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between each cluster and the control group according to
hypergeometric distribution.
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Kano, Makoto, Shuichi Tsutsumi, Nobutaka Kawahara, Yan Wang,
Akitake Mukasa, Takaaki Kirino, and Hiroyuki Aburatani. A meta-
clustering analysis indicates distinct pattern alteration between two
series of gene expression profiles for induced ischemic tolerance in
rats. Physiol Genomics 21: 274-283, 2005. First published February
15, 2005; doi:10.1152/physiolgenomics.00107.2004.—We have de-
veloped a visualization methodology, called a “cluster overlap distri-
bution map” (CODM), for comparing the clustering results of time
series gene expression profiles generated under two different condi-
tions. Although various clustering algorithms for gene expression data
have been proposed, there are few effective methods to compare
clustering results for different conditions, With CODM, the utilization
of three-dimensional space and color allows intuitive visnalization of
changes in cluster set composition, changes in the expression patterns
of genes between the two conditions, and relationship with other
known gene information, such as transcription factors. We applied
CODM to time series gene expression profiles obtained from rat
four-vessel occlusion models combined with systemic hypotension
and time-matched sham control animals (with sham operation), iden-
tifying distinct pattern alteration between the two. Comparisons of
dynamic changes of time series gene expression levels under different
conditions are important in various fields of gene expression profiling
analysis, including toxicogenomics and pharmacogenomics. CODM
will be valuable for various types of analyses within these fields,
because it integrates and simultancously visualizes various types of
information across clustering results.

time series; transcription factor; visualization

ADVANCES IN MICROARRAY TECHNOLOGIES have made it possible to
comprehensively measure gene expression profiles. Observa-
tion of dynamic changes of gene expression levels provides
important markers to clarify cellular responses, differentiation,
and genetic regulatory networks. In particular, a comparison of
dynamic changes of time series gene expression levels under
various conditions (e.g., administration of different drugs) is
expected to make a major contribution to the understanding of
complex biological processes. In general, we observe the
influence of each condition through the results of clustering
analysis, which is the most popular analysis for gene expres-
sion profiles. Therefore, a comparison between the results of
clustering analyses in different conditions will allow interpre-

Article published online before print. See web site for date of publication
(http://physiolgenomics.physiology.org).

Address for reprint requests and other correspondence: M. Kano, Intelligent
Cooperative System, Dept. of Information Systems, Research Center for
Advanced Science and Technology, Univ. of Tokyo, Tokyo 153-8904, Japan
(E-mail: mkano@cyber.rcast.u-tokyo.ac.jp).

tation of different macroscopic phenomenon that occurred
under those conditions. However, although many clustering
algorithms, including hierarchical clustering (1, 2, 4, 15),
k-nearest neighbor (17), and self-organizing maps (10, 13, 16)
have been proposed, there are few effective methods to effec-
tively compare clustering results under different conditions.
We have defined four issues to be addressed for a comparison
of clustering results, especially for a comparison of time series
gene expression data under two different conditions: changes
in the composition of the cluster sets, changes in the expression
patterns, integration with known other gene information, and
threshold problems.

Changes in the Composition of the Cluster Sets

In this report, we focused on hierarchical clustering, since it
is the most popular method for gene expression analysis. Here
we define the composition of a cluster set as the hierarchical
structure of clustering results and “cluster set” as the set of all
clusters in the structure. A comparison of clusters’ composi-
tions shows which clusters are conserved in different condi-
tions and how the genes in a cluster for one condition are
distributed into a cluster set under another condition. Genes
that cluster under a single condition may possibly be regulated
by the same factors for that condition. However, under differ-
ent conditions, some of those genes would be regulated by
other factors and generate different clusters. Thus changes in
the cluster compositions could provide key information for
interpreting the effects of the different conditions. To get a full
picture of the relationships of two cluster sets, the overlap
between each pair of clusters under the two different conditions
should be evaluated. However, since clustering analysis, espe-
cially hierarchical clustering, almost always generates a great
number of clusters, there are a very large number of combina-
tions of clusters. Simple line connections of the genes between
the dendrograms of two hierarchical clustering results (14)
provide insufficient information about the relationships be-
tween the clusters. Therefore, an effective presentation method
that provides a full picture of the relationships of the cluster
sets would be desirable.

Recently, a statistical model for performing meta-analysis of
independent microarray data sets was proposed (12). This
model revealed, for example, that four prostate cancer gene
expression data sets shared significantly similar results, inde-
pendent of the method and technology used. However, in a
comparison of the cluster sets based on different conditions,
the objective is not to confirm that several data sets share
significantly similar results, but to detect the differences be-

274 1094-8341/05 $8.00 Copyright © 2005 the American Physiological Society
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tween them. Several statistical algorithms have been proposed
for evaluating how clusters based on expression profiles in-
clude genes with well-known functions (3, 17). However, the
number of clusters that were compared was limited, and an
effective presentation method was not required in those situa-
tions.

Changes in the Expression Pattern

Where two clusters under different conditions have a statis-
tically meaningful number of genes in common, it is also
important to examine the differences in their expression pat-
terns. The differences of macroscopic phenomena that the
conditions exhibit result from the differences of expression of
multiple, rather than single, genes. Therefore, the genes whose
expression patterns changed in a ‘similar fashion between
different conditions provide markers for the different phenom-
ena. In other words, if the genes in a certain cluster based on
one condition also constitute a cluster for another condition,
but the expression patterns are greatly different between the
two conditions, then these genes are causally implicated in the
phenotypic difference.

In general, there will be many false candidate genes whose
expression patterns coincidentally match between the two dif-
ferent conditions. Therefore, it is important to simultaneously
evaluate the statistical significance of the overlaps between
clusters and the differences in their expression patterns.

Integration with Other Known Gene Information

In gene expression analysis, it is important to biologically
interpret the results after integrating them with other known
gene information. Therefore, changes in the composition of the
cluster sets and changes in the expression patterns between
different conditions should be associated with other known
gene information such as transcription factors.

Threshold Problems

In a comparison of cluster sets on gene expression profiles,
we have to handle four types of thresholds: /) a threshold for
generating clusters for each condition; 2) a threshold for
evaluating the number of common genes that two clusters
have; 3) a threshold for evaluating the differences in the
expression patterns between two clusters; and 4) a threshold for
evaluating the relationship with other known gene information.
Among these, determining the threshold for generating clusters
is most challenging, because the clustering result strongly
depends on this threshold, and a change of this threshold
greatly affects the number and composition of clusters. It is
generally difficult to determine optimal values for these four
types of thresholds, and the results of analysis are greatly
affected by the threshold values specified. Arbitrary selection
of thresholds involves a risk of overlooking important genes,
so the number of thresholds should be reduced, and, if used, it
is necessary to allow users to interactively change the thresh-
olds.

We focused on visualization technology to address these
four issues. Interactive visualization is effective for handling
ambiguous threshold problems and for providing a wide vari-
ety of information at one time. In previous work, we developed
a “cluster overlap distribution map” (CODM), which is a
visualization method for comparing cluster sets based on dif-
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ferent sets of gene expression profiles (7). In this report, we
extended it for time series gene expression analysis. In the
CODM, the relationships of all possible pairing of clusters can
be examined, and both the changes in the composition of the
cluster sets and the changes in the expression patterns of the
clusters can be effectively visualized as three-dimensional (3D)
histograms, without any arbitrary thresholds. In addition,
relationships with other known gene information such as
transcription factors can also be elucidated. We applied the
CODM to a comparison between the gene expression data
sets of double ischemia rats and sham control rats (with
sham operation) and confirmed that CODM identified dis-
tinct patterns between the two.

CODM, available on our web site (http:/www.genome.
rcast.u-tokyo.ac.jp/CODM), runs on a PC with Windows
2000 or Windows XP. Memory requirement is in proportion to
the square of the number of genes to be analyzed. The analysis
for ~4,000 genes, represented in this paper, required ~250
megabytes. In addition, since the analysis results of the CODM
are visualized by use of the OpenGL, a machine with a
graphics board with a hardware accelerator for the OpenGL is
recommended.

MATERIALS AND METHODS

Experiment Design

In this report, CODM is illustrated using time series gene expres-
sion data sets obtained from rat four-vessel occlusion models com-
bined with systemic hypotension and time-matched control animals
with sham operation. In the experiment, we used 2-min ischemia rats
with induced ischemic tolerance (tolerant rats, TOL) and rats with
sham operation (sham rats, SHAM), after confirming the histological
outcomes. Note that the sham rats did not acquire ischemic tolerance.
Three days after the operation, we conducted a 6-min ischemia
operation on the two groups. Because of their ischemic tolerance, very
little neuronal death of CA1 hippocampal neurons was observed in the
tolerant rats (9). With duplicate assessments of 6 time points ({0 h,
1'h, 3 h 12 h, 24 h, 48 h} X 2) after the second ischemia,
microdissected CAl regions from each of the (wo groups were
subjected to oligonucleotide-based microarray analysis.

All animal-related procedures were conducted in accordance with
guidelines for the care and use of laboratory animals set out by the
National Institutes of Health and were approved by the committee for
the use of laboratory animals in the University of Tokyo. More
detailed experimental design is described in our previous report (8).

GeneChip Experiment

Five micrograms of total RNA from each sample was used to
synthesize biotin-labeled ¢cRNA, which was then hybridized to a
high-density oligonucleotide array (GeneChip Rat RG-U34A array,
Affymetrix) essentially following a previously published protocol (6).
The arrays contain probe sets for 8,737 rat genes and expressed
sequence tags (ESTs), which were selected from Build 34 of the
UniGene Database (derived from GenBank 107, dbEST/11-18-98).
Sequences and GenBank accession numbers of all probe sets are
available from the Affymetrix home page (http:/www.affymetrix.
com/index.affx). Washing and staining was performed in a Fluidics
Station 400 (Affymetrix) using the protocol EukGE-WS2. Scanning
was performed on an Affymetrix GeneChip scanner to collect primary
data. The Affymetrix Microarray Suite v4.0 was used to calculate the
average difference for each gene probe on the array, which was shown
as an intensity value of gene expression defined by Affymetrix using
their algorithm. The average difference has been shown to quantita-
tively reflect the abundance of a particular mRNA molecule in a
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Fig. 1. Hierarchical clustering of TOL (A) and SHAM (B). We obtained time
series ({0 b, 1 h, 3 h, 12 h, 24 h, 48 h} X 2) microarray data from rats with
induced ischemic tolerance (tolerant rats, TOL) and rats with sham operation
(sham rats, SHAM). In the analysis, we used these data sets as 12 time point
({0a, Ob, 1a, b, 3a, 3b, ... ., 48a, 48b} = {T}} (i = 1,2,...,12)) data sets on
TOL and SHAM, respectively. After preprocessing and normalization, hierar-
chical clustering analysis based on Euclidian distances was then performed for
each data set independently.

population (6). To allow comparison among multiple arrays, the
average differences were normalized for each array by assigning the
mean of overall average difference values to be 100. This data set has
been submitted as GSE1357 to the National Center for Biotechnology
Information (NCBI) Gene Expression -Omnibus (http://www.ncbi.
nlm.nih.gov/geo/info/linking.html)

Preprocessing and Clustering

In the following analysis, we used data sets as 12 time point ({0a,
Ob, 1a, 1b, 3a, 3b, ... ., 48a, 48b} = (T3} (i = 1,2,.. .,12)) data sets
on TOL and SHAM, since the CODM does not depend on the
intervals of the time points.

Standard clustering analysis for gene expression profiles is based
on the correlation coefficients between genes. Therefore, this ap-
proach cannot handle genes with expression profiles that have almost
no changes for a condition. However, if the expression profiles of
those genes have meaningful changes in expression levels for other
conditions, then these provide markers (o interpret the influence that
the conditions exerted, because these are possibly regulated by dif-
ferent factors. To handle those genes and 10 align the basclines of the
expression patterns between the different data sets, preprocessing (i.e.,
filtering and normalization) was conducted for all of the data sets
where TOL and SHAM were merged. More specifically, 3,363 probes
with mean expressions above 50 and coefficient of variance (CV =
standard deviation/mean) above 0.1 were selected. After logarithmic
transformation of the gene expression data, the expression levels were
normalized to satisfy the following equations:

12
Dt y)=0 i
12
Syl =1 (2)

i

where x; and y; are normalized expression levels of a gene at time
point 7; (i = 1,2,...12) on conditions TOL and SHAM, respectively,
Using these normalized data sets, we performed hierarchical cluster-
ing analysis based on Euclidian distances, for each data set indepen-
dently. Clustering analysis using Euclidian distances instead of cor-

relation coefficients allows us to handle genes whose expression
levels are downregulated or upregulated. In addition, due to the
common normalization, gene expression patterns can be compared
within a data set and between data sets.

In general, Euclidian-distance-based clustering after normalization,
in terms of mean and standard deviation, is equivalent with correla-
tion-coefficient-based clustering. That is, a Euclidian-distance-based
clustering analysis for the merged data of TOL and SHAM with the
above preprocessing is equivalent with a correlation-coefficient-based
clustering analysis for the original merged data. In the analysis of the
CODM, the preprocessing is conducted for the merged data, and
Euclidian-based clustering is individually conducted for each data.
Roughly speaking, this analysis provides us with results similar to
those of normal correlation-coefficient-based clustering, while it al-
lows us to handle genes with expression profiles that have changes for
only one condition but not for the other.

As Fig. 1, A and B, shows, there are a large number of clusters
generated at various levels. Although the composition and number of
cluster sets depend on the threshold value of the distance, it is
generally difficult to identify an optimum value. These aspects make
it difficult to compare cluster sets derived from different sources.

The Cluster Overlap Distribution Map

The CODM is a visualization methodology for pair-wise compar-
ison between cluster sets generated from different gene expression
data sets. In this methodology, two types of cluster sets (i.e., dendro-
grams of hierarchical clustering results) are mapped, respectively, to
the x-axis and to the y-axis, and the relationship between them is
displayed as a 3D histogram (Fig. 2). In this report, the dendrogram of
TOL is mapped to the x-axis, and that of SHAM is mapped to the
y-axis. The statistical evaluation values of the overlaps between two
clusters selected from the respective cluster sets are displayed as the
height of the blocks (Fig. 2). More specifically, we evaluated the
number of common genes between the two different clusters by using
hypergeometric probability distributions (17). Assuming that the gen-
eration of gene clusters is a random selection from among the total set
of genes, the probability of observing at least k overlapping genes
between randomly selected n; genes and n, genes from among all of
the g genes is given by:

k1
Pl npk) =1 — E uCi

i=k ¢

g—nzCn]—i

C

)

[=P(g.npn k)] 3

When the P value is small, the overlap is regarded as statistically
meaningful. Thus we defined the evaluation value of the overlap as:

Evaluation Value of Overlap
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s Wxiy Hyjy Kyj, [
R s X, ()
Z 1
, s

. ’
’ ’

I’ I’

’ ,

----------- N ’ ’_____-___--___--'
Y

’ ’
K RU ;
‘
Y
,
N

.

