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A 70-year-old male presented to our hospital for chest helical pitch 3.25. Thirty seconds after intravenous injection
pain. To evaluate the coronary arteries, electrocardiogram- of 100 ml of iodinated contrast material (350 mgl/mi), CT
gated enhanced multislice computed tomography (CT) scanning was performed with retrospective ECG-gated
(Light Speed Ultra, General Electric, Milwaukee, WI, reconstruction and volume data were transferred to a
USA) was performed with a 1.25-mm slice thickness, workstation (Virtual Place Office Azemoto Tokyo Japan).

A

Fig. 1. Three dimensional volume-rendering images of enhanced electrocardiogram-gated multislice computed tomography revealed total occlusion of the left
anterior descending branch (LAD) (arrowheads) and a large conus branch originating from the right coronary artery (RCA) that fed into the distal part of the
LAD. Diag. indicates diagonal branch.
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Three dimensional volume-rendering images revealed
total occlusion of the left anterior descending branch
(LAD) (arrowheads, Fig. 1A,B) and a large conus branch
originating from the right coronary artery (RCA) that fed
into the distal part of the LAD. Conventional coronary
angiograms revealed the same findings of total occlusion
of the LAD (arrowheads, Fig. 2A) and a collateral conus

A

branch originating from the RCA that fed into the distal
part of the LAD (Fig. 2B). As blood flow of the
collateral artery was good, normal motion of the left
ventricle was revealed by a selective left ventriculogram,
and his chest pain was improved by the oral admin-
istration of nitroglycerin and a B-blocker, no interventions
were performed.

Fig. 2. Conventional coronary angiograms revealed the same findings of total occlusion of the LAD (arrowheads, A) and a collateral conus branch originating
from the RCA that fed into the distal part of the LAD (B). Diag., HL, and LCx indicate diagonal branch, high lateral branch, and left circumflex branch,
respectively,
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A 74-year-old male presented with weight loss; stomach
cancer was diagnosed that required surgery. As he had chest
pains on effort, a conventional coronary angiogram was
performed, which revealed severe stenosis of the left main
branch, and a coronary artery bypass graft (CABG) was
indicated.

Evaluation of the aorta and internal thoracic artery (ITA)
was done using ECG-gated enhanced multislice computed
tomography (CT) (Light Speed Ultra 16, General Electric,
Milwaukee, Wisconsin) with a 1.25 mm slice thickness,
helical pitch 6.00. CT scanning was performed 30 s after
intravenous injection of 100 ml of iodinated contrast
material (350 mgl/ml). Axial source (Fig. 1A) and sagittal
view (Fig. 1B) of multiplanar reconstruction image and
volume-rendered images (Fig. 1C and D), revealed normal
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findings except for a right ITA (RITA) aneurysm (arrow-
heads) and aortic arch calcification. The surgeons had
planned to connect the left ITA to the left circumflex branch
and, as stomach cancer precluded the use of the gastro-
epiploic artery, they chose the RITA to connect to the left
anterior descending (LAD) artery. During the CABG
procedure the RITA aneurysm (10 mm in diameter) was
resected (arrow Fig. 2A). The radial artery was connected to
the proximal portion of the RITA and the radial arterial graft
to LAD. Pathological examination of the resected aneurysm
revealed plaque (%) with thickened intima, fragmentation of
the membrane eclastic interna (arrow) (Fig. 2B) and
excessive cholesterin deposition in intima. Therefore the
RITA aneurysm was considered due to atherosclerosis rather
than specific arteritis or systemic connective tissue disease.
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Fig. 1. A and B: Axial source (A) and sagittal view (B} of multiplanar images of enhanced electrocardiograph-gated multislice computed tomography show the
aneurysm of the right internal thoracic artery (RITA) (arrowheads). (C) and (D) Volume-rendered images of enhanced electrocardiogram-gated multislice
computed tomography show the aneurysm of the right internal thoracic artery (RITA) (arrowheads). Calcification of aortic arch can also be observed. BCV
(brachiocephalic vein), BCA (brachiocephalic artery), LCCA (left common carotid artery), LSA (left subclavian artery), RSA (right subclavian artery), RCCA
(right common carotid artery), RA (right atria), RV (right ventricle), Ao (aorta), PA (pulmonary artery), and LV (left ventricle).
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Fig. 2. (A) Intraoperative photograph of the aneurysm of the right internal
thoracic artery (RITA) (arrow). (B) Histological section of the wall of the
aneurysm of the RITA in Elastica van Gieson stein represented plaque (%)
with thickened intima and fragmentation of the membrane elastica interna
(arrow). Original magnification x 20,
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A 77-year-old male presented to our hospital with chest
pain on effort 5 years previously. Conventional coronary
angiogram (CAG) revealed occlusion in the proximal left
circumflex branch (LCx) and right coronary artery (RCA),
with distal collateral arteries and occlusion of the ostium of
the left subclavian artery (LSA). He underwent a coronary
artery bypass connecting the aortic root to the mid portions of
the RCA using a saphenous vein graft (SVG), and a
gastroepiploic arterial (GEA) graft to the distal LCx. An
artificial graft was also implanted from the ascending aorta to
the mid portion of the LSA. Postoperatively, CAG revealed a
patent GEA graft but completely occluded ostium of the
SVG. Five years later, although asymptomatic, electrocardio-
gram (ECG)-gated enhanced multislice computed tomogra-
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phy (CT) (Light Speed Ultra 16, General Electric,
Milwaukee, WI) was performed with 1.25-mm slice thick-
ness, helical pitch 6.00. Thirty seconds after intravenous
injection of 100 ml of jodinated contrast material (350 mg/
ml), CT scanning was performed with retrospective ECG-
gated reconstruction and volume data were transferred to a
workstation (Virtual Place Office Azemoto, Tokyo).

