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Significant underexpression of some genes, such as those
marked as Group o in Fig. 24, is observed in both poorly
and moderately differentiated samples. Such genes include
SLC22A1 (solute carrier family 22, member 1), CYP2A6
(cytochrome P450, subfamily IIA, polypeptide 6), CYP2A7
(cytochrome P450, subfamily IIA, polypeptide 7), ALB
(albumin), and FETUB (fetuin B), etc. Genes in Group B
show a tendency of increased expression in the order of
poorly, moderately, and well-differentiated tumors. This
group includes ADHIA (alcohol dehydrogenase 1A), HFL3

(H factor (complement)-like 3), and AFM (afamin), etc. For -

some genes, significant variations in expression in moder-
ately differentiated samples are observed,

Many of these genes are related to the function of
hepatocyte cells. ‘Using the Onto-Express software [24]
based on the Gene Ontology database, we confirmed
statistically significant overrepresentation of functional
categories like immune response (N = 9, P < 0.0002),
oxidoreductase activity (N = 7, P < 0.0002), lipid trans-
porter activity (N = 4, P < 0.00001), and so on
(Supplementary Fig, 7A).

A small number of genes marked as Group v are highly
expressed in poorly differentiated samples, but not in well-
differentiated samples or normal livers. These genes are
tissue-specific genes for fetal liver. Among these genes are
AFP (alpha-fetoprotein), FACL4 (fatty acid—coenzyme A
ligase, long-chain 4), MKI67 (antigen identified by mono-
clonal antibody Ki-67), and MCM7 (MCM?7 minichromo-
some maintenance-deficient 7). Among these genes, AFP
and Ki-67 are known markers whose high expression is
related to poor prognosis [48,49].

Note that the 64 transcripts shown in Fig. 2A are selected
through two criteria: they are specifically expressed in
normal liver, and their expression varies among HCC
samples. These 64 transcripts represent only a small part of
175 liver-specific genes. There are other liver-specific genes
that are still highly expressed even in poorly differentiated
samples. As shown in Supplementary Fig. 8, even poorly
differentiated HCCs do not lose completely their liver-
specific expression of many genes. This observation gives us
some justification for using tissue-specific expression sig-
natures in the interpretation of expression data to address
some other questions such as the identification of the origin
of tumors. This will be discussed in the following sections.

Neuronal and glial-specific expression signatures in brain
tumors

Next, we study the expression of brain-specific genes in
embryonal tumors of the central nervous system (CNS). We
use dataset A of Pomeroy et al. [25], which consisted of
medulloblastoma (MD, N = 10), supratentorial primitive
neuroectodermal tumor (PNET, N = 6), CNS atypical
teratoid/thabdoid tumor (CNS AT/RT, N = 5), renal and
extrarenal AT/RT (N = 5), nonembryonal malignant glioma
(MG, N = 10), and normal cerebella (N = 4). From the

dataset, the original study reports that medulloblastomas are
molecularly distinct from other brain tumors.

From our list of brain-specific genes, we retrieved data
from this dataset and performed unsupervised clustering.
As shown in Fig. 3A, the samples are divided into two
major groups. The glioma and medulloblastoma group
shows high expression of many brain-specific genes,
which is not observed in the PNET and AR/AT groups.
With our gene subset, no difference is observed between
CNS and non-CNS AR/AT tumors. Malignant gliomas and
medulloblastomas are further distinguished by their high
expression of two clusters of genes marked as Cluster «
and Cluster B, respectively. Includéd in Cluster o are
genes such as GFAP (glial fibrillary acidic protein) and
OLIG2 (oligodendrocyte lineage transcription factor 2),
which are known to be markers of glia cells. On the other
hand, genes in Cluster 3 are mainly neuron related. For
Cluster B genes, functional analysis with Onto-Express
software [24] also revealed statistically significant enrich-
ment of genes with functions related to transmission of
nerve impulses (N = 6, P < 0.00005), neurophysiological
processes (N = 6, P < 0.003), and neurontransmitter
transport (N = 2, P < 0.002) as shown in Supplementary
Fig. 7B. Therefore, our clustering results suggest that
glioma and medulloblastoma carry expression signatures
of glia and neuron cells, respectively.

For further confirmation, we plotted the expression
pattern of these genes in different parts of the normal
nervous system (Fig. 3B). Clearly, genes in Cluster o are
highly expressed in corpus callosum and spinal cord while
genes in Cluster B are specifically expressed in thalamus,
cerebellum, hippocampus, and amygdala. As spinal cord
and corpus callosum are enriched in glias and contain less
nerons, this result clearly indicates that gliomas carried a
glia-specific expression signature and medulloblastoma
show neuronal origin, which is in agreement with the
current understanding of the origins of these tumors.
Therefore, comparative analyses of normal and cancer
expression profiles are useful for studying the cell lineage
of tumors.

Breast tumors with two distinct types of differentiation

To study the expression of breast-specific genes in breast
cancer, we started with a list of 57 genes that are breast
specific or breast selective (highly expressed in several
tissues including the breast). From this list, we selected 26
genes that show significant variation in expression among
the 21 breast cancer samples in the dataset of Su et al. {21 1
The expression of these genes in our normal tissue database
is shown in Fig. 4A. Among these genes are several
keratins (KRT14, KRT15, and KRT17) that are highly
expressed in the skin and breast. Another important gene in
the list is estrogen receptor 1 (ESR1) that is defined as a
tissue-selective gene for the breast and uterus. In addition
to these 26 genes, we intentionally included three more
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Fig. 3. (A) Expression of brain-specific genes in various types of brain tumors. The samples are divided into two major groups, a glioma and medulloblastoma
group, and a PNET and AR/AT group. The first group shows higher expression of many brain-specific genes while the second does not. Within the first group,
malignant gliomas and medulloblastomas are characterized by their high expression of two clusters of genes marked as Chuster o and Cluster B, respectively.
(B) The expression pattern of Group « and 8 genes in different parts of the normal nervous system. Genes in Cluster o are highly expressed in corpus callosum
and spinal cord while genes in Cluster p are specifically expressed in thalanus, cerebellum, hippocampus, and amygdala,

keratin genes, KRT5, KRTS, and KRTI18 as markers for
different epithelial cells [53]. Although they are not in our
list of breast-specific or breast-selective genes, their
expression levels are also higher in the breast than in most
other tissues (Fig. 4A) and are added for the discussion on
tumor origin.

We then performed clustering analysis of these 29 genes
in 21 breast cancer samples from the dataset of Su et al.
[21]. The result is shown in Fig. 4B. Surprisingly, these
genes form two groups. Overexpression of these two groups
in cancer samples seems to be mutually exclusive. This is
quite different from the univariant behavior of liver-specific
genes in liver cancers, in which the expression levels of

liver-specific genes are increased as one group from poorly
differentiated to well-differentiated tumors. Breast tumors
seem to have two distinct types of differentiation.

This interesting expression pattern is confirmed by two
larger breast cancer datasets shown in Figs. 4C and D. In
these two figures, hierarchical clustering of the samples is
performed while the genes are arranged in the same order
as in Fig. 4B (same for Figs. 4A and 4E). Note that the
dataset of Perou et al. [26] shown in Fig. 4C is obtained
with ¢cDNA microarrays while the dataset of van’t Veer et
al. [2] in Fig. 4D is based on a kind of oligonucleotide
microarray that is different from the Affymetrix GeneChip
used by Su et al. in Fig. 4B. Moreover, patient samples are

Fig. 4. Expression of breast-specific genes in breast cancer. (A) Expression pattern of these genes in normal tissues. (B) Hierarchical clustering analysis of the
expression data of these genes in 21 breast cancer samples from the dataset of Su et al [21]. Note that the resultant order of genes is used throughout this figure.
(C) Expression of these genes in a breast cancer dataset of Perou et al. [26]. In the color bar for clinical ER status, blue indicates ER positive and red indicates
ER negative. In the color bar for p53 mutation, black and white indicate the presence and absence of p53 mutations, respectively. In both color bars, gray
indicates that the information is not available. (D) Expression of these genes in the dataset of Van'T Veer et al. [2]. ER status and mutations of BRCA | and

status of distant metastases are indicated at the bottom using the same coloring scheme as in C. (E) Expression of these genes in breast basal epithelial cell lines
(red), breast Juminal epithelial cell lines (blue), and other types of cell lines (grey). Data are from Ref. [26].
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collected by three different laboratories from different
populations. Despite these differences, the same pattern is
observed in three independent datasets. All these data
suggest that breast cancers could exhibit two types of
differentiation.

To gain insight into the two types of cancers, the
expression of these 29 genes in various cell lines is shown
in Fig. 4E (data from Ref. [26]). It is found that the two
types of gene expression pattern correspond well to breast
basal epithelial cell lines (HMEC and 184Aa) and luminal
epithelial cell lines (MCF7, T47D, BT-474, and SK-ER-3),
respectively. Such expression patterns are not observed in
other types of cell lines such as those derived from breast
carcinosarcoma (Hs578T), shown on the right side of Fig.
4E. This is also consistent with the expression pattern of
several markers for different cell types in the breast.
Keratins 5/6 and 17 are conventional markers for breast
basal epithelial cells while keratins 8 and 18 are markers for
breast luminal epithelial cells. Therefore, breast cancer
samples can exhibit basal-like differentiation or luminal-
like differentiation.

Combined with clinical information given at the bottom
of these figures, we observed that a basal-like expression
pattern is usually seen in ER— breast cancers while a
luminal-like expression pattern is mostly observed in ER+
breast cancers. In addition, there are some ER— samples that
show neither basal nor luminal differentiation, which are
shown on the right sides of Figs. 4C and D. Some of them
are characterized to overexpress erbB2 [26,27]. While the
basal-like group is homogeneous, luminal like samples are
heterogeneous and might be further divided into several
subtypes [27]. Our result agrees with previous report that
gene expression patterns of breast cancer are divided into
two big clusters in association with ER status [2,26]. ER+/
luminal subtypes of breast cancers usually have a good
prognosis while those with an ER—/basal-like expression
pattern are more invasive. This has been observed repeat-
edly in several studies (see s.1b in Ref. [26], Fig. 1a in Ref.
[2], and Ref. [32]).

For many of the genes shown in Fig. 4, differential
expression in ER+ and ER— tumors has been reported
previously [2,26]. Our results linked such observations with
their expression pattern in normal tissues: many of the
differentially expressed genes between subtypes of breast
tumors are highly expressed in normal breast. It is surprising
that a small set of breast-specific genes seems to contain
genes highly expressed in both ER+ and ER— tumors, in a
seemingly unbiased manner.

The normal breast epithelium consists of a luminal
epithelial layer and a basal myoepithelial layer. RNA
samples for the normal breast are extracted from this
heterogeneous tissue as a mixture of these microscopic
organizations. Hence both basal and luminal cells contribute
to the tissue specificity observed in the gene expression
pattern. Breast-specific genes actually contain basal-specific
and luminal-specific genes as shown by the cell line data in
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Fig. 4E. Since breast tumors could display basal- or luminal-
like differentiation, we could separate these two types of
tumors with a small set of breast-specific genes. This is a
phenomenological explanation for the expression pattern in
Fig. 4.

Our observation seems to suggest that these two types of
breast tumors might originate from different cell types
within the normal breast epithelium. But it might also be
possible that they all come from the same myoepithelial
cells and some later undergo a drastic change in global gene
expression during progression of dedifferentiation. Further
discussion is available in the Supplementary Information.
Whatever the molecular mechanism, our analysis revealed
that breast tumors exhibit two types of differentiation that
could be related to two types of epithelial cells within the
normal breast.

Heterogeneity of lung cancers

The following two sections deal with lung cancer, which
is more heterogeneous than liver and breast cancers
discussed above. We reanalyzed a dataset of lung cancers
(N = 186) and normal lung (N = 17) [28]. The cancer
samples are histologically divided into lung adenocarcino-
mas (AD, N = 127), squamous cell lung carcinomas (SQ,
N = 21), pulmonary carcinoids (COID, N = 20), small-cell
lung carcinomas (SCLC, N = 6), and other adenocarcinomas
(N = 12). For each sample, gene expression data of 12,600
transcripts are also obtained with U95A oligonucleotide
arrays. This array covers 22 of the 32 lung-specific genes
identified in the present study. About 77% (17/22) of these
transcripts are called present in all 17 normal lung samples.
In contrast, most of them (68%) are called absent in at least
7 of the 8 normal liver samples noted in theprevious section
[28]. A similar percentage (64%) of these genes are absent
in at least 40 of the 50 normal prostate samples in another
microarray dataset [29].

Because there are so few lung-specific transcripts and
lung tumors are known to have greater heterogeneity,
expression data are retrieved from this dataset for our list
of 2503 tissue-specific and tissue-selective genes associated
with all tissue types. Hierarchical clustering is performed
after variation filtering. From the result shown in Fig. 5, we
noted several features. First of all, high expression of lung-
specific genes is observed in normal lung and some
adenocarcinomas. Expression of those genes varies among
adenocarcinomas, indicating degree of differentiation, as
discussed in the case of liver cancer.

Another feature is high-level expression of skin-specific
genes in SQ samples. Such genes include galectin 7
(LGALSYT), desmoglein 3 (DSG3), plakophilin 1 (PKPI),
and keratin 16 (KRT16). KRT16 is a member of keratin
family known as markers for squamous tumors. When
analyzed with Onto-Express software, this gene list shows
strong correlation with ectoderm development (N = 5, P =
0.0}, and contains many cytoskeleton genes (N = 6, P <
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Fig. 5. Clustering analysis of a dataset of lung cancer using all 2503 of the tissue-specific/selective genes. Branches are marked according to clinical diagnosis:
normal lung (NL), gray; lung adenocarcinoma (AD), black; squamous cell lung carcinomas (SQ), yellow; pulmonary carcinoids (COID), blue; and smail-celi
lung carcinomas (SCLC), green. Some lung adenocarcinoma samples are diagnosed as colon metastasis (CM, pink), or breast metastasis (BM, red). Gene
groups: o, a set of colon/intestine-specific genes highly expressed in CM samples; p, six breast-specific genes highly expressed in a BM sample; v, two breast-
specific genes and some genes highly expressed in fetal tissues. As marked at the left side, this figure also shows higher expression of brain-specific genes in
COID and SCLC samples and skin-specific genes in SQ samples. In addition, one AD sample shows very high expression of dozens of liver-specific genes.

0.00012). The high expression of skin-related genes in SQ
samples is reasonable as this type of lung tumor is belicved
to originate from bronchial epithelium.

Similarly, high-level expression of brain-specific genes is
observed in COID samples. Typical genes include GRIA2
(glutamate receptor, ionotropic, AMPA 2), SLC4A3 (solute
cartier family 4, anion exchanger, member 3), SYTI
(synaptotagmin I), SNAP25 (synaptosomal-associated pro-
tein, 25 kDa), and APLP1 (amyloid beta (A4) precursor-like
protein I), ete. Part of these genes, such as SYT1, SNAP25
and APLP1, are also highly expressed in SCLC. This gene
cluster overlaps with the Cluster « in Fig. 3; functional
analysis with Onto-Express also confirmed strong link to
neurogenesis (V = 3, P < 0.00034). Such observations agree
with general understanding that SCLC and COID are
neuroendocrine tumors.

In summary, we observed higher expression of lung-
specific genes in AD cancers, skin-specific genes in SQ
cancers, and brain-specific genes in SCLC and COID. These
expression signatures reveal the origin and cell lineage of

these tumors, which illustrated the usefulness of studying
tissue-specific gene expression in cancers.

Primary sites of metastatic cancer

We identified a set of colon/intestine-specific genes that
are highly expressed in a cluster of 12 samples (Group o in
Fig. 5). Clinical and histological information shows that 7 of
these samples are metastases of colon cancer. Therefore, this
cluster may represent metastatic cancer from the colon.

In the original study, it is found that these samples form a
cluster with quite different expression signatures from other
lung cancer samples and that these tumors express some
genes (such as galectin-4, cadherin 17. and c-myc) that are
known to be overexpressed in colon carcinoma. These
authors concluded that this cluster of 12 samples may be
colon metastasis. In our study, the high-level expression of
dozens of colon/intestine-specific genes lead us to a similar
conclusion. While their conclusion is based on reported
markers from the literature, ours solely makes use of a gene

-623-



136 XJ. Ge et al. / Genomics 86 (2005) 127—-141

expression database of normal tissues. So our approach
might be helpful for the diagnosis of metastatic cancer from
organs that are not as well-studied as colon cancer.

We also observed overexpression of several liver or fetal
liver-specific genes in one lung tumor (AD368). This is also
noted in the original study, as some of these genes such as
albumin are associated with liver. Although this sample is
not clinically identified as metastasis, it carries a liver-
specific expression signature, which can be clearly seen in
the middle of Fig. 5.

Metastatic cancers from some other organs could be
difficult to identify. For example, the dataset contains one
sample (AD352) that is diagnosed as breast metastasis and
another three samples (AD163, AD186, and ADI172) as
probably breast metastasis. Of these four samples, only one
(AD163) showed high expression of six breast-specific
genes including ESR1. These genes are marked as Group B
in Fig. 5. The other three samples do not have such an
expression signature. However, two of them (AD352 and
ADI186) are found in a cluster of eight samples, charac-
terized by high expression of a group of nine genes (Group
v), including two breast-specific genes, SFRP1 and
GABRP; this indicates a weak breast-specific expression
signature. This group also includes several genes that are
highly expressed in fetal tissues: p311, AF1Q (ALLI-fused
gene from chromosome 1q), TMSNB (Thymosin, beta), and
MDFI (MyoD family inhibitor). This seems to suggest that
these tumors are more aggressive and that they might be
metastasis from distant organs.

A closer look at the genes in Groups B and vy revealed
something interesting. In the previous section we show that
breast tumors could have two distinct differentiations. In
fact, all of the six breast-specific genes in Group B belong to
those given in the lower part of Fig. 4B, characteristic of a
luminal/ER+ tumor type. Thus AD163 is probably meta-
stasis of a luminal-like/ER+ breast cancer. On the other
hand, Group <y genes include two breast-specific genes,
SFRP1 and GABRP, which are characteristic of basal-like/
ER— tumors. Therefore the samples AD352 and AD186
might be from this tumor subtype. Because the expression
pattern of the two subtypes of breast tumors are quite
different, AD163 are found in a different branch of the
clustering tree in Fig. 5. This might explain why it is difficult
for original authors [28] to identify such breast metastasis.

For confirmation, we constructed a set of marker genes
based on results shown in Figs. 4 and 5. Markers for two
types of breast cancers are the same as in Fig. 4, while those
for colon and liver cancers are selected from the highlighted
regions of Fig. 5. In addition, 19 markers for lung
adenocarcinoma are taken from Ref. [21]. As shown in
Fig. 6A, these genes are specifically expressed in primary
colon, breast, liver, and lung cancers in the dataset of Su et
al. [21].

Then we examined the expression of these genes in the
lung cancer dataset of Bhattacharjee et al. [28]. For
simplicity, only those diagnosed as lung adnocarcinoma
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are examined. As shown in Fig. 6B, we observed higher
expression of a colon-specific gene cluster in 12 lung
tumors, most of which are diagnosed as colon metastasis.
We also observed overexpression of dozens of liver-specific
genes in one sample (AD368). In agreement with clinical
diagnosis, one sample (AD163) clearly shows an expression
pattern similar to that of luminal-like breast cancer. Mean-
while, three samples (AD352, AD186, and AD131) exhibit
expression signatures of basal-like breast cancer. Two of
them (AD352 and AD186) are diagnosed as breast meta-
stasis. Totally, we identified 17 tumors that might have
originated from distant organs. Nine of them are confirmed
by clinical diagnosis. All of these 17 samples show
underexpression of genes specific for lung adenocarcinoma
(Fig. 6B). Therefore, the expression pattern of these marker
genes provides useful information about tumor origin.
Sample AD172 was diagnosed as probably breast meta-
stasis, but did not show either of the two breast-specific
expression patterns. On the contrary, AD131 was diagnosed
as primary lung adenocarcinoma, but shows an expression
profile similar to that of basal-like breast cancer. These are
some discrepancies between our prediction and diagnosis.
With these marker genes, it is possible to train some
machine-learning algorithms to predict tumor origins. The
data shown in Fig. 6A were used to frain a prototype
matching algorithm described in Ref. [44] (available at
http://www.jsbi.org/journal/GI14.html), which is similar to
the one proposed in Ref. [45] but emphasizes the minimi-
zation of false positive errors. When tested with the lung
dataset of Fig. 6B, the algorithm makes confident predictions
for 16 of the 17 secondary tumors in agreement with clinical
diagnosis. Only three false positive predictions are made for
the remaining 112 primary lung adenocarcinomas. There-
fore, with a set of carefully selected tissue-specific genes, it
is possible to predict the origin of tumors with high accuracy.

Discussion

Through expression profiling of a spectrum of normal
human tissues, we identified sets of tissue-specific genes,
and then studied their expression in cancers by analyzing a
wealth of previously published DNA microarray datasets.
Through unsupervised clustering of tissue-specific genes
differentially expressed in tumors from the same anatomical
site, we identified groups of coexpressed genes character-
istic of different cell types within the organ, thus revealing
cell lineage of tumor subtypes. Similar observations are
made in liver, brain, and breast, as well as lung tumors.

The expression pattern of tissue-specific genes in
tumors could be univariant (liver cancer), bivariant (breast
cancer), or multivariant (brain and lung cancers). We
identified a set of liver-specific genes whose expression in
HCC changes according to the degree of tumor differ-
entiation (Fig. 2). This set of genes can be used to classify
tumors into differentiation categories more accurately than
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Colon Breast! Breast2 Liver Lung (AD)

TQ Lung (AD)

Fig. 6. Prediction of tumor origin with selected markers genes. Predictor genes for colon and liver cancers are selected from the result shown in Fig. 5, while
those for two major types of breast cancers are from Fig. 4. Predictors of lung adenocarcinoma are from Ref. [21]. (A) Expression of these genes in the dataset
of primary colon, breast, liver, and lung cancers (data from Ref [21]). (B) The expression of these genes in the dataset of lung tumor dataset {28]. Some
samples are diagnosed as colon or breast metastases, indicated by red and green, respectively.

using the global expression profile. For brain tumors, we
identified neuron-specific expression signatures in medul-
lobrastoma and glia-specific signatures in glioma. No such
feature is observed for rhabdoid and PNET. We also found
a small set of 26 genes that are highly expressed in the
normal breast but are divided into two groups, whose
expression in breast tumors is mutually exclusive and
defines two types of differentiation (Fig. 4). We observed
that different subtypes of lung cancers show different
patterns of tissue specificity. e.g., high expression of skin-
specific genes in SQ and high expression of brain-specific
genes in SCLC and COID (Fig. 5). In addition, expression
signatures of primary sites is detectable in lung tumors
originating from colon, liver, and breast. Notably, we were
able to detect lung tumors with expression profiles
resembling two subtypes of breast cancers. Summarizing
these results, we selected molecular markers that can be
used to predict tumor origins (Fig. 6).

DNA microarrays are powerful tools for studying cancer.
But biological interpretation of the obtained levels of gene

expression is often challenging. Our work shows that
categorization of genes according to their tissue specificity
is usetul for the interpretation of the data of cancer. Starting
from a small set of a normal tissue gene expression dataset,
we reanalyzed multiple cancer datasets of liver, breast,
brain, and lung cancers, and obtained valuable information
on tumor differentiation, molecular heterogeneity, and
tumor origin. Such information is often difficult to extract
when each dataset is analyzed independently in a stand-
alone manner. This illustrated the far-reaching benefits of
systematic studies on normal tissues. The creation of a
collective normal control panel that includes gene expres-
sion datasets of a spectrum of normal tissues is beneficial for
research on tumors in all organs.

As a proof-of-concept study, the present work used
pooled RNA to reduce the cost of biological replicates, a
strategy supported by some recent comparative studies
[46.47]. Although we showed that our list of tissue-specific
genes are already useful for analyzing gene expression data
of various cancers, further work is needed to refine these
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lists by including biological replicates in a systematic study
on normal tissue gene expression. During the preparation of
the current manuscript a larger database of normal tissue
gene expression was published (see Ref. [52]).

As tumors are the result of uncontrolled proliferation of
certain cells within an organ, they are more homogeneous
than normal organs and could serve as natural subject for
studying expression signatures of individual cell types. The
expression patterns shown in Fig. 2 to Fig. 5 contain many
well-known markers for different cell types, such as ALB
for heptocyte, GFAP and OLIG2 for glia cells, and the
keratin genes for basal and luminal epithelial cells. Other
genes in the list might serve as potential candidates for new
markers. It might be possible to take advantage of the
homogeneity of cell population in tumors and gain insights
on expression signatures of different cell types from the
expression profiles of tumors.

As these expression patterns are cell-type specific, we
should be able to detect common transcription factor
binding motifs on the promoter regions of these genes in
the human genome. For the gene lists shown in Figs. 2, 3,
and 4, we extracted upstream sequences and compared the
occurrence of known transcription factor motifs with a
group of control genes (see Supplementary Information
for more details). We found statistically significant
enrichment of motifs for hepatic nuclear factors (HNFI,
HNF3, HNF4, and HNF6) in the hepatocyte-specific
genes (Fig. 2), and neuron-restrictive silencer factor
(NRSF) for neuron-specific genes marked as Group B in
Fig. 3. Without the combination of normal and cancer
expression profiles, such regulatory motifs would be more
difficult to detect.

In summary, we demonstrated the importance of inte-
grating tissue specificity into the interpretation of the
expression profiles of tumors, especially for the study of
tumor differentiation, cell lineage, and metastasis. System-
atic, large-scale studies on normal tissue gene expression
profiles could both give rise to baseline controls in basic
data analysis and be used to define each gene’s breadth of
expression in normal tissues. Knowing how genes are
expressed under normal physiological conditions is impor-
tant for dissecting complicated cancer transcriptomes.

Materials and methods
Sample preparation

Twenty-five total RNA specimens were purchased from
Clontech (Palo Alto, CA), Ambion (Austin, TX) and
Strategene (La Joila, CA). In order to define breadth of
expression accurately at a reasonable cost, we tried to
cover as many tissue types as possible by using pooled
RNA samples. Each specimen represents a human organ.
We used RNA samples pooled from 2 to 84 donors to
avoid differences at the individual level. But still many

-626-

specimens from single donors are included because of the
difficulty in obtaining healthy tissues. We also purchased
seven poly(A) RNA specimens of spinal cord and several

- brain regions such as corpus callosum, hippocampus,

thalamus, pituitary gland, caudate, and amygdala. In
addition to these purchased RNAs, we obtained tissue
specimens of liver, stomach, lung, and fetal lung from
individuals with informed consent. The specimens were
immediately preserved in liquid nitrogen for further
analysis. Total RNAs were extracted from these specimens
by using ISOGEN (Isogen Life Science, Industrieweg 66-
68, 3606 AS Maarssen, Netherlands). For further demo-
graphic information, please refer to the Supplementary
Information. ’

Microarray experiments

Total RNA or Poly(A) RNA was used to synthesize
cRNA which was then hybridized to HG-U133A oligonu-
cleotide array (Affymetrix, Santa Clara, CA) according to
standard protocols as described previously [18].

Data acquisition

After hybridization, all scanned images were visually
inspected for artifacts and overall quality. Affymetrix’s
MicroArray Suite 5.0 software was used to analyze image
files. The software calculates a “signal” to characterize each
gene’s expression level based on the difference between the
densities of mutiple pairs of perfect match (PM) and mismatch
(MM) probes. In addition, it also produces a “detection P
value” to indicate how confidently a gene’s expression is
detected. If the densities on most PM probes are significantly
larger than their corresponding MM probes, the algorithm will
return a smaller P value. Usually, a gene is considered present
if P <0.05, and absent if P > 0.06. Absent calls indicate that
the corresponding expression data are not reliable. Raw DNA
microarray data have been deposited with NCBI Gene
Expression Omnibus (GEQ) under accession: GSE2361.
The data is also available at the authors’ web site: hitp://
www.genome.rcast.u-tokyo.ac.jp/normal/.

Data normalization

Normalization is done among the probe sets with
present calls in each array. After the top and bottom 5%
are removed, the average of the logarithm of signals
produced by these probe sets is centered to the logarithm
of a positive number, here 160, to be comparable with a
target density of 100 in global scaling for most tissues.
Scores are then transformed by an inverse logarithm. This
kind of procedure is preferred when comparing multiple
tissue types because the total number of present calls
varies significantly with tissues, which leads to biases to
the default global scaling method. Finally signals smaller
than 10 are set to 10.
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Selection of tissue-specific genes

We consider a gene specific to a tissue type if it is
exclusively highly expressed in this tissue. An example of
the expression pattern of tissue-specific genes is shown in
Supplementary Fig. 2. To select such genes, we used ¢ test
and several empirical criteria. Suppose a gene’s expression
level (g) is the highest in a certain tissue, for example, liver.

- We first require that this score is associated with a present
call. Then the expression level g is compared with the mean
(m) and standard deviation (SD) observed in the rest of the
tissues. This gene is considered liver-specific if (a) g >
m +38D, (b) g/g2 > 2, and (c) g > 160 (d) g2 < 150, where
g2 is the second highest expression score in all the tissues. To
avoid missing lowly expressed tissue-specific genes, we also
included genes that meet an alternative criterion: a gene must
be confidently present in this tissue (detection P value <
0.02) and absent (detection P value > 0.08) in all others. Also
the absolute expression level must meet condition (b).

In addition to tissue-specific genes, which are exclusively
expressed in one particular organ, there are some genes
whose expression is restricted to two or more organs or
anatomical sites. As an example, the expression pattern of
cytokeratin 20 (KRT20), which is highly expressed in
stomach, colon, and small intestine, is shown in Supple-
mentary Fig. 3. To define such tissue-selective genes, we
used Sprent’s nonparametric method [19]. For each gene,
the log-transformed signal values of all tissues are used to
calculate a median and median absolute deviation (MAD).
Then those tissues with a signal larger than median by iore
than 5 MAD (equivalent to 3.375 SD in normal distribution)
are considered significant. The number of tissues with
significantly higher expression must be smaller than 8. The
usage of median and MAD are preferred over the mean and
SD because they are more robust and less sensitive to
outliners, e.g., extremely large signal values in a few tissues.

Clustering analysis

A filtering process is applied to eliminating genes whose
expression does not show much variance among the
samples in question. A gene should show more than a 2-
fold change between the maximum and the median. Also the
absolute difference should be larger than 100. Then the data
are log-transformed, and the gene vector is median-centered
and divided by SD. Average linkage hierarchical clustering
is done using the Cluster and Treeview program [20] with
Pearson’s correlation coefficient as a distance metrics.

Public gene expression datasets and metaanalysis

In addition to our own data, we also use two normal
tissue gene expression database, namely HuGe Index
database (Ref. [13], available at http:/www.hugeindex.org)
and Gene Expression Atlas database (Ref. [15], http:/
www.expression.gnf.org/). To study the expression of

tissue-specific genes in cancers, we analyzed a dataset of
multiple cancer types (Ref. [21], hitp:/www.camrier.gnf.
org/welsh/epican/), a liver cancer dataset (Ref. [22], http:/
www.lsbm.org/db/), two datasets of breast cancer (Refs.
[26,27], http://www.genome-www.stanford.edu/breast_
cancer/molecularportraits/, and Ref. [2], http:/www.rii.
com/publications/vantveer.htm), and a lung cancer dataset
(Ref. [28], http://www-genome.wi.mit.edu/cancer/). Several
datasets of other cancer types are also used in our study of
maintenance genes. A full list of data sources is available
in Supplementary Table 1.

Most of these datasets are based on Affymetrix Gen-
eChip systems (HuGeneFL, HG-U95A, or HG-U133A), for
which annotation information about probe sets are available
at http://'www.affymetrix.com. We also used one dataset of
c¢DNA microarrays. Mapping between these different data-
sets is performed according to the latest version of UniGene
(as for May 2003) by using the SOURCE database (Ref.
[31], hitp://www.source.stanford.edu).

Classification of HCC samples

We tested two sets of predictor genes for classifying
HCC samples into well, moderate, and poorly differentiated
tumors. This first set consists of 64 liver-specific transcripts
shown in Fig. 2A; the other set includes 3536 genes passed
through a variation filter (max/min > 2, max—min > 100).
A standard k-nearest neighbor (KNN) algorithm with (k =
4) was employed to classify each of 25 tumors withheld
from training. To make a positive prediction, a winning
type must receive a percentage of votes larger than a
certain margin over all other types. This threshold is
adjusted from 0, 10, 30%, 50, 70, and 90% to produce the
ROC curve in Fig. 2B.

Gene ontology analysis

Statistical association of gene lists with GO categories
are performed with the Onto-Expression software [24]),
available at http://www.vortex.cs.wayne.edu. Binominal
distribution is used to calculate the P value at which the
list is enriched by genes belonging to a certain function
category.

Promoter analysis

To search for cell-specific promoter binding motifs, we
exfract promoter sequences from 2500 bp upstream to 500
bp downstream transcription starting site (TSS) using the
Promoser web service ([50], http://www.biowulf.bu.edu/
zlab/PromoSer/). As a control group, we also extract similar
sequences of 1144 maintenance genes. We developed a set
of Perl scripts to scan these sequences for binding sites of
known transcription factors included in the TRANSFAC
database [51]. Then we calculated the P value of over-
representation for each motif by comparing the frequency
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between each cluster and the control group according to
hypergeometric distribution.
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Kano, Makoto, Shuichi Tsutsumi, Nobutaka Kawahara, Yan Wang,
Akitake Mukasa, Takaaki Kirino, and Hiroyuki Aburatani. A meta-
clustering analysis indicates distinct pattern alteration between two
series of gene expression profiles for induced ischemic tolerance in
rats. Physiol Genomics 21: 274-283, 2005. First published February
15, 2005; doi:10.1152/physiolgenomics.00107.2004.—We have de-
veloped a visualization methodology, called a “cluster overlap distri-
bution map” (CODM), for comparing the clustering results of time
series gene expression profiles generated under two different condi-
tions. Although various clustering algorithms for gene expression data
have been proposed, there are few effective methods to compare
clustering results for different conditions. With CODM, the utilization
of three-dimensional space and color allows intuitive visualization of
changes in cluster set composition, changes in the expression patterns
of genes between the two conditions, and relationship with other
known gene information, such as transcription factors. We applied
CODM to time serics gene expression profiles obtained from rat
four-vessel occlusion meodels combined with systemic hypotension
and time-matched sham control animals (with sham operation), iden-
tifying distinct pattern alteration between the two. Comparisons of
dynamic changes of time series gene expression levels under different
conditions are important in various fields of gene expression profiling
analysis, including toxicogenomics and pharmacogenomics. CODM
will be valuable for various types of analyses within these fields,
because it integrates and simultaneously visualizes various types of
information across clustering results.

time series; transcription factor; visualization

ADVANCES IN MICROARRAY TECHNOLOGIES have made it possible to
comprehensively measure gene expression profiles. Observa-
tion of dynamic changes of gene expression levels provides
important markers to clarify cellular responses, differentiation,
and genetic regulatory networks. In particular, a comparison of
dynamic changes of time series gene expression levels under
various conditions (e.g., administration of different drugs) is
expected to make a major contribution to the understanding of
complex biological processes. In general, we observe the
influence of each condition through the results of clustering
analysis, which is the most popular analysis for gene expres-
sion profiles. Therefore, a comparison between the results of
clustering analyses in different conditions will allow interpre-

Article published online before print. See web site for date of publication
(http://physiolgenomics.physiology.org).
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tation of different macroscopic phenomenon that occurred
under those conditions. However, although many clustering
algorithms, including hierarchical clustering (1, 2, 4, 15),
k-nearest neighbor (17), and self-organizing maps (10, 13, 16)
have been proposed, there are few effective methods to effec-
tively compare clustering results under different conditions.
We have defined four issues to be addressed for a comparison
of clustering results, especially for a comparison of time series
gene expression data under two different conditions: changes
in the composition of the cluster sets, changes in the expression
patterns, integration with known other gene information, and
threshold problems.

Changes in the Composition of the Cluster Sets

In this report, we focused on hierarchical clustering, since it
is the most popular method for gene expression analysis. Here
we define the composition of a cluster set as the hierarchical
structure of clustering results and “cluster set” as the set of all
clusters in the structure. A comparison of clusters’ composi-
tions shows which clusters are conserved in different condi-
tions and how the genes in a cluster for one condition are
distributed into a cluster set under another condition. Genes
that cluster under a single condition may possibly be regulated
by the same factors for that condition. However, under differ-
ent conditions, some of those genes would be regulated by
other factors and generate different clusters. Thus changes in
the cluster compositions could provide key information for
interpreting the effects of the different conditions. To get a full
picture of the relationships of two cluster sets, the overlap
between each pair of clusters under the two different conditions
should be evaluated. However, since clustering analysis, espe-
cially hierarchical clustering, almost always generates a great
number of clusters, there are a very large number of combina-
tions of clusters. Simple line connections of the genes between
the dendrograms of two hierarchical clustering results (14)
provide insufficient information about the relationships be-
tween the clusters. Therefore, an effective presentation method
that provides a full picture of the relationships of the cluster
sets would be desirable.

Recently, a statistical model for performing meta-analysis of
independent microarray data sets was proposed (12). This
model revealed, for example, that four prostate cancer gene
expression data sets shared significantly similar results, inde-
pendent of the method and technology used. However, in a
comparison of the cluster sets based on different conditions,
the objective is not to confirm that several data sets share
significantly similar results, but to detect the differences be-
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tween them. Several statistical algorithms have been proposed
for evaluating how clusters based on expression profiles in-
clude genes with well-known functions (3, 17). However, the
number of clusters that were compared was limited, and an
effective presentation method was not required in those situa-
tions.

Changes in the Expression Pattern

Where two clusters under different conditions have a statis-
tically meaningful number of genes in common, it is also
important to examine the differences in their expression pat-
terns. The differences of macroscopic phenomena that the
conditions exhibit result from the differences of expression of
multiple, rather than single, genes. Therefore, the genes whose
expression patterns changed in a similar fashion between
different conditions provide markers for the different phenom-
ena. In other words, if the genes in a certain cluster based on
one condition also constitute a cluster for another condition,
but the expression patterns are greatly different between the
two conditions, then these genes are causally implicated in the
phenotypic difference.

In general, there will be many false candidate genes whose
expression patterns coincidentally match between the two dif-
ferent conditions. Therefore, it is important to simultaneously
evaluate the statistical significance of the overlaps between
clusters and the differences in their expression patterns.

Integration with Other Known Gene Information

In gene expression analysis, it is important to biologically
interpret the results after integrating them with other known
gene information. Therefore, changes in the composition of the
cluster sets and changes in the expression patterns between
different conditions should be associated with other known
gene information such as transcription factors.

Threshold Problems

In a comparison of cluster sets on gene expression profiles,
we have to handle four types of thresholds: /) a threshold for
generating clusters for each condition; 2) a threshold for
evaluating the number of common genes that two clusters
have; 3) a threshold for evaluating the differences in the
expression patterns between two clusters; and 4) a threshold for
evaluating the relationship with other known gene information.
Among these, determining the threshold for generating clusters
is most challenging, because the clustering result strongly
depends on this threshold, and a change of this threshold
greatly affects the number and composition of clusters. It is
generally difficult to determine optimal values for these four
types of thresholds, and the results of analysis are greatly
affected by the threshold values specified. Arbitrary selection
of thresholds involves a risk of overlooking important genes,
so the number of thresholds should be reduced, and, if used, it
is necessary to allow users to interactively change the thresh-
olds.

We focused on visualization technology to address these
four issues. Interactive visualization is effective for handling
ambiguous threshold problems and for providing a wide vari-
ety of information at one time. In previous work, we developed
a ‘“cluster overlap distribution map” (CODM), which is a
visualization method for comparing cluster sets based on dif-
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ferent sets of gene expression profiles (7). In this report, we
extended it for time series gene expression analysis. In the
CODM, the relationships of all possible pairing of clusters can
be examined, and both the changes in the composition of the
cluster sets and the changes in the expression patterns of the
clusters can be effectively visualized as three-dimensional (3D)
histograms, without any arbitrary thresholds. In addition,
relationships with other known gene information such as
transcription factors can also be elucidated. We applied the
CODM to a comparison between the gene expression data
sets of double ischemia rats and sham control rats (with
sham operation) and confirmed that CODM identified dis-
tinct patterns between the two.

CODM, available on our web site (http://www.genome.
rcast.u-tokyo.ac.jp/CODM), runs on a PC with Windows
2000 or Windows XP. Memory requirement is in proportion to
the square of the number of genes to be analyzed. The analysis
for ~4,000 genes, represented in this paper, required ~250
megabytes. In addition, since the analysis results of the CODM
are visualized by use of the OpenGL, a machine with a
graphics board with a hardware accelerator for the OpenGL is
recommended.

MATERIALS AND METHODS
Experiment Design

In this report, CODM is illustrated using time series gene expres-
sion data sets obtained from rat four-vessel occlusion models com-
bined with systemic hypotension and time-matched control animals
with sham operation. In the experiment, we used 2-min ischemia rats
with induced ischemic tolerance (tolerant rats, TOL) and rats with
sham operation (sham rats, SHAM), after confirming the histological
outcomes. Note that the sham rats did not acquire ischemic tolerance.
Three days after the operation, we conducted a 6-min ischemia
operation on the two groups. Because of their ischemic tolerance, very
little neuronal death of CA1 hippocampal neurons was observed in the
tolerant rats (9). With duplicate assessments of 6 time points ({0 h,
1'h, 3 h, 12 h, 24 h, 48 h} X 2) after the second ischemia,
microdissected CAl regions from each of the two groups were
subjected to oligonucleotide-based microarray analysis.

All animal-related procedures were conducted in accordance with
guidelines for the care and use of laboratory animals set out by the
National Institutes of Health and were approved by the committee for
the use of laboratory animals in the University of Tokyo. More
detailed experimental design is described in our previous report (8).

GeneChip Experiment

Five micrograms of total RNA from each sample was used to
synthesize biotin-labeled cRNA, which was then hybridized to a
high-density oligonucleotide array (GeneChip Rat RG-U34A array,
Affymetrix) essentially following a previously published protocol (6).
The arrays contain probe sets for 8,737 rat genes and expressed
sequence tags (ESTs), which were selected from Build 34 of the
UniGene Database (derived from GenBank 107, dbEST/11-18-98).
Sequences and GenBank accession numbers of all probe sets are
available from the Affymetrix home page (http:/www.affymetrix.
com/index.affx). Washing and staining was performed in a Fluidics
Station 400 (Affymetrix) using the protocol EukGE-WS2, Scanning
was performed on an Affymetrix GeneChip scanner to collect primary
data. The Affymetrix Microarray Suite v4.0 was used to calculaie the
average difference for each gene probe on the array, which was shown
as an intensity value of gene expression defined by Affymetrix using
their algorithm. The average difference has been shown to quantita-
tively reflect the abundance of a particular mRNA molecule in a
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Fig. 1. Hierarchical clustering of TOL (A) and SHAM (B). We obtained time
series ({Oh, 1 h,3 h, 12 h, 24 h, 48 h} X 2) microarray data from rats with
induced ischemic tolerance (tolerant rats, TOL) and rats with sham operation
(sham rats, SHAM). In the analysis, we used these data sets as 12 time point
({0a, Ob, 1a, 1b, 3a, 3b, ... ., 48a, 48b) = {T:} (G = 1,2,...,12)) data sets on
TOL and SHAM, respectively. After preprocessing and normalization, hierar-
chical clustering analysis based on Euclidian distances was then performed for
each data set independently.

population (6). To allow comparison among multiple arrays, the
average differences were normalized for each array by assigning the
mean of overall average difference values to be 100. This data set has
been submitted as GSE1357 to the National Center for Biotechnology
Information (NCBI) Gene Expression -Omnibus (http://www.ncbi.
nlm.nih.gov/geo/info/linking.html)

Preprocessing and Clustering

In the following analysis, we used data sets as 12 time point ({0a,
0b, 1a, 1b, 3a, 3b, ..., 48a, 48b} = (T3} (i = 1,2,...,12)) data sets
on TOL and SHAM, since the CODM does not depend on the
intervals of the time points.

Standard clustering analysis for gene expression profiles is based
on the correlation coefficients between genes. Therefore, this ap-
proach cannot handle genes with expression profiles that have almost
no changes for a condition. However, if the expression profiles of
those genes have meaningful changes in expression levels for other
conditions, then these provide markers to interpret the influence that
the conditions exerted, because these are possibly regulated by dif-
ferent factors. To handle those genes and to align the baselines of the
expression patterns between the different data sets, preprocessing (i.e.,
filtering and normalization) was conducted for all of the data sets
where TOL and SHAM were merged. More specifically, 3,363 probes
with mean expressions above 50 and coefficient of variance (CV =
standard deviation/mean) above 0.1 were selected. After logarithmic
transformation of the gene expression data, the expression levels were
normalized to satisfy the following equations:

12
Z(x,-eri) =0 (I

12
PHCERHES (2)
where x; and y; are normalized expression levels of a gene at time
point T; (i = 1,2,...12) on conditions TOL and SHAM, respectively.
Using these normalized data sets, we performed hierarchical cluster-

ing analysis based on Euclidian distances, for each data set indepen-
dently. Clustering analysis using Euclidian distances instead of cor-

relation coefficients allows us to handle genes whose expression
levels are downregulated or upregulated. In addition, due to the
common normalization, gene expression patterns can be compared
within a data set and between data sets.

In general, Euclidian-distance-based clustering after normalization,
in terms of mean and standard deviation, is equivalent with correla-
tion-coefficient-based clustering. That is, a Buclidian-distance-based
clustering analysis for the merged data of TOL and SHAM with the
above preprocessing is equivalent with a correlation-coefficient-based
clustering analysis for the original merged data. In the analysis of the
CODM, the preprocessing is conducted for the merged data, and
Euclidian-based clustering is individually conducted for each data.
Roughly speaking, this analysis provides us with results similar to
those of normal correlation-coefficient-based clustering, while it al-
lows us to handle genes with expression profiles that have changes for
only one condition but not for the other.

As Fig. 1, A and B, shows, there are a large number of clusters
generated at various levels. Although the composition and number of
cluster sets depend on the threshold value of the distance, it is
generally difficult to identify an optimum value. These aspects make
it difficult to compare cluster sets derived from different sources.

The Cluster Overlap Distribution Map

The CODM is a visualization methodology for pair-wise compar-
ison between cluster sets generated from different gene expression
data sets. In this methodology, two types of cluster sets (i.e., dendro-
grams of hierarchical clustering results) are mapped, respectively, to
the x-axis and to the y-axis, and the relationship between them is
displayed as a 3D histogram (Fig. 2). In this report, the dendrogram of
TOL is mapped to the x-axis, and that of SHAM is mapped to the
y-axis. The statistical evaluation values of the overlaps between two
clusters selected from the respective cluster sets are displayed as the
height of the blocks (Fig. 2). More specifically, we evaluated the
number of common genes between the two different clusters by using
hypergeometric probability distributions (17). Assuming that the gen-
eration of gene clusters is a random selection from among the total set
of genes, the probability of observing at least k overlapping genes
between randomly selected r2; genes and n, genes from among all of
the g genes is given by:

k=1

P(g.nymk) =1 — Z
i=k EC"]

iy Ci ) 8= Cn
= ——[=Plgmn )] (3

When the P value is small, the overlap is regarded as statistically
meaningful. Thus we defined the evaluation value of the overlap as:

Evaluation Value of Overlap

Eg k) dendrogram of TOL
s Mxiy yj, K e
Xy 11y)s Rif, [ Xx (nxi)

- -
SR
’
! (k!'f),"
U
’

dendrogram of SHAM

’
’

Fig. 2. Overlap block of two clusters. The dendrogram of TOL is mapped to
the x-axis, and that of SHAM is mapped to the y-axis. Then, for the area (Ry)
defermined by a cluster on the y-axis (X;) and a cluster on the y-axis (¥;), a
block whose height represents E(g.ny,ny ki) (statistical evaluation values of
the overlaps between X; and ¥;) is displayed, where g is the total number of
genes, i1y; is the number of genes in Xj, nyy is the number of genes in ¥}, and ki
is the number of overlap genes between X; and ¥;.
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E(g,ny,ny,k) = = log,oPlg,n,ny.k) (4)

Then in the area (R;;) determined by a cluster on the x-axis (X;) and a
cluster on the y-axis (¥}), a block whose height represents E(g,n,-
nity,kyy) is displayed, where ny; is the number of genes in X;, n,; is the
number of genes in ¥;, and ky is the number of overlapping genes
between X; and Y; (Fig. 2). We term this block an “overlap block.”
Note that the numbel of UniGenes, to which probes in a cluster
correspond through their original GenBank accession number, was
used as the number of genes. In this report, all 8,737 probes on
RG-U34A were corresponding to 5,249 UniGenes (g = 5,249).

For hierarchical clustering, there are a large number of clusters
generated at various distance levels. Our algorithm examines the
overlaps of the genes between all combinations of two clusters with
smaller “distance level” values than the “cut level,” which is a

threshold value specified by users (Fig. 1). In other words, we -

evaluated and visualized any clusters with a smaller distance level
than the cut level, even if they were included in other clusters. Note
that conventional hierarchical clustering does not focus on subclusters
that are included in other clusters. Since all of the statistically
significant combinations between cluster sets can be visualized simul-
taneously, users can grasp the overall picture of the relationships
between the two different cluster sets.

In the CODM, all of the clusters are dealt with equally without
regard to their difference level (i.e., their homogeneity). Even if they
are included in other clusters, all of the statistical significance of the
number of common genes between clusters is simultaneously visual-
ized. Therefore, there is a risk that a small overlap block may be
hidden by a large block. For example, assume that the clusters X; and
Y, are included in X; and Y, respectively. Then, if the evalnation value
L}, is less than Eyy, then the small block Bj, will be hidden in the large
block Bi,, (Fig. 3A). To avoid this problem, the CODM allows the user
to change the cut level interactively. That is, if the user decreases the
cut level, some small blocks that are hidden in larger blocks will
emerge. Therefore, in consideration of the homogeneity of clusters
and the relationships with other gene information, the user can find
important genes displayed as blocks in the CODM.

Color of Each Overlap Block

Since the statistical significance of the number of common genes

between two different clusters is represented as the height of a block,
the color of a block can be used to represent other information. In the
current prototype, the CODM provides three color modes.
1) Redundant visualization. The first mode is a representation of the
evaluation values of overlaps using a gray scale. ‘This redundant
representation helps users comprehend the distribution of the relative
evaluation values of overlaps.

2) Similarity of expression patterns. The second mode is a repre-
sentation of the similarity of expression patterns between two clusters,
from red to blue. The similarity AT,S) of expression patterns between
cluster T on TOL and cluster S on SHAM was defined using the
average of the square of the Euclidean distance between them.
Assuming that Nrs is the number of common genes in T and S, x;; and
Yui are normalized expression levels of a common gene k at time T; on

B The Case of Pop-out Block
Ejn> Epm)

A The Case of Hidden Block
(Ejn <Epm)
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TOL and SHAM, respectively. The similarity A7,S) was defined as
follows:

Nps 12

l—— 22 (x]\l VIJ (5)

k=1 i=1

AT.S) =

Since {xy} and {ys} (i = 1,2,...12) satisfy Egs. I and 2, the range of
ATS) is —1 to 1, and RT,S) can be rewritten as follows (See
APPENDIX);

Nys 12

222xm. 6)

klll

AT.8) =

In the CODM, the similarity f(T,S) was represented as the color of
the block from red (AT,S) = 1) to blue (AT,S) = —1). Roughly
speaking, red indicates that expression patterns between the two
clusters are similar, and blue indicates they have a negative correla-
tion. In addition, purple (A7,S) = 0) indicates they have no correla-
tion, or genes of one cluster have no changes in expression levels, i.e.,

Vxy,=0o0r Vy;=~0

As mentioned above, if genes in a certain cluster based on SHAM
also constitute a cluster in TOL, but the expression level in SHAM is
significantly different from that in TOL, then these genes provide
potential markers for the cause of ischemic tolerance. Strong candi-
dates will appear as tall blue or purple blocks. CODM allows users to
easily look for such blocks, with interactively controlling the thresh-
olds.

3) Relarionship with a known gene classification. The third type of
information is a representation of the relationship between overlap-
ping genes and a known gene classification. If stallst]cally significant
representation of genes within a particular class is observed among the
overlapping genes, then the block is color coded according to the
class. The level of statistical significance of the representation of
genes within a particular class is evaluated using Eq. 3, where g is the
total number of genes that are classified by the known classification,
ny is the number of genes that are classified by the known classifica-
tion among overlapping genes, 1 is the total number of genes within
a class based on the known gene classification, and k is the observed
number of genes found in both the given overlapping genes and the
given class according to the known gene classification.

In this report, we associated overlapping genes with eight types of
transcription factors (HIF, ARNT, and EGR families) that were
reported to have a relationship with ischemia (5, 8, 18, 19). We
extracted complete sequences of 1.0 kb upstream and 0.1 kb down-
stream for 2,816 UniGenes among the 5,249 UniGenes corresponding
to 8,737 probes on the RG-U34A microarray. The 1.1-kb sequences of
the 2,816 UniGenes were searched to determine whether they corre-
spond to the TRANSFAC matrices v7.2 (11) with the threshold set to
“minimum false negative.” Table 1 shows the names of the transerip-
tion factors, the number of UniGenes that correspond to each tran-
scription factor, and the thresholds for matching. In CODM, we color

Fig. 3. Relationships of two blocks. In CODM, all of the
clusters are dealt with equally, regardless of their difference
levels (i.e., their homogeneity). Even if they are included in
other clusters, all of the statistical significance of the number
of common genes between clusters is simultaneously visual-

in a large block. Assume that the clusters X; and Y, are

included in X; and Y., respectively. Then, if the evaluation

value Ej, is less than Ej,, the small block B, will be hidden
within the large block Bjy, (A).

Physiol Genomics » VOL 21 « www.physiolgenomics.org

-634-

ized. There is a risk that a small overlap block may be hidden -

900z ‘sg Atenuer uo Bio-ABojoisAyd-sowousbioisAyd woyy papeoumog



Toolbox

278

Table 1. Transcription factors linked to ischemia

No. of
Transcription Factor UniGenes Thresholds
V$AHRARNT_01 540 0.92
V$AHRARNT_02 4 0.91
V$HIF1_Q3 955 0.55
V$HIF1_Q5 507 0.87
V$EGR1_01 143 0.87
V$EGR2_01 92 0.89
V$EGR3_01 26 093
V$ENGFIC_01 143 0.88

In the cluster overlap distribution map (CODM), changes in the composition
of the cluster sets and changes in the expression patterns between different
conditions were associated with 8 types of transcription factors (HIF, ARNT,
and EGR families), which are all known to mediate response to ischemia. We
extracted UniGenes that contain putative binding sites for the transcription
factors and correspond to probes on RG-U34A GeneChips (Affymetrix, Santa
Clara, CA). Shown are the names of the transcription factors, the number of
UniGenes, and the thresholds for matching.

coded overlap blocks that contain statistically meaningful numbers of
genes with putative transcription factor binding sites. If an overlap
block represents statistical significance for multiple transcription fac-
tors’ putative binding sites, then only a single transcription factor with
the highest evaluation value was visualized. However, the CODM
allows users to click overlap blocks and browse description messages
(in a console window) for the relationships with all of the transcription
factors.

RESULTS AND DISCUSSION

Figure 4 shows the visualization results of the comparison
between TOL and SHAM in the mode of redundant visualiza-
tion, the similarity of the expression patterns, and the relation-
ships with known gene classifications (transcription factors). In
Fig. 4, the cut level for the distance for hierarchical clustering
was 0.74, and all overlap blocks with 2.0 or higher evaluation
values are displayed as a 3D histogram. As Fig. 4 shows, the
CODM provides not only a 3D mode but also a two-dimen-
sional (2D) mode where users can see a projected overhead
view of the 3D mode. In the 3D mode, the statistical signifi-
cance of the overlaps between clusters and the differences in
expression levels between the clusters can be simultaneously
represented, since we can use the height and color of blocks.
However, it is somewhat difficult to recognize the expression
patterns of clusters that generate an overlapping block. For this
purpose, the 2D mode is better, although the 2D mode of
CODM can visualize only a single species of information at a
time, i.e., the statistical significance of the overlaps or the
differences in expression levels between clusters, or relation-
ships with known gene classification. Therefore, it is useful to
interactively change the mode as required. Exploration by
changing the color mode and the 2D and 3D modes allowed us
to pick up three potentially important overlap blocks (Fig. 4).
The information for these three overlap blocks is shown in
Table 2, their gene lists are shown in the Supplemental Mate-
rial, and their expression patterns are shown in Fig. 5. (The
Supplemental Material is available at the Physiological
Genomics web site.)’

IThe Supplemental Material (Supplemental Tables S1-83) for this article is
available online at http://physiolgenomics.physiology.org/cgi/content/full/
00107.2004/DC1.
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As stated above, we assumed that there are four issues for a
comparison of clustering results: changes in the composition of
the cluster sets, changes in the expression patterns, relation-
ships with other known gene information, and threshold prob-
lems. The CODM enables us to address these issues as follows.

Changes in the Composition of the Cluster Sets

As shown in Fig. 4, A and B, the CODM can intuitively
visualize changes in the composition of the cluster sets as 3D
histograms. That is, the dissimilarity of the expression level
under SHAM divides each cluster on TOL into specific sub-
clusters, and these subclusters are displayed along the y-axis. In
the same manner, the relationships between each cluster of
SHAM and all of the clusters of TOL are displayed on the
x-axis. If a clustering analysis is conducted for the merged data
of TOL and SHAM, then these subclusters would be scattered
and it would be difficult to intuitively observe the relationships
of the compositions of the cluster sets.

Changes in the Expression Pattern

A comparison of the dynamic changes of gene expression
level across time under various conditions provides a useful
tool for interpreting complex biological processes. However,
there are generally many false candidate genes whose expres-
sion patterns between two different conditions are different
purely by chance. For the comparison between TOL and
SHAM, only 357 probes (of the 3,363 selected probes) had 0.8
or higher correlation coefficient values of expression pattern
between the two conditions. On the other hand, 756 probes had
negative correlation coefficient values. As stated above, the
difference of macroscopic phenomena that the conditions ex-
hibit results from the difference of expression of not a single
gene but of multiple genes. Therefore, it is quite important to
search for genes whose expression patterns changed in a
similar fashion between different conditions. Figure 4, C and
D, shows that the CODM can simultaneously depict the sta-
tistical significance of the overlaps between clusters and the
differences in their expression patterns. In this mode, tall
blocks colored blue or purple, such as blocks B and C, would
be good candidates, since their similarities of expression pat-
terns were negative (—0.28 and —0.23), while the two clusters
under different conditions share a statistically meaningful num-
ber of common genes (E = 53.3 and E = 34.8). Note that the
objective of the CODM is to identify such potentially impor-
tant pairs of clusters from massive combinations. To further
understand the significance of the expression patterns, it would
be a desirable approach to combine CODM with other visual-
ization tools for line graphical view of expression patterns, as
shown in Fig. 5. The expression of genes in TOL in block B
was upregulated, compared with SHAM, at early stage, i.e.,
1 b, 3 h, and 12 h. On the other hand, the expression of genes
in TOL in block C was downregulated, compared with SHAM,
at early stage, i.e., 1 h, and 3 h. Once again, CODM enabled us
to easily detect candidate genes of this type.

Integration with Other Known Gene Information

In gene expression analysis, interpretation and validation of
the results should be performed in the context of what is
already known about the genes being analyzed. CODM allows
us to associate the results with other such gene information and
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A Gray-scale redundant visualization, 2D B Gray-scale redundant visualization, 3D

Fig. 4. Visualizations for comparison of
clustering results of TOL and SHAM. These
are visualization results of the comparisons
between TOL and SHAM in the mode of
redundant visualization (A and B), similarity

E-value of the expression patterns (C and D), and the

00 130.0 relationships with transcription factors (E

C Similarity of expressi H D D Sinilar . ax_]d F). Here, the cu_t level of the distance for
milarity of expression patterus, ) ] Similarity of expression patterns, 3D hierarchical clustering was 0.74, and all of
=y : . ’ ’ the overlap blocks with 2.0 or higher evalu-

ation values are displayed as three-dimen-
sional (3D} histograms. As shown, the
CODM provides not only a 3D mode (B, D,
and F) but also a two-dimensional (2D)
mode (A, C, and E) where users can see a
projected overhead view of the 3D mode. In
the mode showing the relationships with the
transcription factors (E and F), we consid-
ered the relationships with 8 types of tran-
scription factors (HIF, ARNT, and EGR
families) that are known to mediate response
to ischemia. Here, only overlap blocks with
2.0 or higher evaluation values of the num-
ber of genes with putative transcription fac-
tor binding sites were color coded, Where an
overlap block represents statistical signifi-
cance for multiple transcription factors’ pu-
tative binding sites, only the transcription
factor with the highest evaluation value was
visualized. Exploration through changing
the color mode and (he 2D and 3D mode
allowed us to pick up three potentially im-
portant overlap blocks that represented high
evaluation values of the number of genes
with the binding sites (£ > 2.0).

Similarity & e 7
ty-l.o 1.0

E Relationship with promoter sequences, 2D

narrow down candidates. Figure 4. £ and F, shows the rela-  representation of genes with putative transcription factor bind-
tionships between eight types of transcription factors (HIF. ing sites were color coded. Table 2 shows that overlap blocks
ARNT, and EGR families; see Table 1) that were reported to A, B, and C implied a relationship with the transcription factors
have a relationship with ischemia (5. 8, 18, 19). In Fig. 4, (£ > 2.0). This example illustrates the utility of representing
overlap blocks with 2.0 or higher evaluation values for the relationships with other known gene-associated information by
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Table 2. Information about 3 overlap blocks

Overlap No. of UniGenes in No. of UniGenes in No. of Common UniGenes Similarity Binding Sites of Transcription
Block Cluster of TOL Cluster of SHAM (Evaluation Value) AT.S) Factors: No. of Genes (Evaluation Value)
A 156 147 54 (E = 46.9) 0.42 VSAHRARNT_01:14 (E = 2.10)
B 190 132 60 (E = 53.3) —0.28 V$EGR1_01:6 (E = 2.01)
C 99 207 43 (E = 34.8) -0.23 V$HIF1_Q3:11 (E = 2.33)

Exploration with CODM allowed us to pick up 3 potentially important “overlap blocks.* The “No. of UniGenes in Cluster of TOL(/SHAM)” is the number
of UniGenes which correspond to probes included in a cluster of TOL(/SHAM). The “No. of Common UniGenes” is the number of common genes shared
between the clusters of TOL and SHAM, and its statistical evatuation value, (E,) is shown in parentheses. The “Similarity f (7,5)” is the similarity of the
expression patterns between the clusters of TOL and SHAM. The range of similarity £ (7.5) is —1 (dissimilar) to 1 (similar). The “Binding Sites of Transcription
Factors” shows the name of putative binding sites of transcription factors, the number of common genes that share (he same binding sites, and the E value of
the number of common genes with the same binding sites, if the evaluation value is 2.0 or higher. TOL, induced ischemic tolerance; SHAM, shanioperation.
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Fig. 5. Expression patterns of genes in the three overfap blocks. These are the expression patterns of common genes for the three overlap blocks that were picked
up through exploration with CODM (Fig. 4). The “Expression Patterns of Cluster T,(/S;)” (i = a,b,c) are the expression patterns of the common genes of the
overlap block i in TOL(/SHAM).
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B Cut-level =0.79

C Cut-level =0.74

use of the color of overlap blocks, although it may be difficult
to extract biological conclusions because of the limited number
of genes with the putative binding sites in the overlap blocks.
If binding site information from more genes becomes avail-
able, then more detailed analysis of results will be possible.
Furthermore, representation of relationships with other known
gene classifications should provide us with deeper insights.

Threshold Problems

Arbitrary selection of thresholds involves a risk of overlook-
ing important genes. In a comparison of cluster sets on gene
expression profiles, there are four types of thresholds: /) a
threshold for generating clusters for each condition; 2) a
threshold for evaluating the number of common genes that two
clusters share; 3) a threshold for evaluating the differences in
the expression patterns between (wo clusters; and 4) a thresh-
old for evaluating the relationship with other known gene
information. The CODM reduces the number of thresholds and
allows users to interactively change the thresholds as follows.

1) Threshold for generating clusters for each condition.
Since conventional hierarchical clustering does not focus on
subclusters that are included in other clusters, there is a risk
that the important subclusters could be overlooked. In the
CODM, overlaps of genes between any two clusters of TOL

D Cut-level = 0.69

Fig. 6. Interactive changes of cut levels. In
CODM, there is a risk that a small overlap
block may be hidden in a large block. To
avoid this problem, CODM allows the user (o
change the cut level interactively. If the user
decreases the cut level, then some smatll
blocks that are hidden in larger blocks will
emerge. By considering the homogeneity of
clusters and the relationships with other gene
information, the user can find important
genes displayed as blocks in the CODM.

and SHAM are statistically evaluated, even if these are
included in other clusters. In addition, the CODM allows
users Lo interactively change the cut level, to reduce the risk
that a small overlap block may be hidden in a large block
(Fig. 6). Therefore, by considering the homogeneity of
clusters and the relationships with other known gene infor-
malion, the user should be able o find the important genes
displayed as blocks.

2) Threshold for evaluating the number of common genes
shared by nwo clusters. In CODM, the statistical significance of
the number of common genes between (wo different clusters is
represented as the height of a block, and statistical signifi-
cances of the overlap of all combinations of clusters are
displayed as a 3D histogram at the same time. Therefore,
without the selection of an arbitrary threshold, the distribution
of the statistical significance of the overlap is effectively
displayed. Although (lo reduce the rendering load) Fig. 4
shows only overlap blocks with 2.0 or higher evaluation values
of the overlap. users can interactively change this value.

3) Threshold for evaluating the differences in the expression
patterns between two clusters. CODM represents the differ-
ences in the expression patterns between two clusters by the
color of the blocks ranging from red to blue. Therefore, the
distribution of differences in the expression patterns of all
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