 48 hr after injection. In PEG-SOD-treated
rats, venous vasodilation was significantly suppressed
compared with that in LHP-treated rats at 12 hr after LHP
injection (P <0.05) (Fig. 4(B)).

4, Discussion

The present study demonstrated in vivo that intravenous
injection of PEG-SOD significantly suppressed

LHP-induced increase in both leukocyte rolling along the
retinal vessels and leukocyte accumulation in the retina.
Leukocyte-endothelial interactions are regulated by multi-
step processes (Osborn, 1990), with each step mediated by
distinct adhesion like molecules (Lawrence and Springer,
1991). Leukocyte rolling is the first step in a cascade of
events that lead to firm adhesion and transmigration through
the endothelium. Leukocyte rolling that represents mild
adhesion between leukocytes and endothelial cells is induced
mostly by the selectin family at the early stage, and then the
strong adhesion is induced because of up-regulation of CDII/
CD18b and activation of ICAM-1. P-selectin is thought to
play an essential role in initial rolling during an inflammatory
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Fig. 3. Time course of the number of leukocytes accumulated in the retina
after vitreous injection. Values are meants.p. *P <0.01, compared with
LA-treated rats. T2 <0.01, compared with LHP-treated rats. Five different
rats were used at each time point in each group.
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Fig. 4. Time course of major retinal arterial (A) and venous, (B) diameters after vitreous injection. Values are mean s.0. *P <0.05, compared with LA-treated
rats. TP <0.05, compared with LHP-treated rats. Five different rats were used at each time point in each group.

reaction (Lawrence and Springer, 1991). Many studies have
demonstrated that inhibition of P-selectin significantly
reduced leukocyte rolling (Tsujikawa et al., 1999; Matsubara
et al., 2000).

Oxygen-derived free radicals are known to enhance
leukocyte-endothelial adherence. Patel et al. (1991)
reported that reactive oxygen species like H,O, and LHP
increased the expression of P-selectin and the adherence of
neutrophils to endothelial cells in vitro. Reactive oxygen
species also induce expression of ICAM-1 in endothelial
cells (Chiu et al., 1997). LHPs have been proposed as
mediators or sec messengers, whereby they induce gene
expression and up-regulate various cytokines (Suzuki et al.,
1997). Armstrong et al. (1998) reported that 18:2 LHP
injected in the vitreous of albino rabbits started to increase
the concentration of various cytokines (TNF-o, IL-la,
PDGF and VEGF) in the retina at early periods (3~12 hr). In
the presence of TNF-a and IL-1, expression of adhesion
molecules including ICAM-1 is increased and leukocyte-
endothelial adhesion is induced in vitro (Morzycki et al.,
1990; Hubbard and Rothlein, 2000), and thereby leukocyte-
endothelium interaction is enhanced in addition to the direct
action of LHP. Previously, we have reported that increased
LHP levels in the vitreous enhanced leukocyte-endothelial
interaction in the retinal microcirculation in vivo (Tamai
et al., 2002).

Many studies have shown beneficial effects of SOD for
ischemic disorders such as myocardial and cerebral
ischemia-reperfusion (Naslund et al.,, 1986; Schettini
et al., 1989). However, maintaining appropriate plasma
SOD levels is difficult because of the short life of native
SOD (half-life time: 6-10 min) (Galinanes et al., 1992). In
the present study, we used long acting SOD covalently
linked to polyethylene glycol (PEG-SOD), that has been
reported to extend the plasma half-life of SOD activity to
more than 30 hr (Pyatak et al., 1980; Tamura et al., 1988,
Chi et al., 1989).

We found that PEG-SOD treatment significantly inhib-
ited both rolling and accumulation of leukocytes in the
retinal microcirculation using acridine orange digital
fluorography. Akeo et al. (1996) reported that the damage
of the RPE cells exposed by LHP was minimized in a dose-
dependent manner after 24 and 48 hr addition of SOD in
vitro. As SOD is a well-known enzyme which specifically
reduces superoxide (O, ), our results suggest that super-
oxide constitutes an important step in the transduction of the
LHP-mediated increase in leukocyte-endothelial cell inter-
action observed in vivo. Inflammatory conditions and
proinflammatory cytokines are also known to stimulate
production of reactive oxygen species in endothelial cells
and blood vessels (Okada et al., 1998; Rahman et al., 1998;
Gunnett et al., 2002). Xanthine oxidase, which produces
superoxide in response to proinflammatory cytokines in
cultured cells (Page et al., 1998), appears to be an important
source of superoxide in vessels under pathological con-
ditions like hypercholesterolemia, atherosclerosis (Graier
et al., 1998), and hypertension (Suzuki et al., 1998). Injected
LHP in the vitreous generates various cytokines (TNF-a,
IL-1a, PDGF and VEGF) in the retina (Armstrong et al.,
1998). TNF-a causes xanthine dehydrogenase-to-xanthine
oxidase conversion in rat endothelial cells, which would
result in the production of superoxide (Friedl et al., 1989;
Kapp et al., 1989). TNF-a could also directly stimulate
human neutrophils to produce superoxide. We speculate that
LHP injected in the vitreous may sensitize retinal tissue
initially and cause preinflammatory conditions, and thereby,
superoxide is generated secondarily.

Several reports have showed that exogenous SOD could
inhibit leukocyte-endothelial cell interaction (Lehr et al.,
1992; Morita et al., 1995). Akgiir et al. (2000) quantified
P-selectin expression in a murine model of hemorrhage-
resuscitation by use of the dual-radiolabeled monoclonal
antibody technique and found that either administration
of exogenous SOD to wild-type mice or genetic
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overexpression of SOD resulted in a significant attenuation
of hemorrhage-resuscitation-induced P-selectin expression.
Yang et al. (2003) reported that endothelial cells obtained
from the aorta of transgenic mice overexpressing Cu,
ZnSOD showed significantly less expression of intercellular
adhesion molecule-1 (ICAM-1) by using enzyme-linked
immunosorbent assay. Therefore, attenuation of adhesion
molecule expression by SOD is considered to be linked to
decreased leukocyte adhesion.

In the present study, venous vasodilation in PEG-SOD-
treated rats was significantly suppressed at 12 hr after
vitreous injection, compared with that in LHP-treated rats.
Increased production of nitric oxide (NO) may be
responsible for the vasodilation after LHP injection. As
SOD has been reported to protect against the induction of
NO in activated microglial cells (Chang et al., 2001),
inhibition of NO production by SOD might prevent venous
vasodilation.

Many experimental studies have suggested that pre-
venting leukocyte participation attenuates retinal damage
in ischemia-reperfusion injury (Strachan et al., 1992;
Tsujikawa et al., 1999; Matsubara et al., 2000). However,
further studies are needed to assess whether attenuating
leukocyte infiltration contributes to maintenance of retinal
function under LHP-induced oxidative stress.

In conclusion, the present study has demonstrated an
inhibitory effect of PEG-SOD on enhanced leukocyte-
endothelial interaction under LHP-induced oxidative stress
in the rat retina. The results suggest that PEG-SOD might
attenuate various retinal microcirculatory disorders related
to oxidative stress.
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