Fig. 2. Overlap block of two clusters. The dendrogram of TOL is mapped to
the x-axis, and that of SHAM is mapped to the y-axis. Then, for the area (R;))
determined by a cluster on the x-axis (X;) and a cluster on the y-axis (¥j), a
block whose height represents E{(g,i1.,n.;k;) (statistical evaluation values of
the overlaps between X; and Y}) is displayed, where g is the total number of
genes, ny; is the number of genes in Xj, 1,y is the number of genes in ¥}, and &;
is the number of overlap genes between X; and Y.
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E(g,nny k) = — log o Plga nak) (4)

Then in the area (R;;) determined by a cluster on the x-axis (X;) and a
cluster on the y-axis (¥}), a block whose height represents E(g,n.-
ifyskig) is displayed, where n,; is the number of genes in X;, ny; is the
number of genes in ¥, and k;; is the number of overlapping genes
between X; and Y; (Fig. 2). We term this block an “overlap block.”
Note that the number of UniGenes, to which probes in a cluster
correspond through their original GenBank accession number, was
used as the number of genes. In this report, all 8,737 probes on
RG-U34A were corresponding to 5,249 UniGenes (g = 5,249).

For hierarchical clustering, there are a large number of clusters
generated at various distance levels. Our algorithm examines the
overlaps of the genes between all combinations of two clusters with
smaller “distance level” values than the “cut level,” which is a
threshold value specified by users (Fig. 1). In other words, we
evaluated and visualized any clusters with a smaller distance level
than the cut level, even if they were included in other clusters. Note
that conventional hierarchical clustering does not focus on subclusters
that are included in other clusters. Since all of the statistically
significant combinations between cluster sets can be visualized simul-
taneously, users can grasp the overall picture of the relationships
between the two different cluster sets.

In the CODM, all of the clusters are dealt with equally without
regard to their difference level (i.e., their homogeneity). Even if they
are included in other clusters, all of the statistical significance of the
number of common genes between clusters is simultaneously visual-
ized. Therefore, there is a risk that a small overlap block may be
hidden by a large block. For example, assume that the clusters X; and
Y, are included in X; and Y, respectively. Then, if the evaluation value
Ejy is less than Ej,, then the small block B, will be hidden in the large
block B, (Fig. 3A). To avoid this problem, the CODM allows the user
to change the cut level interactively. That is, if the user decreases the
cut level, some small blocks that are hidden in larger blocks will
emerge, Therefore, in consideration of the homogeneity of clusters
and the relationships with other gene information, the user can find
important genes displayed as blocks in the CODM.

Color of Each Overlap Block

Since the statistical significance of the number of common genes
between two different clusters is represented as the height of a block,
the color of a block can be used to represent other information. In the
current prototype, the CODM provides three color modes.

1) Redundant visualization. The first mode is a representation of the
evaluation values of overlaps using a gray scale. This redundant
representation helps users comprehend the distribution of the relative
evaluation values of overlaps.

2) Similarity of expression patterns. The second mode is a repre-
sentation of the similarity of expression patterns between two clusters,
from red to blue. The similarity {T.S) of expression patterns between
cluster T on TOL and cluster S on SHAM was defined using the
average of the square of the Euclidean distance between them.
Assuming that Nrg is the number of common genes in 7 and S, x;; and
Yui are normalized expression levels of a common gene & at time T; on

TOL and SHAM, respectively. The similarity f(T,S) was defined as
follows:

Nps 12

1 ,
AT.S) = 1=+~ DI NENERME (5)
T$

k=1 i=1

Since {x;} and {yy} (0 = 1,2,...12) satisfy Egs. I and 2, the range of

ATS) is —1 to 1, and f(T,S) can be rewritten as follows (See

APPENDIX):

Nrs 12

1
AT,8) = N_ 2 E 2X Vi (6)
s
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In the CODM, the similarity f{7,S) was represented as the color of
the block from red (AT,S) = 1) to blue (AT.S) = —1). Roughly
speaking, red indicates that expression patterns between the two
clusters are similar, and blue indicates they have a negative correla-
tion. In addition, purple (R7.S) = 0) indicates they have no correla-
tion, or genes of one cluster have no changes in expression levels, i.e.,

Vixy=0or Vy,~0

As mentioned above, if genes in a certain cluster based on SHAM
also constitute a cluster in TOL, but the expression level in SHAM is
significantly different from that in TOL, then these genes provide
potential markers for the cause of ischemic tolerance. Strong candi-
dates will appear as tall blue or purple blocks. CODM allows users to
easily look for such blocks, with interactively controlling the thresh-
olds.

3) Relationship with a known gene classification. The third type of
information is a representation of the relationship between overlap-
ping genes and a known gene classification. If statistically significant
representation of genes within a particular class is observed among the
overlapping genes, then the block is color coded according to the
class. The level of statistical significance of the representation of
genes within a particular class is evaluated using Eq. 3, where g is the
total number of genes that are classified by the known classification,
ny is the number of genes that are classified by the known classifica-
tion among overlapping genes, 75 is the total number of genes within
a class based on the known gene classification, and & is the observed
number of genes found in both the given overlapping genes and the
given class according to the known gene classification.

In this report, we associated overlapping genes with eight types of
transcription factors (HIF, ARNT, and EGR families) that were
reported to have a relationship with ischemia (5, 8, 18, 19). We
extracted complete sequences of 1.0 kb upstream and 0.1 kb down-
stream for 2,816 UniGenes among the 5,249 UniGenes corresponding
Lo 8,737 probes on the RG-U34A microarray. The 1.1-kb sequences of
the 2,816 UniGenes were searched to determine whether they corre-
spond to the TRANSFAC matrices v7.2 (11) with the threshold set to
“minimum false negative.” Table 1 shows the names of the transcrip-
tion factors, the number of UniGenes that correspond to each tran-
scription factor, and the thresholds for matching. In CODM, we color

Fig. 3. Relationships of two blocks. In CODM, all of the
clusters are dealt with equally, regardless of their difference
levels (i.e., their homogeneity). Even if they are included in
other clusters, all of the statistical significance of the number
of common genes between clusters is simultaneously visual-

in a large block. Assume that the clusters X; and Y, are

included in X; and Y, respectively. Then, if the evaluation

A The Case of Hidden Block B The Case of Pop-out Block
(Ejn < Eim) (Ejn> Eim)
%
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value Ej, is less than Ej,, the small block By, will be hidden
within the large block B;,, (A).
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Table 1. Transcription factors linked to ischemia

No. of
Transcription Factor UniGenes Thresholds
V$AHRARNT_01 540 0.92
VSAHRARNT_02 4 0.91
V$HIF1_Q3 955 0.55
V$HIF1_Q5 507 0.87
V$EGR1_01 143 0.87
V$EGR2_01 92 0.89
V$EGR3_01 26 0.93
V$ENGFIC_01 143 0.88

In the cluster overlap distribution map (CODM), changes in the composition
of the cluster sets and changes in the expression patterns between different
conditions were associated with 8 types of transcription factors (HIF, ARNT,
and EGR families), which are all known to mediate response to ischemia. We
extracted UniGenes that contain putative binding sites for the transcription
factors and correspond to probes on RG-U34A GeneChips (Affymetrix, Santa
Clara, CA). Shown are the names of the transcription factors, the number of
UniGenes, and the thresholds for matching.

coded overlap blocks that contain statistically meaningful numbers of
genes with putative transcription factor binding sites. If an overlap
block represents statistical significance for multiple transcription fac-
tors’ putative binding sites, then only a single transcription factor with
the highest evaluation value was visualized. However, the CODM
allows users to click overlap blocks and browse description messages
(in a console window) for the relationships with all of the transcription
factors.

RESULTS AND DISCUSSION

Figure 4 shows the visualization results of the comparison
between TOL and SHAM in the mode of redundant visualiza-
tion, the similarity of the expression patterns, and the relation-
ships with known gene classifications (transcription factors). In
Fig. 4, the cut leve] for the distance for hierarchical clustering
was 0.74, and all overlap blocks with 2.0 or higher evaluation
values are displayed as a 3D histogram. As Fig. 4 shows, the
CODM provides not only a 3D mode but also a two-dimen-
sional (2D) mode where users can see a projected overhead
view of the 3D mode. In the 3D mode, the statistical signifi-
cance of the overlaps between clusters and the differences in
expression levels between the clusters can be simultaneously
represented, since we can use the height and color of blocks.
However, it is somewhat difficult to recognize the expression
patterns of clusters that generate an overlapping block. For this
purpose, the 2D mode is better, although the 2D mode of
CODM can visualize only a single species of information at a
time, i.e., the statistical significance of the overlaps or the
differences in expression levels between clusters, or relation-
ships with known gene classification. Therefore, it is useful to
interactively change the mode as required. Exploration by
changing the color mode and the 2D and 3D modes allowed us
to pick up three potentially important overlap blocks (Fig. 4).
The information for these three overlap blocks is shown in
Table 2, their gene lists are shown in the Supplemental Mate-
rial, and their expression patterns are shown in Fig. 5. (The
Supplemental Material is available at the Physiological
Genomics web site.)!

"The Supplemental Material (Supplemental Tables $1-S3) for this article is
available online at http://physiolgenomics.physiology.org/egi/content/full/
00107.2004/DC1.
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As stated above, we assumed that there are four issues for a
comparison of clustering results: changes in the composition of
the cluster sets, changes in the expression patterns, relation-
ships with other known gene information, and threshold prob-
lems. The CODM enables us to address these issues as follows.

Changes in the Composition of the Cluster Sets

As shown in Fig. 4, A and B, the CODM can intuitively
visualize changes in the composition of the cluster sets as 3D
histograms. That is, the dissimilarity of the expression level
under SHAM divides each cluster on TOL into specific sub-
clusters, and these subclusters are displayed along the y-axis. In
the same manner, the relationships between each cluster of
SHAM and all of the clusters of TOL are displayed on the
x-axis. If a clustering analysis is conducted for the merged data
of TOL and SHAM, then these subclusters would be scattered
and it would be difficult to intuitively observe the relationships
of the compositions of the cluster sets.

Changes in the Expression Pattern

A comparison of the dynamic changes of gene expression
level across time under various conditions provides a useful
tool for interpreting complex biological processes. However,
there are generally many false candidate genes whose expres-
sion patterns between two different conditions are different
purely by chance. For the comparison between TOL and
SHAM, only 357 probes (of the 3,363 selected probes) had 0.8
or higher correlation coefficient values of expression pattern
between the two conditions. On the other hand, 756 probes had
negative correlation coefficient values. As stated above, the
difference of macroscopic phenomena that the conditions ex-
hibit results from the difference of expression of not a single
gene but of multiple genes. Therefore, it is quite important to
search for genes whose expression patterns changed in a
similar fashion between different conditions. Figure 4, C and
D, shows that the CODM can simultaneously depict the sta-
tistical significance of the overlaps between clusters and the
differences in their expression patterns. In this mode, tall
blocks colored blue or purple, such as blocks B and C, would
be good candidates, since their similarities of expression pat-
terns were negative (—0.28 and —0.23), while the two clusters
under different conditions share a statistically meaningful num-
ber of common genes (E = 53.3 and E = 34.8). Note that the
objective of the CODM is to identify such potentially impor-
tant pairs of clusters from massive combinations. To further
understand the significance of the expression patterns, it would
be a desirable approach to combine CODM with other visual-
ization tools for line graphical view of expression patterns, as
shown in Fig. 5. The expression of genes in TOL in block B
was upregulated, compared with SHAM, at early stage, i.e.,
I'h, 3 h, and 12 h. On the other hand, the expression of genes
in TOL in block C was downregulated, compared with SHAM,
at early stage, i.e., 1 h, and 3 h. Once again, CODM enabled us
to easily detect candidate genes of this type.

Integration with Other Known Gene Information

In gene expression analysis, interpretation and validation of
the resulis should be performed in the context of what is
already known about the genes being analyzed. CODM allows
us to associate the results with other such gene information and
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A Gray-scale redundant visualization, 2D B Gray-scale redundant visualization, 3D

E-value

0.0 130.0

C Similarity of expression patterns, 2D D Similarity of expression patterns, 3D

Similarity P 1.0

F Relationship with romoter sequences, 3D

E Relationship with promoter sequences, 2D

Fig. 4. Visualizations for comparison of
clustering results of TOL and SHAM. These
are visualization results of the comparisons
between TOL and SHAM in the mode of
redundant visualization (A and B), similarity
of the expression patterns (C and D), and the
relationships with transcription factors (E
and F). Here, the cut level of the distance for
hierarchical clustering was 0.74, and all of
the overlap blocks with 2.0 or higher evalu-
ation values are displayed as three-dimen-
sional (3D) histograms. As shown, the
CODM provides not only a 3D mode (B, D,
and F) but also a two-dimensional (2D)
mode (A, C, and E) where users can see a
projected overhead view of the 3D mode. In
the mode showing the relationships with the
transcription factors (E and F), we consid-
ered the relationships with 8 types of tran-
scription factors (HIF, ARNT, and EGR
families) that are known to mediate response
to ischemia. Here, only overlap blocks with
2.0 or higher evaluation values of the num-
ber of genes with putative transcription fac-
tor binding sites were color coded. Where an
overlap block represents statistical signifi-
cance for multiple transcription factors’ pu-
tative binding sites, only the transcription
factor with the highest evaluation value was
visualized. Exploration through changing
the color mode and the 2D and 3D mode
allowed us to pick up (hree potentially im-
portant overlap blocks that represented high
evaluation values of the number of genes
with the binding sites (£ > 2.0).

narrow down candidates. Figure 4, £ and F, shows the rela-  representation of genes with putative transcription factor bind-
tionships between eight types of transcription factors (HIF, ing sites were color coded. Table 2 shows that overlap blocks
ARNT, and EGR families; see Table 1) that were reported to A, B, and C implied a relationship with the transcription factors
have a relationship with ischemia (5, 8, 18, 19). In Fig. 4, (E > 2.0). This example illustrates the utility of representing
overlap blocks with 2.0 or higher evaluation values for the relationships with other known gene-associated information by
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Table 2. Information about 3 overlap blocks

Overlap No. of UniGenes in No. of UniGenes in No. of Common UniGenes Similarity Binding Sites of Transcription
Block Cluster of TOL Cluster of SHAM (Evaluation Value) [T.S) Factors: No. of Genes (Evaluation Value)
A 156 147 54 (E = 46.9) 0.42 V$AHRARNT_01:14 (E = 2.10)
B 190 132 60 (F = 53.3) —-0.28 VSEGRI1_01:6 (E = 2.01)
C 99 207 43 (E = 34.8) —0.23 V$HIFL_Q3:11 (E = 2.33)

Exploration with CODM allowed us to pick up 3 potentially important “overlap blocks.* The “No. of UniGenes in Cluster of TOL(/SHAM)" is the number
of UniGenes which correspond to probes included in a cluster of TOL(/SHAM). The “No. of Common UniGenes” is the number of common genes shared
between the clusters of TOL and SHAM, and its statistical evaluation value, (E,) is shown in parentheses. The “Similarity f (T,5)” is the similarity of the
expression patterns between the clusters of TOL and SHAM. The range of similarity f (7,5) is — 1 (dissimilar) to 1 (similar). The “Binding Sites of Transcription
Factors” shows the name of putative binding sites of transcription factors, the number of common genes that share the same binding sites, and the E value of
the number of common genes with the same binding sites, if the evaluation value is 2.0 or higher. TOL, induced ischemic tolerance; SHAM, shamoperation.
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Fig. 5. Expression patterns of genes in the three overlap blocks. These are the expression patterns of common genes for the three overlap blocks that were picked
up through exploration with CODM (Fig. 4). The “Expression Patterns of Cluster T}(/S)” (i = a,b,c) are the expression patterns of the common genes of the
overlap block i in TOL(/SHAM).
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A Cut-level

0.84 B Cutlevel =

use of the color of overlap blocks, although it may be difficult
to extract biological conclusions because of the limited number
of genes with the putative binding sites in the overlap blocks.
If binding site information from more genes becomes avail-
able, then more detailed analysis of results will be possible.
Furthermore, representation of relationships with other known
gene classifications should provide us with deeper insights.

Threshold Problems

Arbitrary selection of thresholds involves a risk of overlook-
ing important genes. In a comparison of cluster sets on gene
expression profiles, there are four types of thresholds: ) a
threshold for generating clusters for each condition; 2) a
threshold for evaluating the number of common genes that two
clusters share; 3) a threshold for evaluating the differences in
the expression patterns between two clusters; and 4) a thresh-
old for evaluating the relationship with other known gene
information. The CODM reduces the number of thresholds and
allows users to interactively change the thresholds as follows.

1) Threshold for generating clusters for each condition.
Since conventional hierarchical clustering does not focus on
subclusters that are included in other clusters, there is a risk
that the important subclusters could be overlooked. In the
CODM, overlaps of genes between any two clusters of TOL

Physiol Genomics » VOL 21

0.79

Fig. 6. Interactive changes of cui levels. In
CODM, there is a risk that a small overlap
block may be hidden in a large block. To
avoid this problem, CODM allows the user to
change the cut level interactively. If the user
decreases the cut level, then some small
blocks that are hidden in larger blocks will
emerge. By considering the homogeneity of
clusters and the relationships with other gene
information, the user can find important
genes displayed as blocks in the CODM.

and SHAM are statistically evaluated, even if these are
included in other clusters. In addition, the CODM allows
users to interactively change the cut level, to reduce the risk
that a small overlap block may be hidden in a large block
(Fig. 6). Therefore, by considering the homogeneity of
clusters and the relationships with other known gene infor-
mation, the user should be able to find the important genes
displayed as blocks.

2) Threshold for evaluating the number of common genes
shared by two clusters. In CODM, the statistical significance of
the number of common genes between two different clusters is
represented as the height of a block, and statistical signifi-
cances of the overlap of all combinations of clusters are
displayed as a 3D histogram at the same time. Therefore,
without the selection of an arbitrary threshold, the distribution
of the statistical significance of the overlap is effectively
displayed. Although (to reduce the rendering load) Fig. 4
shows only overlap blocks with 2.0 or higher evaluation values
of the overlap, users can interactively change this value.

3) Threshold for evaluating the differences in the expression
patterns between two clusters. CODM represents the differ-
ences in the expression patterns between two clusters by the
color of the blocks ranging from red to blue. Therefore, the
distribution of differences in the expression patterns of all
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combinations of clusters is displayed at the same time, without
any selection of an arbitrary threshold.

4) Threshold for evaluating the relationships with other
known gene information. Although only overlap blocks with
2.0 or higher evaluation values for the representation of genes
with putative transcription factor binding sites were color
coded in Fig. 4F and Fig. 4F, users can interactively change
this value.

Conclusion

In this report we described the characteristics of the CODM
method, a visualization tool for comparing clustering results of
gene expression profiles under two different conditions. In
CODM, the utilization of 3D space and color allows us to
intuitively visualize changes in the composition of cluster sets,
changes in the expression patterns of genes between the two
conditions, and the relationships with a known gene classifi-
cation such as transcription factors. Comparison of dynamic
changes of gene expression levels across time under different
conditions is required in a wide variety of fields of gene
expression analysis, including toxicogenomics and pharmacog-
enomics. Since CODM integrates and simultaneously visual-
izes various types of information across clustering results, it
can be applied to various analyses in these fields.

APPENDIX
Similarity (T,S)
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The similarity f(7, S) satisfies the following inequality:
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Proqf. Since fiT,S) < | is obvious, we only need to prove —1 <
AT,S). We begin by showing that
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We consider the Lagrangian function
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where v is a Lagrange undetermined multiplier. By taking the deriv-
ative, we convert the constrained optimization problem into an un-
constrained problem as follows:
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ABSTRACT

Motivation: Since DNA microarray experiments provide us
with huge amount of gene expression data, they should be
analyzed with statistical methods to extract the meanings of
experimental results. Some dimensionality reduction methods
such as Principal Component Analysis (PCA) are used to
roughly visualize the distribution of high dimensional gene
expression data. However, in the case of binary classification
of gene expression data, PCA does not utilize class information
when choosing axes. Thus clearly separable datain the original
space may not be so in the reduced space used in PCA.
Results: For visualization and class prediction of gene
expression data, we have developed a new SVM-based
method called multidimensional SVMs, that generate multiple
orthogonal axes. This method projects high dimensional data
into lower dimensional space 1o exhibit properties of the data
clearly and to visualize a distribution of the data roughly.
Furthermore, the multiple axes can be used for class predic-
tion. The basic properties of conventional SVMs are retained
in our method: solutions of mathematical programming are
sparse, and nonlinear classification is implemented implicitly
through the use of kernel functions. The application of
our method to the experimentally obtained gene expression
datasets for patients’ samples indicates that our algorithm is
efficient and useful for visualization and class prediction.
Contact: komura@hal.rcast.u-tokyo.ac.jp

1 INTRODUCTION

DNA microarray has been the key technology in modern
biology and helped us to decipher the biological system
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because of its ability to monitor the expression levels of
thousands of genes simultaneously. Since DNA microarray
experiments provide us with huge amount of gene expression
data, they should be analyzed with statistical methods to
extract the meanings of experimental results.

A great number of supervised learning algorithms have
been proposed and applied to classification of gene expression
data (Golub et al., 1999; Tibshirani er al., 2002; Khan et al.,
2001). Support Vector Machines (SVMs) have been paid
attention in recent years because of their good performance
in various fields, especially in the area of bioinformatics
including classification of gene expression data (Furey et al.,
2000). However, SVMs predict a class of test samples by
projecting the data into one-dimensional space based on a
decision function. As a result, information loss of the original
data is enormous.

Some methods are used for projecting high dimensional data
into lower dimensjonal space to clearly exhibit the properties
of the data and to roughly visualize the distribution of the
data. Principal Component Analysis (PCA) (Fukunaga, 1990)
and its derivatives, e.g. Nonlinear PCA (Diamantaras and
Kung, 1996) and Kernel PCA (Scholkopf er al., 1998), are
most widely used for this purpose (Huang er al., 2003). One
drawback of PCA analysis is, however, that class informa-
tion is not utilized for class prediction because PCA chooses
axes based on the variance of overall data. Thus clearly
separable data in the original space may not be so in the
reduced space used in PCA. Another method for visualization
and reducing dimension of data is discriminant analysis. It
chooses axes based on class information in terms of within-
and between-class variance. However, itis reported that SVMs
often outperform discriminant analysis (Brown et al., 2000).

The main purpose of this paper is to cover the shortcoming
of SVMs by introducing multiple orthogonal axes for
reducing dimensions and visualization of gene expression
data. To this end, we have developed multidimensional
SVMs (MD-SVMs), a new SVM-based method that generates
multiple orthogonal axes based on margin between two

Published by Oxford University Press
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classes to minimize generalization errors. The axes gener-
ated by this method reduce dimensions of original data to
extract information useful in estimating the discriminability
of two classes. This method fulfills the requirement of both
visualization and class prediction. The basic properties of
SVMs are retained in our method: solutions of mathematical
programming are sparse, and nonlinear classification of data
is implemented implicitly through the use of kernel functions.

This paper is organized as follows. In Section 2, we
introduce the fundamental of SVMs. In Section 3, we describe
the algorithm of MD-SVMs. In Section 4 and 5, we show
numerical experiments on real gene expression datasets and
reveal that our algorithm is effective for data visualization and
class prediction.

1.1 Notation

R is defined as the set of real numbers. Each component of
avectorx € R",i = 1,...,m will be denoted by Xi, =
1,...,n. The inner product of two vectorsx € R" and y € R"
will be denoted by x - y. For a vector x € R”" and a scalar
a € Ra<xisdefinedasa < x; foralli =1,...,n. For
an arbitrary variable x, x* is just a name of the variable with
upper suffix, not defined as k-th power of x.

2 SUPPORT VECTOR MACHINES

Since details of SVMs are fully described in the articles
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000), we
briefly introduce the fundamental principle of SVMs in this
section. We consider a binary classification problem, where a
linear decision function is employed to separate two classes of
data based on m training samples x; € R",i = 1,...,m with
corresponding class values y; € {£1},i = 1,...,m. SVMs
map a data x € R" into a higher, probably infinite, dimen-
sional space R" than the original space with an appropriate
nonlinear mapping ¢ : R" — RN n < N. They generate
the linear decision function of the form f(x) = sign(w -
¢(x) + b) in the high dimensional space, where w € RV
is a weight vector which defines a direction perpendicular
to the hyperplane of the decision function, while b € R is
a bias which moves the hyperplane parallel to itself. The
optimal decision function given by SVMs is a solution of an
optimization problem

l m

. 2
min —|jw|“+ C i
nin = jw] ;g

st.yiw-ox;))+b)y>1-&, i=1,....,m =0, (1)

with € > 0. Here, § € R” is a vector whose elements
are slack variables and C € R is a regularization parameter
for penalizing training errors. When C ~> 0o, no training
errors are allowed, and thus this is called hard margin
classification. When 0 < C < o0, this is called soft margin

classification because it allows some training errors. Note that
a geometric margin y between two classes is defined as HTIIF
The optimization problem formalizes the tradeoff between
maximizing margin and minimizing training errors. The
problem is transformed into its corresponding dual problem
by introducing lagrange multiplier « € R™ and replacing
@ (x;) - ¢(x;) by kernel function K (x;,x;) = ¢ (x;) - ¢ (x ;)
to be solved in an elegant way of dealing with a high
dimensional vector space. The dual problem is

. 1 m m m
max — 3 D etiotyiyiK (i, x;) + ) e,
=1 j=1 i=1
m
s.t.OSOLSC,Za,'y,»:O. )

i=1

By virtue of the kernel function, the value of the inner
product ¢(x;) - ¢(x;) can be obtained without explicit
calculation of ¢(x;) and ¢(x ;). Finally, the decision func-
tion becomes f (x) =sign(} /", o y; K (x;,x) +b). by using
kernel functions between training samples x;,i = 1,...,m
and a test sample x.

3 MULTIDIMENSIONAL SUPPORT VECTOR
MACHINES

In order to overcome the drawback that SVMs cannot generate
more than one decision function, we propose a SVM-based
method that can be used for both data visualization and
class prediction in this section. We call this method multi-
dimensional SVMs (MD-SVMs). We deal with the same
problem as mentioned in Section 2. Conventional SVMs
give an optimal solution set (w, b, &) which corresponds to
a decision function, while our MD-SVMs give the multiple
sets (wk, 0¥, £5) k = 1,2,...,1 with [ < n, so that all the
directions wy, are orthogonal to one another. The orthogonal
axes can be used for reducing the dimension of original data
and data visualization in three dimensional space by means
of projection. Here the first set (w',b',£') is equivalent to
that obtained by conventional SVMs. Now we only refer (o
the steps of obtaining (wk, bk, Ek), k=2,3,...,1 Inpractice,
the k-th set (w¥, b, §F)k = 2,3,. .., are found with iterative
computations of the optimization problem

) 1 k2 nt ‘
min —{lw C s,
min S| + 2‘5
P ) k gk s _
stoyi(w' - plx)+0Y) =1 =& i=1,...,m,
0w w =0j=1,... k-1 (3)
This problem differs from that of conventional SVMs in the

last constraint w* . w/ = 0. The weight vector w/,; =
I,...,k — 1 should be computed in advance by solving
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other optimization problems (3). The optimization problem
is modified by introducing lagrange multipliers o, p* € R™,
B* e R¥~! and kernel functions. The primal Lagrangian is

1 m
Lt 08 =Sk I + C Y
f=1
+Y o (1 —gF =y k- p(x) + 65
i=1
k—1 ) m
+ Y Bt wl) =Y kg )
j=1

i=1
Consequently, the optimization problem is

m m

1
max ——5 Z Zal{(a‘]/('yi,\’j[{(xi’xj)

L opk
ot p i=1 j=I

k—1 m
1 ; P
+_2_Z,3i‘,81."(w’ w')+ ) ok,
i= i=I
m
st0<al <) ofy =0,
i=1
m )
S et - w) =0, =1,....k=1 (5

i=1

Here x,) - w? and w? - wP are calculated recursively as
I y
follows:

n g—1
Gxp) - wl =) ol yiK(xpx) =Y pl(Dx,) - w),
i=1 i=1
(6)
m m
w’ w’ = Z Zcx,-paf)‘i)‘_/l((xi,x‘,')
i=1 j=1
m p—1 p—1
— Z Za,-p)'iﬁ})(d)(xi) cwly + Zﬁipﬁi[’(w' cwh)
i=1 j=1 i=1
m p—=1
. Py.gP , J
DD ol nBlpx) - wh, @)
i=1 j=I
where ¢ (x ) - w! = Z;":lail)'iK(x,,,xf) and w!.w! =

Yo ol yi(@(xi), w'). As can be seen, there is no need to
calculate nonlinear map of data ¢ (x) in problem (5) because
all nonlinear mappings can be replaced with kernel functions.

Note that this optimization problem is a nonconvex quad-
ratic problem when k is more than 1. As a consequence, the
optimal solutions are not easy to be obtained. In Section 4,
we use local optimum for numerical experiments when k is 2

or 3. We note the experimental results are still encouraging.

The corresponding Karush-Kuhn-Tucker conditions are

af {1 — &f =y (w* - ¢ (x;) +b5)) =0, (8)
ok -0)y=0,i=1,...,m. ©)

These are exactly the same as conventional SVMs. We
highlight the other properties conserved from conventional
SVMs:

e Projecting data into high dimensional space is implicit,
using kernel functions to replace inner products.

e The solutions a* of the optimization problem is sparse.
Then the corresponding decision function depends only
on few ‘Support Vectors’.

Since each decision function is normalized independently to
hold wX - ¢ (x;) + b* = yifori =1,...,m, data scales of the
axes should be aligned with first axis (k = 1) for visualization.
The margin y*, the L2-distance between support vectors of
each class of k-th axis, is

[SYE

m m

k—1
DD afakyiyiKix) = > pEAF @ wh)
i=1 j=1 i=1

(10)

So a scaling factor s* = y!/y* is

n m

Z Z o] ojyiy K (xi,x;)

i=1 j=1

(1D

m m

k—1
Zzaf“f)’i){/lf(x,-,xj) - Zﬁl.kﬂi"’(wf w')

i=1 j=I =1

The decision function of k-th step has the form f*(x) =
sign(D20) oy K (xp,x) + bk). Since the right hand side of
the equation has the function of projecting original data into
one dimensional space, the data can be plot in up to three
dimensional space for visualization. The coordinate of data
x € R™ in three dimensional space is

(s18" (x), s (), Mg M (), (12)

where gf(x) = > al.ky,-K(x,-,x) + bX. The space
represents a distribution of data clearly based on the margin
between two classes.

4 NUMERICAL EXPERIMENTS
4.1 Method

In order to confirm the effectiveness of our algorithm, we have
performed numerical experiments. MD-SVMs can generate
multiple axes, up to the number of features. Here we choose
three axes, k = 1, 2, 3, to simplify the experiments. When k is
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2 or 3, we use local optimum in problem (5) since it is difficult
to obtain the global solutions. In our experiments, we carry out
hold-out validation because cross-validation changes decision
functions every time the dataset is split. Then we compare the
results obtained by MD-SVMs with those obtained by PCA.

In the experiments, the expression values for each of the
genes are normalized such that the distribution over the
samples has a zero mean and unit variance. Before normaliz-
ation, we discard genes in the dataset with the overall average
value less than 0.35. Then we calculate a score F(x(j)) =
(et ()=~ () /ot (j)+0o ()], for the remaining genes.
Here u(j) (™ (7)) and o T(j) (o~ (j)) denote the mean and
standard deviation of the j-th gene of the samples labeled
-+1(—1), respectively. This score becomes the highest when
the corresponding expression levels of the gene differ most
in the two classes and have small deviations in each class.
We select 100 genes with the highest scores and use them for
hold-out validation. These procedures for gene selection are
done only for training data for fair experiments.

The regularization parameter C in problem (3) is set to 1000.
This value is rather large but finite because we would like
to avoid ill-posed problems in a hard margin classification.
We choose linear kernel K (x;,x;) = x; - x; and RBF ker-
nel K(xj,x;) =exp—yllx;i —x; % with ¥ = 0.001 in the
experiments of MD-SVMs.

4.2 Materials

Leukemia dataset (Golub et al., 1999) This gene expression
dataset consists of 72 leukemia samples, including 25 acute
myeloid leukemia (AML) samples and 47 acute lymphoblastic
leukemia (ALL) samples. They are obtained by hybridiza-
tion on the Affymetrix GeneChip containing probe sets for
7070 genes. Training set contains 20 AML samples and 42
ALL samples. Test set contains 5 AML samples and 5 ALL
samples. AML samples are labeled +1 and ALL samples are
labeled — 1.

Lung tissue dataset (Bhattacharjee et al., 2001) This dataset
consists of 203 samples from lung tissue, including 16 samples
from normal tissue and 187 samples from cancerous tissue,
and is obtained by hybridization on the Affymetrix U95A
Genechip conlaining probe sets for 12558 genes. Training set
includes 13 samples from normal tissue and 157 samples from
cancerous lissue. Test set includes 3 samples from normal
tissue and 30 samples from cancerous tissue. Samples from
normal tissue are labeled 41 and samples from cancerous
tissue are labeled —1.

5 RESULTS AND DISCUSSION

The results of numerical experiments are shown in Figure 1,
and Tables 1 and 2. The distributions obtained by MD-SVMs
on the leukemia dataset and the lung tissues dataset are given
inFigure I-(1)and 1-(3), respectively. Those obtained by PCA
are given in Figure 1-(2) and [-(4), respectively. The number

of misclassified samples by MD-SVMs are summarized in
Table 1 and 2. In these tables, the class of the samples is
predicted based on decision functions f k (x),k = 1,23,
corresponding to each of the three axes.

Figure 1-(1) and 1-(3) illustrate that MD-SVMs are likely
to separate the samples of each class in all the three directions.
However, as shown in Figure 1-(2) and 1-(4), PCA does not
separate the samples in the directions of the 2nd or the 3rd
axis. These axes by PCA are dispensable with the objective of
visualization for class prediction. In other words, MD-SVMs
gather the plots of the samples into the appropriate clusters of
each class, while PCA rather scatters them. Furthermore, in
the distribution by MD-SVMs for the lung tissues dataset, one
sample outlies from correct clusters (indicated by arrows in
Figure 1-(3)). Though this sample also seems to be an outlier in
the distribution by PCA (also indicated in Figure 1-(4)), the
outlier significantly deviates in MD-SVMs. This may arise
from the fact that MD-SVMs can separate the samples in all
the directions. These observations indicate that MD-SVMs are
well suited for visualizing in binary classification problems.

The significant advantage of MD-SVMs over PCA is the
ability to predict the classes. MD-SVMs can predict the
classes of samples based on the decision functions f*(x)
without extra computation, while PCA cannot. The predicted
class of a sample should be matched by the all the decision
functions in an ideal case. However that does not always occur
as seen in Tables | and 2. In such cases, the simplest method
for prediction is to use only the st axis, which corresponds to
the decision function generated by conventional SVMs. The
idea is supported by the fact that the 1st decision function clas-
sifies the samples most correctly in almost all cases in Tables 1
and 2. The more advanced method is weighted voting. Scaling
factor or normalized objective values in problem (5) are the
candidate of the weight.

Multiple decision functions generated by MD-SVMs are
useful for outlier detection. Samples misclassified by mul-
tiple decision functions may be mis-labeled or categorized
into unknown classes. For example, see the column ‘3 axes’
of test sample of the lung tissues dataset with RBF kernel in
Table 2. This sample is misclassified by all decision functions,
so we can say that this data contains some experimental error.
The hierarchical clustering method also supports our result.
These results indicate that MD-SVMs can be used for finding
candidates of outliers.

6 CONCLUSION

For both visualization and class prediction of gene expres-
sion data, we propose a new method called Multidimensional
Support Vector Machines. We formulate the method as a
quadratic program and implement the algorithm. This is
motivated by the following facts: (1) SVMs perform bet-
ter than the other classification algorithms, but they generate
only one axis for class prediction. (2) PCA chooses multiple
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Fig. 1. (Top row) Distribution obtained by MD-SVMs for the leukemia dataset with linear kernel, (Second row) Distribution obtained by
PCA on the leukemia dataset. (Third row) Distribution obtained by MD-SVMs for the lung tissues dataset with linear kernel, The sample
indicated by arrows appears to be an outlier. (Fourth row) Distribution obtained by PCA for the lung tissues dataset. The sample indicated by
arrows is the same as in the third row but with less deviates. (a) Cross shot, (b) 1st axis (x axis) and 2nd axis (y axis), (c) 2nd axis (x axis) and
3rd axis (y axis), (d) 3rd axis (x axis) and Ist axis (y axis). Black objects and white objects indicate AML samples (or normal tissues) ALL
samples (or cancreous tissues), respectively. Training data and test data are expressed as a sphere and a cube, respectively.

Table 1. Number of classification errors in the MD-SVMs for the leukemia dataset. The columns ‘si-th axis’, n = 1,2, 3, indicates the number of samples
misclassified by n-th decision function. The columns ‘n axes’, n = 1,2, 3, indicates the number of samples misclassified by 51 decision functions

Kernel Sample # of samples Ist axis 2nd axis 3rd axis | axis 2 axes 3 axes
Linear Training 62 0 | 2 | 1 0
RBF Training 62 0 2 7 5 2 0
Linear Test 10 l 1 2 2 1 0
RBF Test 10 0 2 0 2 0 0

Table 2. Number of classification errors in the MD-SVMs on the lung dataset. See the caption of Table | for other explanation

Kernel Sample # of samples Ist axis 2nd axis 3rd axis I axis 2 axes 3 axes
Linear Training 170 0 1 1 0 i 0
RBF Training 170 0 3 5 2 3 0
Linear Test 33 1 0 0 1 0 0
RBF Test 33 1 1 1 0 0 1
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orthogonal axes, but it cannot predict classes of samples
without other classification algorithms. We have tried to
cover the shoricomings of both methods. MD-SVMs choose
multiple orthogonal axes, which correspond to decision
functions, from high dimensional space based on a margin
between two classes. These multiple axes can be used for
both visualization and class prediction.

Numerical experiments on real gene expression data indic-
ate the effectiveness of MD-SVMs. All axes generated by
MD-SVMs are taken into account for separating class of
samples, while the 2nd and the 3rd axes by PCA are
not. The samples in the distributions by MD-SVMs gather
into appropriate clusters more vividly than those by PCA.
MD-SVMs can predict the classes of the samples with
multiple decision functions. We also indicate that MD-
SVMs are useful for outlier detection with multiple decision
functions.

There are several future works to be done on MD-SVMs:
(1) application of our method to wider variety of gene expres-
sion datasets, (2) investigation of gene selection for preprocess
of analysis and (3) investigation on class prediction method
with multiple decision functions. Firstly, the use of more
suitable samples may show that the axes chosen by MD-
SVMs separate samples more clearly than those by PCA.
Secondly, since the conventional SVMs show good general-
ization performance especially with large number of features,
it is expected that MD-SVMs show much better performance
than PCA with increasing the number of genes used in the
numerical experiments. Since the element of weight vector
generaled by SVMs is one of the measures of discrimina-
tion power of the corresponding genes (Guyon er al., 2002),
that generated by MD-SVMs can be used for gene selec-
tion. Thirdly, the classification with probability as well as
the weighted voting mentioned in Section 4 may be achieved
in our scheme since the conventional SVMs have been already
expanded for the purpose with sigmoid functions (Platt, 1999).
We hope that our method sheds some lights on the future study
of gene expression experiments.
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O CASE REPORT O

Re-entry Circuit in Ventricular Tachycardia Due to
Focal Fatty-fibrosis in a Patient with Myotonic Dystrophy

Hideyuki MURAOKA, Nobuyuki NEGORO, Fumio TERASAKI*, Takahiro NAKAKOJI,
Shigeyuki KoJIMA, Masaaki HOSHIGA, Masakazu SUGINO, Takafumi HOSOKAWA,
Tadashi ISHIHARA and Toshiaki HANAFUSA

Abstract

A 69-year-old man with a recurrent ventricular tachy-
cardia (VT) was admitted. The patient was diagnosed as
myotonic dystrophy type 1 (DM1) and DNA analysis re-
vealed 1,800 CTG-repeat expansion in the myotonic dys-
trophy protein kinase (DMPK) gene. Ultrasonic cardio-
gram (UCG), left ventriculogram (LVG) and magnetic
resonance imaging (MRI) did not show any abnormal
sign including fatty infiltration. But, endomyocardial bi-
opsy obtained from ventricular outflow tract revealed se-
vere fatty infiltration and interstitial fibrosis. Radio-
frequency catheter ablation at the biopsy site could
eliminate VT, so it was strongly suggested that the re-
entry circuit was formed by focal fatty-fibrosis. Careful
observation should be continued for a long period.
(Internal Medicine 44: 129-135, 2005)

Key words: myotonic dystrophy, endomyocardial biopsy,

fatty-fibrosis, catheter ablation, ventricular
tachycardia
Introduction

Myotonic dystrophy type 1 (DMI) is an autosomal domi-
nant disorder, which is caused by the unstable expansion of
a CTG trinucleotide repeat located in the 3’ untranslated re-
gion of the gene encoding DM protein kinase (DMPK) on
chromosome 19q13.3 (1-5). DM is characterized by myoto-
nia, progressive muscular weakness and atrophy. In addition
to its neuromuscular features, there is a broad spectrum of
clinical features, such as cataracts, frontal baldness, ptosis,
testicular atrophy and various cardiovascular symptoms (6).
DMI is the commonest muscular dystrophy occurring in

adult life and cardiac symptoms have been reported in 7 to
23% of these patients (7, 8). Most cardiac events consist of
impairment of the cardiac conduction system including bun-
dle branch block or atrioventricular block. These are few re-
ports of ventricular tachycardia (VT), whereas ventricular
arrhythmias play a major role in the mortality of these pa-
tients (9-13). Unfortunately, pharmacological therapies have
not significantly improved the prognosis (14), possibly due
to the massive fatty fibrosis in the cardiac muscle. Here, we
describe a case of DMI with ventricular tachycardia caused
by re-entry circuit, which was successfully relieved by cathe-
ter ablation.

Case Report

A 69-year-old man with a history of recurrent wide QRS
tachycardia since December, 2000 was admitted to our hos-
pital for further examination on January 31, 2002, The pa-
tient developed gait disturbance over a 10-year period and
was diagnosed as having DMI, on the basis of DNA analysis
that revealed a heterozygous 1,800 CTG-repeat expansion in
the myotonic dystrophy protein kinase (DMPK) gene on
chromosome 19¢q13.3. Two of the patient’s brothers and his
son were also diagnosed as having DMI. We could not de-
termine whether or not two of the patient’s brothers had
heart diseases and abnormality in DNA analysis or not, be-
cause they had died from suffocation many years ago previ-
ously. But his son, who does not have any cardiovascular
symptom, has an about 600 CTG-repeat expansion in the
DMPK gene in DNA analysis. At the time of the patient’s
palpitation attack an electrocardiogram (ECG) showed wide
QRS tachycardia, which was eliminated spontaneously.

On admission, the patient’s blood pressure was 122/76
mmHg, pulse rate was 72 beats/min and regular, and body
temperature was 36.0°C. Physical examination revealed
frontal baldness, a cataract, ptosis, atrophy of the zygomatic
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