Volume-rendered images revealed occlusion of the LSA
and patent mid and distal portions fed by the artificial graft
(Fig. 1A,B). The SVG was completely occluded at the
ostium. The proximal LCx was occluded and the distal
portion of the anastomotic site of the GEA graft was
visualized (arrowheads Fig. 2A,B), findings identical to the
previous CAG.
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Fig. 1. Volume-rendered images of enhanced ECG-gated multislice computed tomography from the anterior view (A) and Ieft anterior view (B) revealed the
occluded proximal portion of the left subclavian artery (Lt Subclavian A), and the mid and distal portions of the Lt Subclavian A fed by the artificial graft from
the ascending aorta with good patency. The saphenous vein graft (SVG), which should have connected to the right coronary artery (RCA), was completely
occluded at the ostium of the graft. The gastroepiploic arterial (GEA) graft could also be visualized.
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Fig. 2. Volume-rendered images of enhanced ECG-gated multislice computed tomography from the left superior posterior view (A) and posterior view (B)
revealed that the proximal portion of the lefi circumflex branch (LCx) was occluded. The GEA graft was connected to the distal portion of the LCx and the
distal portion of the anastomotic site of the GEA graft was visualized (Arrowheads). LAD, D1, and OM indicate left anterior descending branch, 1st diagonal
branch, and obtuse marginal branch, respectively.
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Abstract

A critical and difficult part of studying cancer with DNA microarrays is data interpretation. Besides the need for data analysis algorithms,
integration of additional information about genes might be useful. We performed genome-wide expression profiling of 36 types of normal
human tissues and identified 2503 tissue-specific genes. We then systematically studied the expression of these genes in cancers by
reanalyzing a large collection of published DNA microarray datasets. We observed that the expression level of liver-specific genes in
hepatocellular carcinoma (HCC) correlates with the clinically defined degree of tumor differentiation. Through unsupervised clustering of
tissue-specific genes differentially expressed in tumors, we extracted expression patterns that are characteristic of individual cell types,
uncovering differences in cell lineage among tumor subtypes. We were able to detect the expression signature of hepatoctyes in HCC, neuron
cells in medulloblastoma, glia cells in glioma, basal and tuminal epithelial cells in breast tumors, and various cell types in lung cancer
samples. We also demonstrated that tissue-specific expression signatures are useful in locating the origin of metastatic tumors. Our study
shows that integration of each gene’s breadth of expression (BOE) in normal tissues is important for biological interpretation of the
expression profiles of cancers in terms of tumor differentiation, cell lineage, and metastasis.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Tissue-specific gene; Tumor differentiation; DNA microarray data interpretation; Breadth of expression; BRCAI; ESRI1

Introduction

Genome-wide expression profiling with DNA micro-
arrays has been widely used to identify new cancer subtypes
and expression signatures associated with prognosis [1-5].
The expression data of thousands of tumor samples, each

* DNA microarray data from this article have been deposited with NCBI
Gene Expression Omnibus (GEO) under accession: GSE2361.

* Corresponding authors. Hiroyuki Aburatani is to be contacted at Genome
Science Division, RCAST, The University of Tokyo, 4-6-1 Komaba,
Meguro-ku, Tokyo 153-8904, Japan. Fax: +81 3 5452 5355. Xijin Ge is to
be contacted at ENHRI, 1001 University Place, Evanston, 1L 60201, USA.
Fax: +1 224 364 5003.

E-mail addresses: haburata-tky@umin.ac.jp (H. Aburatani),
xge@northwestern.edu (X.1. Ge).
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characterized by the expression levels of up to ~40,000
transcripts, are being quickly accumulated in the public
repositories (reviewed in [6]). Due to technological limi-
tations and the inherent complexity of the gene regulatory
mechanism, such data are often noisy and extremely
multivariate, leading to difficulties in data interpretation.
Besides the need for robust computational tools, integra-
tion of additional biological information about genes is
essential for uncovering molecular mechanisms underling
expression profiles. For example, functional categories from
the Gene Ontology (GO) consortium [7], KEGG databases
of molecular interaction pathways [8], and genome sequen-
ces of promoters are playing important roles in under-
standing a cluster of genes defined by expression profiling.
In this paper, we introduce another kind of information that

-106-



128 XJ. Ge et al. / Genomics 86 (2005) 127141

concerns each gene’s expression pattern in a panel of normal
tissues.

Only a small portion of the 30,000—40,000 protein-
coding genes [9,10] in the human genome are essential to
the survival of individual cells, hence are constitutively
expressed in different types of tissues [11]. Transcription
of most genes is regulated by a cell differentiation
process, and thus is often highly variable among tissue/
cell types and developmental stages. While ubiquitously
expressed genes (so-called maintenance genes [11]) play
key roles in basic cellular processes, tissue-specific genes
are related to the functioning of particular organs.
Although it is still difficult to obtain expression profiles
for individual cell types that constitute normal organs,
genome-wide expression profiles of bulk tissues has been
carried out by serial analysis of gene expression (SAGE)
and DNA microarrays [11-17]. For each gene, such
studies define its breadth of expression (BOE) in normal
tissues, which tell where a certain gene is expressed under
normal physiological conditions. Categorization of genes

Placenta (62)
A Skin (77)
Breast (16)
Uterus (9)
Ovary (10)
Prostate (9)
Bladder (12)

Trachea (13)

Thymus (45)
Spleen (27)
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based on BOE might serve as additional sources of
information to help us decipher the complex expression
profiles observed in cancers.

In this paper, we performed additional microarray
experiments of normal tissues to search extensively for
tissue-specific genes and then systematically reanalyzed
previously published DNA microarray data of various
cancers. We employed oligonucleotide microarrays to
measure the expression of ~20,000 transcripts in 3 fetal
and 33 adult normal human tissues (full list is given in Fig.
1A). Pooled RNA samples are used to maximize tissue
coverage, which is important for defining tissue specificity.
We retrieved data from a collection of previously published
datasets of liver, brain, breast, and lung cancers. Then we
focused on the genes that are specifically expressed in
certain normal tissues but are differentially expressed in
tumors arising from the same anatomical sites. Our strategy
is to create a small but carefully selected dataset of normal
tissue gene expression profiles, and use it as a seed to
reanalyze large datasets in the public domain.

Salivary &.
Stomach
Pancreas
Inteztine
Placenta
Vterus
Prostate
Testis

Thvroid

-3

Fig. 1. (A) Hierarchical clustering of gene expression data of 36 types of normal human tissues. Data for 7396 genes are used to generate the cluster tree. Numbers
in brackets indicate the number of tissue-specific genes, (B) Expression pattern of tissue-specific genes. Red denotes high expression and green low expression,

Only the top 40 with highest specificity are shown for each tissue.
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Results
Expression profiling of normal tissues

Using the Affymetrix UI33A array, we performed
expression profiles of 36 common normal human tissues,
each represented by a pooled RNA sample (see Supplemen-
tary Information for details). The raw data are available at our
web site: http://www.genome.rcast.u-tokyo.ac.jp/normal/, and
can also be queried through a graphical web interface at http://
www.Isbm.org. After eliminating genes with little variation
(max/min > 2, max—min > 100, see Method for details) in
their expression among tissues, we performed hierarchical
clustering of the remaining 7396 probe sets. The result is
shown in Fig. 1A. As expected, whole brain, brain regions,
fetal brain, and spinal cord form a group related to the nervous
system. Other closely related organs also aggregate, such as
{colon, small intestine, stomach}, {heart, skeletal muscle},
{skin, breast} etc. The hierarchical tree of different tissues
defined by expression patterns might reflect the intrinsic
similarities between these tissues as a result of development.

Tissue-specific genes

We identified 1956 probe sets showing exclusively high
expression in one of the 36 tissues (see Method for details).
These probes map to 1687 UniGene clusters, The number of
tissue-specific genes associated with each tissue is also given
in Fig. LA. The expression patterns of these genes are shown in
Fig. 1B. Only the top 40 genes with highest Z scores are given.
A full list of these genes can be found in the Supplementary
Information and our web site http:/www.genome.rcast.
u-tokyo.ac.jp/normal/. We identified 401 testis-specific genes,
329 brain-specific genes, and 175 liver-specific genes. The
remaining tissues have much fewer specific genes. For
example, less than 20 are found for trachea, breast, colon,
bladder, prostate, ovary, and uterus. This can be understood
from the fact these tissues are less specialized and more similar
to each other in their physiological organization.

We also identified 920 “tissue-selective” transcripts that
are highly expressed in several related tissues (see Method
for details). Unlike tissue-specific genes, tissue-selective
genes are highly expressed in multiple tissues. For example,
we identified 25 genes whose expression is restricted to
colon and small intestine, 10 for heart and skeletal muscle, 9
for kidney and liver, 10 for brain and testis, etc. These 920
tissue-selective genes represent 816 UniGene clusters. A full
list is available in the Supplementary Information and at our
web site http://www.genome.rcast.u-tokyo.ac.jp/normal/.
Together with the 1687 tissue-specific genes, we identified
2503 genes whose expression is strongly associated with
specific tissues.

Ideally, multiple independent biological replicates represent-
ing each tissue type are needed to obtain a robust set of tissue-
specific genes. Also more tissue types need to be covered to
better define expression specificity. But due to the difficulty in

obtaining normal samples we used commercially available
pooled RNA. Because of such limitations in the resultant data
and our empirical selection criteria, our lists of tissue-specific
genes might be subject to false positive and false negative
errors. This should be taken into account when using these lists
for data interpretation. We reasoned that although tissue
specificity of individual genes might be unreliable, it should
still be possible to use these lists in a statistical sense by
observing the coexpression of a group of such genes.

To validate our list of tissue-specific genes, we used the
HuGe Index database [13], which contains biological
replicates for some tissues. As shown in Supplementary
Fig. 4, tissue-specific expressions of most of these genes can
be seen in the HuGe Index database. A similar agreement with
the Gene Expression Atlas database [15] is also observed
(Supplementary Fig. 5). This agreement between independent
datasets supports the effectiveness of sample pooling in our
study and the reliability of our lists of tissue-specific genes.

In the following sections we study the expression of
these tissue-specific genes in various cancers, starting from
simple univariant liver cancer to multivariant lung tumors.

Hepatocyte-specific expression signature and differentiation
of liver cancer

It is known that tumor cells sometimes could be
transformed into a less differentiated state via a dediffer-
entiation process [22]. At the molecular level, one would
expect the expression of tissue-specific genes to be
decreased or lost. To confirm this, we reanalyzed a dataset
of hepatocellular carcinoma (HCC) [23], which contains the
data of 8 normal liver and 25 HCC samples. The cancer
samples are further classified into three categories, namely
well-differentiated (N = 8), moderately differentiated (V =
12), and poorly differentiated (N = 5). The expression levels
of 12,600 transcripts are obtained with U95A oligonucleo-
tide arrays (Affymetrix, Santa Clara, CA). Of the 175 liver-
specific genes identified in the U133A array, 141 are
covered by U95A arrays. So we retrieved expression data of
these 141 transcripts.

We noted that 9 (6.4%) of these transcripts are often called
“absent” in at least 4 normal liver samples, and hence do not
show consistent tissue specificity. But the majority (129, or
75%) of these transcripts are called “present” in all of the 8
normal liver samples. When the expressions of these
transcripts in other tissucs are examined, only 5% (7/141)
are all present in 17 normal lung samples [28]. Instead, 72%
(102/141) are called absent in at least 80% of the normal lung
samples. Even for those that are called present in both tissues,
their expression levels in liver are on average 13.5 times
higher. Similarly 77% (109/141) of these genes are called
absent in at least 80% of normal prostate samples in another
microarray datasets [29]. This assured us again the consis-
tency of tissue specificity of the majority of these genes.

We also included 19 transcripts that are specifically
expressed in fetal liver. After eliminating some genes with a
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variation filter (max—min > 100, max/min > 2), we
performed unsupervised clustering analysis with the remain-
ing 64 transcripts. As shown in Fig. 2A, except Cluster vy, we
observed a general tendency of increased levels of expres-
sion of these transcripts in the order of poorly, moderately,
and well-differentiated tumor. Well-differentiated HCC
samples are found to form a subcluster characterized by
high expression of liver-specific genes. The remaining
samples are further divided into two smaller groups, one
dominated by poorly differentiated samples and the other
moderately differentiated samples. Samples are arranged in
the cluster tree according to their degree of differentiation.
Such classification is difficult if we analyze the
expression of all genes in the microarray. For comparison,
hierarchical clustering with the 3536 of 12,000 transcripts
passed a variation filter is shown in Supplementary Fig. 6.
Poorly differentiated HCC samples could also be distin-
guished, but unsupervised global analysis failed to distin-
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guish moderately differentiated from well-differentiated
HCC. This is further confirmed by a receiver operating
characteristic (ROC) curve given in Fig. 2B. We applied a k-

- nearest neighbor (KNN) algorithm [30] to classify samples

into well, moderate, or poorly differentiated HCC. We first
used the 64 liver-specific transcripts and then all 3536
genes. Using a series of thresholds of percentage vote for
making positive predictions, we observed the specificity and
sensitivity of prediction in leave-one-out cross-validation.
The ROC curve suggests that without further supervised
gene selection the list of 64 liver-specific transcripts
outperforms the global expression profiles for the classi-
fication of samples by degrees of differentiation. This is
because these samples are greatly variable in other clinico-
pathological parameters, such as sex, age, viral infection,
invasiveness, etc. By focusing on liver-specific genes, we
are able to filter other factors and gain information about
tumor differentiation with a higher signal-to-noise ratio.
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Fig. 2. (A) Unsupervised clustering analysis of a hepatocellular carcinoma (HCC) dataset using liver-specific genes. Well-differentiated HCC (green) and
normal liver samples (black) form a subcluster characterized by high expression of liver-specific genes. The remaining samples are further divided into two
smaller groups, one dominated by poorly (red) and the other moderately differentiated HCC (blue). While penes in Group o are underexpressed in both
moderately and poorly differentiated HCCs, those in Group p show a tendency of increased expression according to degrees of tumor differentiation. Genes in
Group v are overexpressed in poorly differentiated HCC samples. This group includes some fetal-liver specific genes. (B) ROC curve showing that liver-
specific transcripts outperform the whole gene set in classifying tumor into well, moderate, or poorly differentiated HCC.
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Significant underexpression of some genes, such as those
marked as Group a in Fig. 2A, is observed in both poorly
and moderately differentiated samples. Such genes include
SLC22A1 (solute carrier family 22, member 1), CYP2A6
(cytochrome P450, subfamily IIA, polypeptide 6), CYP2A7
(cytochrome P450, subfamily ITA, polypeptide 7), ALB
(albumin), and FETUB (fetuin B), etc. Genes in Group B
show a tendency of increased expression in the order of
poorly, moderately, and well-differentiated tumors. This
group includes ADHIA (alcohol dehydrogenase 1A), HFL3
(H factor (complement)-like 3), and AFM (afamin), etc. For
some genes, significant variations in expression in moder-
ately differentiated samples are observed.

Many of these genes are related to the function of
hepatocyte cells. Using the Onto-Express software [24]
based on the Gene Ontology database, we confirmed
statistically significant overrepresentation of functional
categories like immune response (N = 9, P < 0.0002),
oxidoreductase activity (N = 7, P < 0.0002), lipid trans-
porter activity (N = 4, P < 0.00001), and so on
(Supplementary Fig. 7A).

A small number of genes marked as Group vy are highly
expressed in poorly differentiated samples, but not in well-
differentiated samples or normal livers. These genes are
tissue-specific genes for fetal liver. Among these genes are
AFP (alpha-fetoprotein), FACL4 (fatty acid—coenzyme A
ligase, long-chain 4), MKI67 (antigen identified by mono-
clonal antibody Ki-67), and MCM7 (MCM?7 minichromo-
some maintenance-deficient 7). Among these genes, AFP
and Ki-67 are known markers whose high expression is
related to poor prognosis [48,49].

Note that the 64 transcripts shown in Fig. 2A are selected
through two criteria: they are specifically expressed in
normal liver, and their expression varies among HCC
samples. These 64 transcripts represent only a small part of
175 liver-specific genes. There are other liver-specific genes
that are still highly expressed even in poorly differentiated
samples. As shown in Supplementary Fig. 8, even poorly
differentiated HCCs do not lose completely their liver-
specific expression of many genes. This observation gives us
some justification for using tissue-specific expression sig-
natures in the interpretation of expression data to address
some other questions such as the identification of the origin
of tumors. This will be discussed in the following sections.

Neuronal and glial-specific expression signatures in brain
tumors

Next, we study the expression of brain-specific genes in
embryonal tumors of the central nervous system (CNS). We
use dataset A of Pomeroy et al. [25], which consisted of
medulloblastoma (MD, N = 10), supratentorial primitive
neuroectodermal tumor (PNET, N = 6), CNS atypical
teratoid/rhabdoid tumor (CNS AT/RT, N = 5), renal and
extrarenal AT/RT (N = 5), nonembryonal malignant glioma
(MG, N = 10), and normal cerebella (N = 4). From the

dataset, the original study reports that medulloblastomas are
molecularly distinct from other brain tumors.

From our list of brain-specific genes, we retrieved data
from this dataset and performed unsupervised clustering.
As shown in Fig. 3A, the samples are divided into two
major groups. The glioma and medulloblastoma group
shows high expression of many brain-specific genes,
which is not observed in the PNET and AR/AT groups.
With our gene subset, no difference is observed between
CNS and non-CNS AR/AT tumors. Malignant gliomas and
medulloblastomas are further distinguished by their high
expression of two clusters of genes marked as Cluster o
and Cluster B, respectively. Included in Cluster o are
genes such as GFAP (glial fibrillary acidic protein) and
OLIG2 (oligodendrocyte lineage transcription factor 2),
which are known to be markers of glia cells. On the other
hand, genes in Cluster B are mainly neuron related. For
Cluster B genes, functional analysis with Onto-Express
software [24] also revealed statistically significant enrich-
ment of genes with functions related to transmission of
nerve impulses (N = 6, P < 0.00005), neurophysiological
processes (N = 6, P < 0.003), and neurontransmitter
transport (N = 2, P < 0.002) as shown in Supplementary
Fig. 7B. Therefore, our clustering results suggest that
glioma and medulloblastoma carry expression signatures
of glia and neuron cells, respectively.

For further confirmation, we plotted the expression
pattern of these genes in different parts of the normal
nervous system (Fig. 3B). Clearly, genes in Cluster o are
highly expressed in corpus callosum and spinal cord while
genes in Cluster 3 are specifically expressed in thalamus,
cerebellum, hippocampus, and amygdala. As spinal cord
and corpus callosum are enriched in glias and contain less
nerons, this result clearly indicates that gliomas carried a
glia-specific expression signature and medulloblastoma
show neuronal origin, which is in agreement with the
current understanding of the origins of these tumors.
Therefore, comparative analyses of normal and cancer
expression profiles are useful for studying the cell lineage
of tumors.

Breast tumors with two distinct types of differentiation

To study the expression of breast-specific genes in breast
cancer, we started with a list of 57 genes that are breast
specific or breast selective (highly expressed in several
tissues including the breast). From this list, we selected 26
genes that show significant variation in expression among
the 21 breast cancer samples in the dataset of Su et al. [21].
The expression of these genes in our normal tissue database
is shown in Fig. 4A. Among these genes arc several
keratins (KRT14, KRT15, and KRT17) that are highly
expressed in the skin and breast. Another important gene in
the list is estrogen receptor 1 (ESRI) that is defined as a
tissue-selective gene for the breast and uterus. In addition
to these 26 genes, we intentionally included three more
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Fig. 3. (A) Expression of brain-specific genes in various types of brain tumors. The samples are divided into two major groups, a glioma and medulloblastoma
group, and a PNET and AR/AT group. The first group shows higher expression of many brain-specific genes while the second does not. Within the first group,
malignant gliomas and medulloblastomas are characterized by their high expression of two clusters of genes marked as Cluster a and Cluster p, respectively.
(B) The expression pattern of Group o and 3 genes in different parts of the normal nervous system. Genes in Cluster « are highly expressed in corpus callosum
and spinal cord while genes in Cluster > are specifically expressed in thalamus, cerebellum, hippocampus, and amygdala.

keratin genes, KRT5, KRTS, and KRT18 as markers for
different epithelial cells {53]. Although they are not in our
list of breast-specific or breast-selective genes, their
expression levels are also higher in the breast than in most
other tissues (Fig. 4A) and are added for the discussion on
tumor origin.

We then performed clustering analysis of these 29 genes
in 21 breast cancer samples from the dataset of Su et al.
[21]. The result is shown in Fig. 4B. Surprisingly, these
genes form two groups. Overexpression of these two groups
in cancer samples seems to be mutually exclusive. This is
quite different from the univariant behavior of liver-specific
genes in liver cancers, in which the expression levels of

liver-specific genes are increased as one group from poorly
differentiated to well-differentiated tumors. Breast tumors
seem to have two distinct types of differentiation.

This interesting expression pattern is confirmed by two
larger breast cancer datasets shown in Figs. 4C and D. In
these two figures, hierarchical clustering of the samples is
performed while the genes are arranged in the same order
as in Fig. 4B (same for Figs. 4A and 4E). Note that the
dataset of Perou et al. [26] shown in Fig. 4C is obtained
with cDNA microarrays while the dataset of van’t Veer et
al. [2] in Fig. 4D is based on a kind of oligonucleotide
microarray that is different from the Affymetrix GeneChip
used by Su et al. in Fig. 4B. Moreover, patient samples are

Fig. 4. Expression of breast-specific genes in breast cancer. (A) Expression pattern of these genes in normal tissues. (B) Hierarchical clustering analysis of the
expression data of these genes in 21 breast cancer samples from the dataset of Su et al [21]. Note that the resultant order of genes is used throughout this figure,
(C) Expression of these genes in a breast cancer dataset of Perou et al. [26]. In the color bar for clinical ER status, blue indicates ER positive and red indicates
ER negative. In the color bar for p53 mutation, black and white indicate the presence and absence of p53 mutations, respectively. In both color bars, gray
indicates that the information is not available. (D) Expression of these genes in the dataset of Van'T Veer et al. [2]. ER status and mutations of BRCA1 and
status of distant metastases are indicated at the bottom using the same coloring scheme as in C. (E) Expression of these genes in breast basal epithelial cell lines
(red), breast luminal epithelial cell lines (blue), and other types of cell lines (grey). Data are from Ref. [26].

-111-



133

J. Ge et al. / Genomics 86 (2005) 127141

X

sauy 190 feyoynde  sau (190 jeljeypde
feuun- «wmwhmﬁ ‘P_mwmm 1se8ig

fezamNznEapaerasauny

aLens

—  9ZEB-IHAY

0D 2-DFHY

- .
SammsmdRvErERVAREERA NN

@ ZARVHD
G LG0T XOQOBLTY SIONSOL 'S X
BUIT | LIBIOIIIAIB- TR a7y
£1GaziaY BLINN
B Uiy ‘gLuN
6 05wt Apussl WOD 1581 601 D8)
£ LSS BuIPLiq VLYY TYIYD
€ W0 Bulplad WD EYIVD
Z UDEICHLES 201

Z ur

2 10qudtl ‘GL ARug;

T soquas Yz Mt viga|SolR0Es TYzE0s
2 w0id DRIIRMINDKION, AUSUDD MDY ZeE]
WHIOIT PRONGUI-AIPEIG ol

2 30QUIN 'y AUIE; SHLED BINIOS 1Y 1S

1 Jiaoss ueBans 1 He3

§ anesan G1MN

S1 LSEIOY 5 Lt

O X064 uoibas Buwatep Xesh A4S 01LXOS
USRIAY LE1aD

1048 PERIBIDHZTU; BRUDES LINIS
OLELHPGSIZANG UND
B4 s008) Jewnd gidN

N uDRoUA NN

1sesiq
|BULION

4

Sanssy feulou Jayl0

gEs FprETerLS
43 ECEEERSE
FERE EIEyESEEE
F e P
85 4 ik
it §ie

4 -

i 3

() [

g purth’

<t

-112-



134 X.J. Ge et al. / Genomics 86 (2005) 127141

collected by three different laboratories from different
populations. Despite these differences, the same pattern is
observed in three independent datasets. All these data
suggest that breast cancers could exhibit two types of
differentiation.

To gain insight into the two types of cancers, the
expression of these 29 genes in various cell lines is shown
in Fig. 4B (data from Ref. [26]). It is found that the two
types of gene expression pattern correspond well to breast
basal epithelial cell lines (HMEC and 184Aa) and luminal
epithelial cell lines (MCF7, T47D, BT-474, and SK-ER-3),
respectively. Such expression patterns are not observed in
other types of cell lines such as those derived from breast
carcinosarcoma (Hs578T), shown on the right side of Fig.
4E. This is also consistent with the expression pattern of
several markers for different cell types in the breast.
Keratins 5/6 and 17 are conventional markers for breast
basal epithelial cells while keratins 8 and 18 are markers for
breast luminal epithelial cells. Therefore, breast cancer
samples can exhibit basal-like differentiation or luminal-
like differentiation.

Combined with clinical information given at the bottom
of these figures, we observed that a basal-like expression
pattern is usually seen in ER-— breast cancers while a
luminal-like expression pattern is mostly observed in ER+
breast cancers. In addition, there are some ER~ samples that
show neither basal nor luminal differentiation, which are
shown on the right sides of Figs. 4C and D. Some of them
are characterized to overexpress erbB2 [26,27]. While the
basal-like group is homogeneous, luminal like samples are
heterogeneous and might be further divided into several
subtypes [27]. Our result agrees with previous report that
gene expression patterns of breast cancer are divided into
two big clusters in association with ER status [2,26]. ER+/
luminal subtypes of breast cancers usually have a good
prognosis while those with an ER—/basal-like expression
pattern are more invasive. This has been observed repeat-
edly in several studies (see s.1b in Ref. [26], Fig. 1a in Ref.
[2], and Ref. [32]).

For many of the genes shown in Fig. 4, differential
expression in ER+ and ER— tumors has been reported
previously [2,26]. Our results linked such observations with
their expression pattern in normal tissues: many of the
differentially expressed genes between subtypes of breast
tumors are highly expressed in normal breast. It is surprising
that a small set of breast-specific genes seems to contain
genes highly expressed in both ER+ and ER— tumors, in a
seemingly unbiased manner.

The normal breast epithelium consists of a luminal
epithelial layer and a basal myoepithelial layer. RNA
samples for the normal breast are extracted from this
heterogeneous tissue as a mixture of these microscopic
organizations. Hence both basal and luminal cells contribute
to the tissue specificity observed in the gene expression
pattern. Breast-specific genes actually contain basal-specific
and luminal-specific genes as shown by the cell line data in
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Fig. 4E. Since breast tumors could display basal- or luminal-
like differentiation, we could separate these two types of
tumors with a small set of breast-specific genes. This is a
phenomenological explanation for the expression pattern in
Fig. 4.

Our observation seems to suggest that these two types of
breast tumors might originate from different cell types
within the normal breast epithelium. But it might also be
possible that they all come from the same myoepithelial
cells and some later undergo a drastic change in global gene
expression during progression of dedifferentiation. Further
discussion is available in the Supplementary Information.
Whatever the molecular mechanism, our analysis revealed
that breast tumors exhibit two types of differentiation that
could be related to two types of epithelial cells within the
normal breast.

Heterogeneity of lung cancers

The following two sections deal with fung cancer, which
is more heterogeneous than liver and breast cancers
discussed above. We reanalyzed a dataset of lung cancers
(N = 186) and normal lung (N = 17) [28]. The cancer
samples are histologically divided into lung adenocarcino-
mas (AD, N = 127), squamous cell lung carcinomas (SQ,
N = 21), pulmonary carcinoids (COID, N = 20), small-cell
lung carcinomas (SCLC, N = 6), and other adenocarcinomas
(N = 12). For each sample, gene expression data of 12,600
transcripts are also obtained with U95A oligonucleotide
arrays. This array covers 22 of the 32 lung-specific genes
identified in the present study. About 77% (17/22) of these
transcripts are called present in all 17 normal lung samples.
In contrast, most of them (68%) are called absent in at least
7 of the 8 normal liver samples noted in theprevious section
[28]. A similar percentage (64%) of these genes are absent
in at least 40 of the 50 normal prostate samples in another
microarray dataset [29].

Because there are so few lung-specific transcripts and
lung tumors are known to have greater heterogeneity,
expression data are retrieved from this dataset for our list
of 2503 tissue-specific and tissue-selective genes associated
with all tissue types. Hierarchical clustering is performed
after variation filtering. From the result shown in Fig. 5, we
noted several features. First of all, high expression of lung-
specific genes is observed in normal lung and some
adenocarcinomas. Expression of those genes varies among
adenocarcinomas, indicating degree of differentiation, as
discussed in the case of liver cancer.

Another feature is high-level expression of skin-specific
genes in SQ samples. Such genes include galectin 7
(LGALSY7), desmoglein 3 (DSG3), plakophilin 1 (PKP1),
and keratin 16 (KRT16). KRT16 is a member of keratin
family known as markers for squamous tumors. When
analyzed with Onto-Express sofiware, this gene list shows
strong correlation with ectoderm development (N = 5, P =
0.0), and contains many cytoskeleton genes (N = 6, P <



XJ. Ge et al. / Genomics 86 (2005) 127141 135

Colon/lntestineﬂ -~
specific

Brain-specific

Breast-specific []
Liver-specific

Skin-specific

Lung-specific

AD NL CM COID SCLCBM sQ

Smali_intestine/ MUC3A: mucin 3A, intestina)

Colon/ CLDN3: Claudin 3

Small_intestine/Pancreas/ REG18: regenerating islel-derived 1 beta
Colon/Small_intestine/Kidney/Placental ABP1: amiloride binding protein 1
Colon/ CEACAM1: {ated cell adhesion molacule 1
Small_tntestine/ VIL1: villin 1

Pancteas!/ PRSS3: protease, serine, 3(mesotrypsin)
Small_Intestine/Pancreas/ PRSS2: pratease, sarins, 2 (trypsin 2)
Colon/Small_Intestine/ Stomacty LGALS4: lectin, galactoside-binding, soluble, 4
Colon/Small_Intestine/ COX2: caudal type homeobox transcription factar 2
Col L) COH17: in 17, LI cadherin {liver-intestine)
Colon/Small_Intestine/ CDX2: caudal type homeobox transeription factor 2
Colon/Small_intestine/ATP 108: ATPase. Class V, lype 10B

Breast/ TBC1DC: TBC1t domain family, member 9
Brain/ GAD1: Glutamate decarboxylase {brain, 67kDa)

nbryonic antigl

|- Breast/Uterus/ ESR1: Estrogen receptor 1

Breast/Placenta/Skin/ TATA3: GATA binding protein 3

ﬁ Breast/ STC2: Stanniocalcin 2

Breast/Skin/ SCGB2A2; Secretoglobin, family 2A, member 2
BreasSkin/ SCGB1D2: Secretoglobin, family 1D, member 2

Fetal_Brain/Fetal_Lung/ P311: P311 protein

Brain/Heart/Fetal_Brain/ AF 1Q: ALL1-fused gene from chromosome 1q
Fetal_Brain/Fatal_Lung/ TMSNB: Thymosin, beta, identified in neuroblastoma cells
Breast! SFRP1: Secreted frizzied-ralated protein 1

Bone_Marrow/ Brain/ COL8A3: Collagen, type IX, alpha3d

Breast! GABRP: Gamma-aminobutyric (GABA) A receplor. pi

Fetal_Lung/ MDFI: MyoD family inhibitor

Brain/Testis/ SCRG1: Scrapie responsive prolein 1

Heart/ CDH18 - Cadherin 19, type 2

Fig. 5. Clustering analysis of a dataset of lung cancer using all 2503 of the tissue-specific/selective genes. Branches are marked according to clinical diagnosis:
normal lung (NL), gray; lung adenocarcinoma (AD), black; squamous cell lung carcinomas (SQ), yellow; pulmonary carcinoids (COID), blue; and small-cell
lung carcinomas (SCLC), green. Some lung adenocarcinoma samples are diagnosed as colon metastasis (CM, pink), or breast metastasis (BM, red). Gene
groups: a, a set of colon/intestine-specific genes highly expressed in CM samples; B, six breast-specific genes highly expressed in a BM sample: vy, two breast-
specific genes and some genes highly expressed in fetal tissues. As marked at the left side, this figure also shows higher expression of brain-specific genes in
COID and SCLC samples and skin-specific genes in SQ samples. In addition, one AD sample shows very high expression of dozens of liver-specific genes.

0.00012). The high expression of skin-related genes in SQ
samples is reasonable as this type of lung tumor is believed
to originate from bronchial epithelium.

Similarly, high-level expression of brain-specific genes is
observed in COID samples. Typical genes include GRIA2
(glutamate receptor, ionotropic, AMPA 2), SLC4A3 (solute
carrier family 4, anion exchanger, member 3), SYT!
(synaptotagmin I), SNAP25 (synaptosomal-associated pro-
tein, 25 kDa), and APLP! (amyloid beta (A4) precursor-like
protein 1), etc. Part of these genes, such as SYT1, SNAP25
and APLP1, are also highly expressed in SCLC. This gene
cluster overlaps with the Cluster « in Fig. 3; functional
analysis with Onto-Express also confirmed strong link to
neurogenesis (N = 3, P < 0.00034). Such observations agree
with general understanding that SCLC and COID are
neuroendocrine tumors.

In summary, we observed higher expression of lung-
specific genes in AD cancers, skin-specific genes in SQ
cancers, and brain-specific genes in SCLC and COID. These
expression signatures reveal the origin and cell lineage of

these tumors, which illustrated the usefulness of studying
tissue-specific gene expression in cancers.

Primary sites of metastatic cancer

We identified a set of colon/intestine-specific genes that
are highly expressed in a cluster of 12 samples (Group o in
Fig. 5). Clinical and histological information shows that 7 of
these samples are metastases of colon cancer. Therefore, this
cluster may represent metastatic cancer from the colon.

In the original study, it is found that these samples form a
cluster with quite different expression signatures from other
lung cancer samples and that these tumors express some
genes (such as galectin-4, cadherin 17, and c-myc) that are
known to be overexpressed in colon carcinoma. These
authors concluded that this cluster of 12 samples may be
colon metastasis. In our study, the high-level expression of
dozens of colon/intestine-specific genes lead us to a similar
conclusion. While their conclusion is based on reported
markers from the literature, ours solely makes use of a gene
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expression database of normal tissues. So our approach
might be helpful for the diagnosis of metastatic cancer from
organs that are not as well-studied as colon cancer.

We also observed overexpression of several liver or fetal
liver-specific genes in one lung tumor (AD368). This is also
noted in the original study, as some of these genes such as
albumin are associated with liver. Although this sample is
not clinically identified as metastasis, it carries a liver-
specific expression signature, which can be clearly seen in
the middle of Fig. 5.

Metastatic cancers from some other organs could be
difficult to identify. For example, the dataset contains one
sample (AD352) that is diagnosed as breast metastasis and
another three samples (AD163, ADI186, and AD172) as
probably breast metastasis. Of these four samples, only one
(AD163) showed high expression of six breast-specific
genes including ESR1. These genes are marked as Group p
in Fig. 5. The other three samples do not have such an
expression signature. However, two of them (AD352 and
ADI186) are found in a cluster of eight samples, charac-
terized by high expression of a group of nine genes (Group
v), including two breast-specific genes, SFRP1 and
GABRP; this indicates a weak breast-specific expression
signature. This group also includes several genes that are
highly expressed in fetal tissues: p311, AF1Q (ALLI-fused
gene from chromosome 1q), TMSNB (Thymosin, beta), and
MDFI (MyoD family inhibitor). This seems to suggest that
these tumors are more aggressive and that they might be
metastasis from distant organs.

A closer look at the genes in Groups B and vy revealed
something interesting. In the previous section we show that
breast tumors could have two distinct differentiations. In
fact, all of the six breast-specific genes in Group p belong to
those given in the lower part of Fig. 4B, characteristic of a
luminal/ER+ tumor type. Thus AD163 is probably meta-
stasis of a luminal-like/ER+ breast cancer. On the other
hand, Group y genes include two breast-specific genes,
SFRP1 and GABRP, which are characteristic of basal-like/
ER— tumors. Therefore the samples AD352 and ADI186
might be from this tumor subtype. Because the expression
pattern of the two subtypes of breast tumors are quite
different, AD163 are found in a different branch of the
clustering tree in Fig. 5. This might explain why it is difficult
for original authors [28] to identify such breast metastasis.

For confirmation, we constructed a set of marker genes
based on results shown in Figs. 4 and 5. Markers for two
types of breast cancers are the same as in Fig. 4, while those
for colon and liver cancers are selected from the highlighted
regions of Fig. 5. In addition, 19 markers for lung
adenocarcinoma are taken from Ref. [21]. As shown in
Fig. 6A, these genes are specifically expressed in primary
colon, breast, liver, and lung cancers in the dataset of Su et
al. [21].

Then we examined the expression of these genes in the
lung cancer dataset of Bhattacharjee et al. [28]. For
simplicity, only those diagnosed as lung adnocarcinoma
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are examined. As shown in Fig. 6B, we observed higher
expression of a colon-specific gene cluster in 12 lung
tumors, most of which are diagnosed as colon metastasis.
We also observed overexpression of dozens of liver-specific
genes in one sample (AD368). In agreement with clinical
diagnosis, one sample (AD163) clearly shows an expression
pattern similar to that of luminal-like breast cancer. Mean-
while, three samples (AD352, AD186, and AD131) exhibit
expression signatures of basal-like breast cancer. Two of
them (AD352 and AD186) are diagnosed as breast meta-
stasis. Totally, we identified {7 tumors that might have
originated from distant organs. