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combinations of clusters is displayed at the same time, without
any selection of an arbitrary threshold.

4) Threshold for evaluating the relationships with other
known gene information. Although only overlap blocks with
2.0 or higher evaluation values for the representation of genes
with putative transcription factor binding sites were color

coded in Fig. 4E and Fig. 4F, users can interactively change
this value.

Conclusion

In this report we described the characteristics of the CODM
method, a visualization tool for comparing clustering results of
gene expression profiles under two different conditions. In
CODM, the utilization of 3D space and color allows us to
intuitively visualize changes in the composition of cluster sets,
changes in the expression patterns of genes between the two
conditions, and the relationships with a known gene classifi-
cation such as transcription factors. Comparison of dynamic
changes of gene expression levels across time under different
conditions is required in a wide variety of fields of gene
expression analysis, including toxicogenomics and pharmacog-
enomics. Since CODM integrates and simultaneously visual-
izes various types of information across clustering results, it
can be applied to various analyses in these fields.

APPENDIX
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The similarity AT, §) satisfies the following inequality:
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FProof. Since fiT.5) = 1 is obvious, we only need to prove —1 =
JT,$5). We begin by showing that
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We consider the Lagrangian function
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where v is a Lagrange undetermined multiplier. By taking the deriv-
ative, we convert the constrained optimization problem into an un-
constrained problem as follows:
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The solutions of this problem are
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ABSTRACT ,

Motivation: Since DNA microarray experiments provide us
with huge amount of gene expression data, they should be
analyzed with statistical methods to extract the meanings of
experimental results. Some dimensionality reduction methods
such as Principal Component Analysis (PCA) are used to
roughly visualize the distribution of high dimensional gene
expression data. However, in the case of binary classification
of gene expression data, PCA does not utilize class information
when choosing axes. Thus clearly separable datain the original
space may not be so in the reduced space used in PCA.
Results: For visualization and class prediction of gene
expression data, we have developed a new SVM-based
method called multidimensional SVMs, that generate multiple
orthogonal axes. This method projects high dimensional data
into lower dimensional space to exhibit properties of the data
clearly and to visualize a distribution of the data roughly.
Furthermore, the multiple axes can be used for class predic-
tion. The basic properties of conventional SVMs are retained
in our method: solutions of mathematical programming are
sparse, and nonlinear classification is implemented implicitly
through the use of kernel functions. The application of
our method to the experimentally obtained gene expression
datasets for patients’ samples indicates that our algorithm is
efficient and useful for visualization and class prediction.
Contact: komura@hal.rcast.u-tokyo.ac.jp

1 INTRODUCTION

DNA microarray has been the key technology in modern
biology and helped us to deciplier the biological system
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because of its ability to monitor the expression levels of
thousands of genes simultaneously. Since DNA microarray
experiments provide us with huge amount of gene expression
data, they should be analyzed with statistical methods to
extract the meanings of experimental results.

A great number of supervised learning algorithms have
been proposed and applied to classification of gene expression
data (Golub et al., 1999; Tibshirani et al., 2002; Khan et al.,
2001). Support Vector Machines (SVMs) have been paid
attention in recent years because of their good performance
in various fields, especially in the area of bioinformatics
including classification of gene expression data (Furey et al.,
2000). However, SVMs predict a class of test samples by
projecting the data into one-dimensional space based on a
decision function. As a result, information loss of the original
data is enormous.

Some methods are used for projecting high dimensional data
into lower dimensional space to clearly exhibit the properties
of the data and to roughly visualize the distribution of the
data. Principal Component Analysis (PCA) (Fukunaga, 1990)
and its derivatives, e.g. Nonlinear PCA (Diamantaras and
Kung, 1996) and Kernel PCA (Scholkopf et al., 1998), are
most widely used for this purpose (Huang et al., 2003). One
drawback of PCA analysis is, however, that class informa-
tion is not utilized for class prediction because PCA chooses
axes based on the variance of overall data. Thus clearly
separable data in the original space may not be so in the
reduced space used in PCA. Another method for visualization
and reducing dimension of data is discriminant analysis. It
chooses axes based on class information in terms of within-
and between-class variance. However, itis reported that SVMs
often outperform discriminant analysis (Brown et al., 2000).

The main purpose of this paper is to cover the shortcoming
of SVMs by introducing multiple orthogonal axes for
reducing dimensions and visualization of gene expression
data. To this end, we have developed multidimensional
SVMs (MD-SVMs), a new SVM-based method that generates
multiple orthogonal axes based on margin between two

Published by Oxford University Press
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classes to minimize generalization errors. The axes gener-
ated by this method reduce dimensions of original data to
extract information useful in estimating the discriminability
of two classes. This method fulfills the requirement of both
visualization and class prediction. The basic properties of
SVMs are retained in our method: solutions of mathematical
programming are sparse, and nonlinear classification of data
is implemented implicitly through the use of kernel functions.

This paper is organized as follows. In Section 2, we
introduce the fundamental of SVMs. In Section 3, we describe
the algorithm of MD-SVMs. In Section 4 and 5, we show
numerical experiments on real gene expression datasets and
reveal that our algorithm is effective for data visualization and
class prediction,

1.1 Notation

R is defined as the set of real numbers. Each component of
avectorx € R",i = 1,...,m will be denoted by x;,;j =
1,...,n. Theinner product of two vectors x € R and yeR?
will be denoted by x - y. For a vector x € R” and a scalar
a € R,a <xisdefinedasa < x; foralli = 1,...,n. For
an arbitrary variable x, x* is just a name of the variable with
upper suffix, not defined as k-th power of x.

2 SUPPORT VECTOR MACHINES

Since details of SVMs are fully described in the articles
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000), we
briefly introduce the fundamental principle of SVMs in this
section. We consider a binary classification problem, where a
linear decision function is employed to separate two classes of
data based on m training samples x; € R",i = 1,...,m with
corresponding class values y; € {#1},i = 1,...,m. SVMs
map a data x € R" into a higher, probably infinite, dimen-
sional space R¥ than the original space with an appropriate
nonlinear mapping ¢ : R* — R¥ n < N. They generate
the linear decision function of the form f(x) = sign(w -
¢ (x) + b) in the high dimensional space, where w € R¥Y
is a weight vector which defines a direction perpendicular
to the hyperplane of the decision function, while » € R is
a bias which moves the hyperplane parallel to itself. The
optimal decision function given by SVMs is a solution of an
optimization problem

m

min —nwn +CY &,

i=l

styiw-pxi)+b)y=1-&, i=1...,mé&=>0, (1)

with C > 0. Here, § € R™ is a vector whose elements
are slack variables and C € R is a regularization parameter
for penalizing training errors. When C — o0, no training
errors are allowed, and thus this is called hard margin
classification. When 0 < C < oo, this is called soft margin

classification because it allows some training errors. Nole that
a geometric margin y between two classes is defined as T w!lz
The optimization problem formalizes the tradeoff between
maximizing margin and minimizing training errors. The
problem is transformed into its corresponding dual problem
by introducing lagrange multiplier & € R™ and replacing
¢(x;) - ¢(x ;) by kernel function K (x;,x;) = ¢(x;) - ¢ (x ;)
to be solved in an elegant way of dealing with a high
dimensional vector space. The dual problem is

m m m
max ———ZZ« oy yiK(xi,x J)+Z“”
i=] j=1
nt
sL0<a<C ) oy =0 2)
i=1

By virtue of the kernel function, the value of the inner
product ¢(x;) - ¢(x;) can be obtained without explicit
calculation of ¢(x;) and ¢ (x ;). Finally, the decision func-
tion becomes £ (x) :sign(Zi" 1 @YK (x;,x)+b). by using
kernel functions between training samples x;,i = 1,...,m
and a test sample x.

3 MULTIDIMENSIONAL SUPPORT VECTOR
MACHINES

In order to overcome the drawback that SVMs cannot generate
more than one-decision function, we propose a SVM-based
method that can be used for both data visualization and
class prediction in this section. We call this method multi-
dimensional SVMs (MD-SVMs). We deal with the same
problem as mentioned in Section 2. Conventional SVMs
give an optimal solution set (w,b, &) which corresponds to
a decision functlon while our MD-SVMs give the multiple
sets (w*,bF E%).k = 1,2,...,1 with [ < n, so that all the
directions wy, are or thogonal to one another. The orthogonal
axes can be used for reducing the dimension of original data
and data visualization in three dimensional space by means
of projection. Here the first set (w',b!, £!) is equivalent to
that obtained by conventional SVMs. Now we only refer to
the steps of obtaining (w*, b*, Ek), k=2,3,...,1 Inpractice,
the k-th set (w*, b¥, Ek)k = 2,3,...,lare found with iterative
computations of the optimization problem

n

min —||w PPy

i=]
k k k. _
S.t.yi(w" - @ (x;) + b%) >1-=&i=1,...,m,

F>0wf w/ =0,j=1,... k~1. 3)

This problem differs from that of conventional SVMs in the
last constraint w* - w/ = 0. The weight vector w/, j =
I,...,k — 1 should be computed in advance by solving
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other optimization problems (3). The optimization problem
is modlﬁed by introducing lagrange multipliers a*, y* € R,
B* € R¥! and kernel functions. The primal Lagrangian is

n

uw I+ c> gk

i=1

L(wk, bk, Ek)

+ > af (1~ g -y p(x) + %)
i=1

m

+Zﬁ (wh - wl) — Zy,"s, “)

Consequently, the optimization problem is

m m

max ——-ZZO{ A5YiYj K(xhxj)

ot p* i=l j=1

m

+ = Zﬂﬂ ' - w>+2a,,

n
5.t 0 <ok < C,Za,{‘y,- =0,
i=1
m

Yo y@a) w)=0,j=1,....k—1 (5)
i=1

Here ¢(xp) - w? and w? - w? are calculated recursively as
follows:

n

g—1
plp)-wl = alyiK(xp,x) — Y BB, - w),

i=l i=1

6)
m n
w? . wf = Z Zaipafy,‘yjK(x,v,x.,‘)
i=1 j=I
m p—1 p—1
=2 D el Bl wh+ ) prA (w'  w)
i=1 j=I i=1
m p-1
=) > Bl ) - w), ()

i=1 j=1

where qb(xp) w! = Zj"la yiK(xp,x;) and wlw! =

o yi(p(x;), w'). As can be seen, there is no need to
calculate nonlinear map of data ¢ (x) in problem (5) because
all nonlinear mappings can be replaced with kernel functions.

Note that this optimization problem is a nonconvex quad-
ratic problem when k& is more than 1. As a consequence, the
optimal solutions are not easy to be obtained. In Section 4,
we use local optimum for numerical experiments when k is 2
or 3. We note the experimental results are still encouraging.

The corresponding Karush-Kuhn-Tucker conditions are

{1 — gF — yiw* - p(x1) + b0} =0, ®)
ek -0y=0i=1,....m 9)

These are exactly the same as conventional SVMs. We
highlight the other properties conserved from conventional
SVMs:

e Projecting data into high dimensional space is implicit,
using kernel functions to replace inner products.

o The solutions a* of the optimization problem is sparse.
Then the corresponding decision function depends only
on few ‘Support Vectors’.

Smce each decision function is normalized independently to
hold w* - ¢ (x;) + b* = = y;fori =1,...,m, data scales of the
axes should be aligned with first axis (k = 1) for visualization.
The margin y¥, the L2-distance between support vectors of
each class of k-th axis, is

Wi

m n

D) efelyiyiK (xix)) —Zﬁ"ﬁ (w' - w)

i=l j=I
(10)

So a scaling factor s¥ = y1/yk is

m m

Zzaila})’i)’jK(xi,xj)

i=1 j=1

1L

m m

DD afd y,yJK(x,,x,)—Zﬂ BEw' - w')

i=1 j=I i=1

The dec1snon function of k-th step has the form f*(x) =
sign(D_1, o¥yi K (%, x) + b*). Since the right hand side of
the equatlon has the function of projecting original data into
one dimensional space, the data can be plot in up to three
dimensional space for visualization. The coordinate of data
x € R™ in three dimensional space is

(sh1 g% (), sk g2 (x), 5% 613 (x)), (12)

where gh(x) = Zi"loz yiK(xi,x) + b*. The space
represents a distribution of data clearly based on the margin
between two classes.

4 NUMERICAL EXPERIMENTS
4.1 Method

In order to confirm the effectiveness of our algorithm, we have
performed numerical experiments. MD-SVMs can generate
multiple axes, up to the number of features. Here we choose
three axes, k = 1,2, 3, to simplify the experiments, When  is
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2 or 3, we use local optimum in problem (5) since it is difficult
to obtain the global solutions. In our experiments, we carry out
hold-out validation because cross-validation changes decision
functions every time the dataset is split. Then we compare the
results obtained by MD-SVMs with those obtained by PCA.

In the experiments, the expression values for each of the
genes are normalized such that the distribution over the
samples has a zero mean and unit variance. Before normaliz-
ation, we discard genes in the dataset with the overall average
value less than 0.35. Then we calculate a score F(x(j)) =
(™ (=1~ (N / (e (j)+0~(j))], forthe remaining genes.
Here ut(j)(~(j)) and ot (j)(c~(j)) denote the mean and
standard deviation of the j-th gene of the samples labeled
+1(—1), respectively. This score becomes the highest when
the corresponding expression levels of the gene differ most
in the two classes and have small deviations in each class.
We select 100 genes with the highest scores and use them for
hold-out validation. These procedures for gene selection are
done only for training data for fair experiments.

The regularization parameter C in problem (5) is set to 1000.
This value is rather large but finite because we would like
to avoid ill-posed problems in a hard margin classification.
We choose linear kernel K (x;,x;) = x; - x; and RBF ker-
nel K(x;,x;) = exp—y|lx; —x;|> with y = 0.001 in the
experiments of MD-SVMs.

4.2 Materials

Leukemia dataset (Golub et al., 1999) This gene expression
dataset consists of 72 leukemia samples, including 25 acute
myeloid leukemia (AML.) samples and 47 acute lymphoblastic
leukemia (ALL) samples. They are obtained by hybridiza-
tion on the Affymetrix GeneChip containing probe sets for
7070 genes. Training set contains 20 AML samples and 42
ALL samples. Test set contains 5 AML samples and 5 ALL
samples. AML samples are labeled +1 and ALL samples are
labeled —1.

Lung tissue dataset (Bhattacharjee et al., 2001) This dataset
consists of 203 samples from lung tissue, including 16 samples
from normal tissue and 187 samples from cancerous tissue,
and is obtained by hybridization on the Affymetrix U95A
Genechip containing probe sets for 12558 genes. Training set
includes 13 samples from normal tissue and 157 samples from
cancerous tissue. Test set includes 3 samples from normal
tissue and 30 samples from cancerous tissue. Samples from
normal fissue are labeled +1 and samples from cancerous
tissue are labeled —1.

5- RESULTS AND DISCUSSION

The results of numerical experiments are shown in Figure 1,
and Tables 1 and 2. The distributions obtained by MD-SVMs
on the leukemia dataset and the lung tissues dataset are given
inFigure 1-(1) and 1-(3), respectively. Those obtained by PCA
are given in Figure 1-(2) and 1-(4), respectively. The number

of misclassified samples by MD-SVMs are summarized in
Table 1 and 2. In these tables, the class of the samples is
predicted based on decision functions f k(x),k = 1,2,3,
corresponding to each of the three axes.

Figure 1-(1) and 1-(3) illustrate that MD-SVMs are likely
to separate the samples of each class in all the three directions.
However, as shown in Figure 1-(2) and 1-(4), PCA does not
separate the samples in the directions of the 2nd or the 3rd
axis. These axes by PCA are dispensable with the objective of
visualization for class prediction. In other words, MD-SVMs
gather the plots of the samples into the appropriate clusters of
each class, while PCA rather scatters them. Furthermore, in
the distribution by MD-SVMs for the lung tissues dataset, one
sample outlies from correct clusters (indicated by arrows in
Figure 1-(3)). Though this sample also seems to be an outlier in
the distribution by PCA (also indicated in Figure 1-(4)), the
outlier significantly deviates in MD-SVMs. This may arise
from the fact that MD-SVMs can separate the samples in all
the directions. These observations indicate that MD-SVMs are
well suited for visualizing in binary classification problems.

The significant advantage of MD-SVMs over PCA is the
ability to predict the classes. MD-SVMs can predict the
classes of samples based on the decision functions f*(x)
without extra computation, while PCA cannot. The predicted
class of a sample should be matched by the all the decision
functions in an ideal case. However that does not always occur
as seen in Tables 1 and 2. In such cases, the simplest method
for prediction is to use only the st axis, which corresponds to
the decision function generated by conventional SVMs. The
idea is supported by the fact that the 1st decision function clas-
sifies the samples most correctly in almost all cases in Tables 1
and 2. The more advanced method is weighted voting, Scaling
factor or normalized objective values in problem (5) are the
candidate of the weight.

Multiple decision functions generated by MD-SVMs are
useful for outlier detection. Samples misclassified by mul-
tiple decision functions may be mis-labeled or categorized
into unknown classes. For example, see the column ‘3 axes’
of test sample of the lung tissues dataset with RBF kernel in
Table 2. This sample is misclassified by all decision functions,
so we can say that this data contains some experimental error.
The hierarchical clustering method also supports our result.
These results indicate that MD-SVMs can be used for finding
candidates of outliers.

6 CONCLUSION

For both visualization and class prediction of gene expres-
sion data, we propose a new method called Multidimensional
Support Vector Machines. We formulate the method as a
quadratic program and implement the algorithm. This is
motivated by the following facts: (1) SVMs perform bet-
ter than the other classification algorithms, but they generate
only one axis for class prediction. (2) PCA chooses multiple
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Fig. 1. (Top row) Distribution obtained by MD-SVMs for the leukemia dataset with linear kernel. (Second row) Distribution obtained by
PCA on the leukemia dataset. (Third row) Distribution obtained by MD-SVMs for the lung tissues dataset with linear kernel. The sample
indicated by arrows appears to be an outlier. (Fourth row) Distribution obtained by PCA for the lung tissues dataset. The sample indicated by
arrows is the same as in the third row but with less deviates. (a) Cross shot, (b) 1st axis (x axis) and 2nd axis (y axis), (¢) 2nd axis (x axis) and
3rd axis (y axis), (d) 3rd axis (x axis) and Ist axis (y axis). Black objects and white objects indicate AML samples (or normal tissues) ALL
samples (or cancreous tissues), respectively. Training data and test data are expressed as a sphere and a cube, respectively.

Table 1, Number of classification errors in the MD-SVMs for the leukemia dataset. The columns ‘n-th axis’, n = 1,2, 3, indicates the number of samples

misclassiﬁe_d by n-th decision function. The columns ‘n axes’, n = 1,2, 3, indicates the number of samples misclassified by n decision functions

Kernel Sample # of samples Ist axis 2nd axis 3rd axis 1 axis 2 axes 3 axes
Linear Training 62 0 1 2 1 1 0
RBF Training 62 0 2 7 5 2 0
Linear Test 10 1 1 2 2 1 0
RBF Test 10 0 2 0 2 0 0

Table 2. Number of classification errors in the MD-SVMs on the Iung dataset. See the caption of Table 1 for other explanation

Kernel Sample # of samples Ist axis 2nd axis 3rd axis 1 axis 2 axes 3 axes
Linear Training 170 0 1 1 0 1 0
RBF Training 170 0 3 5 2 3 0
Linear Test 33 1 0 0 I 0 0
RBF Test 33 1 1 1 0 0 1
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orthogonal axes, but it cannot predict classes of samples
without other classification algorithms. We have tried to
cover the shortcomings of both methods. MD-SVMs choose
multiple orthogonal axes, which correspond to decision
functions, from high dimensional space based on a margin
between two classes. These multiple axes can be used for
both visualization and class prediction.

Numerical experiments on real gene expression data indic-
ate the effectiveness of MD-SVMs. All axes generated by
MD-SVMs are taken into account for separating class of
samples, while the 2nd and the 3rd axes by PCA are
not. The samples in the distributions by MD-SVMs gather
into appropriate clusters more vividly than those by PCA.
MD-SVMs can predict the classes of the samples with
multiple decision functions. We also indicate that MD-
SVMs are useful for outlier detection with multiple decision
functions.

There are several future works to be done on MD-SVMs:
(1) application of our method to wider variety of gene expres-
sion datasets, (2) investigation of gene selection for preprocess
of analysis and (3) investigation on class prediction method
with multiple decision functions. Firstly, the use of more
suitable samples may show that the axes chosen by MD-
SVMs separate samples more clearly than those by PCA.
Secondly, since the conventional SVMs show good general-
ization performance especially with large number of features,
it is expected that MD-SVMs show much better performance
than PCA with increasing the number of genes used in the
numerical experiments. Since the element of weight vector
generated by SVMs is one of the measures of discrimina-
tion power of the corresponding genes (Guyon et al., 2002),
that generated by MD-SVMs can be used for gene selec-
tion. Thirdly, the classification with probability as well as
the weighted voting mentioned in Section 4 may be achieved
in our scheme since the conventional SVMs have been already
expanded for the purpose with sigmoid functions (Platt, 1999).
We hope that our method sheds some lights on the future study
of gene expression experiments.
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0 CASE REPORT O

Re-entry Circuit in Ventricular Tachycardia Due to
Focal Fatty-fibrosis in a Patient with Myotonic Dystrophy

Hideyuki MURAOKA, Nobuyuki NEGORO, Fumio TERASAKI*, Takahiro NAKAKOJI,
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Abstract

A 69-year-old man with a recurrent ventricular tachy-
cardia (VT) was admitted. The patient was diagnosed as
myotonic dystrophy type 1 (DM1) and DNA analysis re-
vealed 1,800 CTG-repeat expansion in the myotonic dys-
trophy protein kinase (DMPK) gene. Ultrasonic cardio-
gram (UCG), left ventriculogram (LVG) and magnetic
resonance imaging (MRI) did not show any abnormal
sign including fatty infiltration. But, endomyocardial bi-
opsy obtained from ventricalar outflow tract revealed se-
vere fatty infiltration and interstitial fibrosis. Radio-
frequency catheter ablation at the biopsy site could
eliminate VT, so it was strongly suggested that the re-
entry circuit was formed by focal fatty-fibrosis. Careful
observation should be continued for a long period.
(Internal Medicine 44: 129-135, 2005)

Key words: myotonic dystrophy, endomyocardial biopsy,

fatty-fibrosis, catheter ablation, ventricular
tachycardia
Introduction

Myotonic dystrophy type 1 (DM1) is an autosomal domi-
nant disorder, which is caused by the unstable expansion of
a CTG trinucleotide repeat located in the 3° untranslated re-
gion of the gene encoding DM protein kinase (DMPK) on
chromosome 19q13.3 (1-5). DM1 is characterized by myoto-
nia, progressive muscular weakness and atrophy. In addition
to its neuromuscular features, there is a broad spectrum of
clinical features, such as cataracts, frontal baldness, ptosis,
testicular atrophy and various cardiovascular symptoms (6).
DMI is the commonest muscular dystrophy occurring in

adult life and cardiac symptoms have been reported in 7 to
23% of these patients (7, 8). Most cardiac events consist of
impairment of the cardiac conduction system including bun-
dle branch block or atrioventricular block. These are few re-
ports of ventricular tachycardia (VT), whereas ventricular
arrhythmias play a major role in the mortality of these pa-
tients (9-13). Unfortunately, pharmacological therapies have
not significantly improved the prognosis (14), possibly due
to the massive fatty fibrosis in the cardiac muscle. Here, we
describe a case of DM1 with ventricular tachycardia caused
by re-entry circuit, which was successfully relieved by cathe-
ter ablation.

Case Report

A 69-year-old man with a history of recurrent wide QRS.
tachycardia since December, 2000 was admitted to our hos-
pital for further examination on January 31, 2002. The pa-
tient developed gait disturbance over a 10-year period and
was diagnosed as having DM, on the basis of DNA analysis
that revealed a heterozygous 1,800 CTG-repeat expansion in
the myotonic dystrophy protein kinase (DMPK) gene on
chromosome 19q13.3. Two of the patient’s brothers and his
son were also diagnosed as having DM1. We could not de-
termine whether or not two of the patient’s brothers had
heart diseases and abnormality in DNA analysis or not, be-
cause they had died from suffocation many years ago previ-
ously. But his son, who does not have any cardiovascular
symptom, has an about 600 CTG-repeat expansion in the
DMPK gene in DNA analysis. At the time of the patient’s
palpitation attack an electrocardiogram (ECG) showed wide
QRS tachycardia, which was eliminated spontaneously.

On admission, the patient’s blood pressure was 122/76
mmHg, pulse rate was 72 beats/min and regular, and body
temperature was 36.0°C. Physical examination revealed
frontal baldness, a cataract, ptosis, atrophy of the zygomatic

From the First Department of Internal Medicine and *the Third Department of Internal Medicine, Osaka Medical College, Takatsuki
Received for publication May 10, 2004; Accepted for publication September 21, 2004 _
Reprint requests should be addressed to Dr. Hideyuki Muraoka, the First Department of Internal Medicine, Osaka Medical College, 2-7 Daigaku-machi,

Takatsuki 569-0801

Internal Medicine Vol. 44, No. 2 (February 2005)

129

-647-



MURAOKA et al

Figure 1. Electrocardiography of this patient

muscle and sternocleidomastoid muscle, all of which were
characteristic of the DMI phenotype. Medical Research
Council (MRC) scale was 3-4/5 in the upper and lower
limbs, and both grip and percussion myotonias were ob-
served. Laboratory data indicated the presence of diabetes
mellitus (FBS 172 mg/dl, HbAlc 9.1%). ECG showed PR
prolongation, left axis deviation, and clockwise rotation at
rest (Fig. 1A) and it revealed that QRS polarity during
tachycardia (180 beats/min) was left bundle branch block
form with atrioventricular dissociation. Thus, we considered
this tachycardia was VT from the right ventricular outflow
tract (Fig. 1B). The chest X-ray did not show cardiomegaly,
but a coin lesion due to a previously diagnosed calcified
epithelial tumor, was detected in the right middle lung field
(Fig. 2A, arrow).

The ultrasonic cardiogram (UCG) did not show any ab-
normal findings (data not shown). Magnetic resonance imag-
ing (MRI) of the heart showed neither dilatation nor diffuse
fatty infiltration in the right ventricle (Fig. 2B, C). Cardiac
catheterization revealed no abnormality, a mean pulmonary
capillary wedge pressure of 5 mmHg and left ventricular
pressure of 124/2 mmHg (end-diastolic pressure 7 mmHg).
Cardiac index measured by thermodilution method was 3.13
I/min/m*. Ventriculography showed normal bilateral ven-
tricular wall-motion and cavity size (Fig. 2D~G). No signifi-
cant stenotic lesions of coronary artery existed (data not
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at rest (A) and during palpitation attack (B).

shown).

Histological examination of endomyocardial biopsy speci-
mens obtained from the septum near the outflow of the right
ventricle showed severe fatty infiltration, increased intersti-
tial fibrosis, atrophy and disarrangement of myocardial cells
(Fig. 3A, B). However, biopsy specimens obtained near the
apex of the right ventricular septum did not show any change
of myocardial cells. Next, an electrophysiological study was
performed to examine the mechanism of the ventricular
tachycardia. VT was easily induced by a single programmed
stimulation from the right ventricular apex (coupling interval
350 msec), but it was not sustained for long (Fig. 4). The
QRS wave form during VT induced by single programmed
stimulation (Fig. 5) was the same as the clinical VT on 12-
lead ECG (Fig. 1B). The local potential which was 32 msec
earlier than the onset of QRS during VT was recorded at the
septal side of the right ventricular outflow tract (Fig. 6).
Precise activation mapping was impossible because of the
shortness of VT duration in this session, so we could not de-
tect the site of critical slow conduction, the perfect pace-
mapping (Fig. 7) site and the earliest activation site were the
targets of catheter ablation and entrainment with concealed
fusion was confirmed in the same site. Thus, the mechanism
of this VT was considered to be re-entrant. VT was termi-
nated with radiofrequency current application (Max. 40W,
and 50°C, respectively) in 12 seconds. (Fig. 8) to the focus,
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Figure 2. Chest X-ray demonstrated the presence of a coin lesion due to a calcified epithelium tumor in the right middle lung field
(arrow), but not cardiomegaly (A). Magnetic resonance imaging of the heart did not show any fatty-fibrosis (B, C). The
ventriculogram (left side; D and E, and right side; F and G) showed normal bilateral ventricular wall motion and cavity size. The
upper panels indicate the diastolic phase (D and F) and the lower panels indicate the systolic phase (E and G).

Figure 3. Histological findings of endomyocardial biopsy specimens of the right ventricular septum. Severe fibro-fatty replace-
ment (A) and disarrangement of myocardial cells (B) are observed (A: Azan stain, x40, B: HE stain, x100).

that was the same site of endomyocardial biopsy and we
have found no recurrence in 2 years.
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Figure 8. Ventricular tachycardia was terminated by radiofrequency applications (arrow).

Discussion

Conduction disturbance is a well-known cardiac involve-
.ment in patients with DM1 because fibrosis and fatty infiltra-
tion are often seen in the conduction system (15). Further-
more, histological changes are also seen in the working
myocardium (16). Nguyen et al reported that fibrosis of the
ventricular myocardium was seen in eleven, fatty infiltration
was seen in nine, and cardiomyocyte hypertrophy was seen
in seven out of twelve autopsy cases of myotonic dystrophy
(15). These results suggest that fatty-fibrosis may become a
point of origin of ventricular arrhythmia. Several authors
have reported that the mechanism of VT in DMI might be
due to His-Purkinje conduction delay caused by massive
fatty fibrosis (11, 13). Additionally, it was recently reported
that the focal faity degeneration of the right ventricle could
be demonstrated by MRI in patients with DM1 (17). This
suggests that the re-entry circuit could be formed in this site
and may become a mechanism of VT. In the present case,
UCG, ventriculography, and MRI did not show any dilata-
tion or obvious fatty infiltration of the right ventricle.
However, biopsy specimens obtained from the right ven-
tricular septum showed severe fatty infiltration, increased in-
terstitial fibrosis, atrophy and disarrangement of myocardial
cells, which appeared to be consistent with DMI. Interest-
ingly, the re-entry circuit was confirmed in the septal side of
the right ventricular outflow tract, which coincided with the
biopsy site. It was suggested that the re-entry circuit was
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formed by focal fatty-fibrosis.

The unstable expansion of CTG triplet repeats in the
uncoding region of the DMPK-gene is considered to be re-
sponsible for the pathological changes associated with this
disease (1-5). These changes are not mediated by the DMPK
gene itself but by a toxic gain-of-function effect caused by
the expanded CTG repeat in the mutant DMPK mRNA. The
correlation between CTG-repeat length and the extent of
multisystemic disorders in DMI remains unknown. Some
authors have reporied that CTG-repeated length correlated
well with disease severity in DM, but others have reported
that it did not correlate with cataract, myotonia, or cardiac
disease (18, 19). In the present patient, a heterozygous and
quite long, about 1,800, CTG-repeat expansion in DMPK
gene was demonstrated on chromosome 19q13.3. The sever-
ity of the DM1-related extra-cardiac events in this patient; at-
rophy of the zygomatic muscle seemed to correlate well with
CTG-repeat expansion as reported in the previous studies.

Regarding cardiac involvement, Tokgozoglu et al reported
that myocardial wall motion and abnormalities in the electro-
cardiogram correlate with CTG-repeat length (20), whereas
Lazarus et al reported that impediment of the atrioventricular
conducting system does not correlate with CTG-repeat
length (21). It remains uncertain whether this patient’s car-
diac involvement is severe or not; that is the patient has a po-
tentially lethal arrhythmia, and the fatty infiltration was
detected by biopsy of the cardiac muscle, but not detected by
MRI. All reports concerning the correlation between CTG-
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repeat and disease severity were based on the analysis of
CTG repeats expansion in each patient’s leukocyte rather
than in cardiomyocytes. We should focus on CTG repeats in
cardiomyocytes when we make an attempt to investigate
about the correlation between cardiac involvement and the
CTG repeats expansion, as it was recently reported that so-
matic instability is often seen in patients of DM1 (22, 23).

Implantation of an implantable cardioverter defibrillator
(ICD) should be considered to treat VT in patients with
DM, because massive fatty fibrosis in cardiac muscle is
often responsible for VT in such cases and several pharma-
cological treatments have not improved their prognosis.
There are several reports of successful catheter ablation
against VT in DMI (13, 24), but, the long-term prognosis
has not yet been determined. In the present case, catheter ab-
lation therapy was very useful in reentrant VT (25) and a
good long-term prognosis is anticipated, as this case did not
show obvious fatty infiltration of the right ventricle on MRI.
Catheter ablation resulted in a radical cure of VT, buf we
should continue to carefully follow this patient carefully for
a long period.
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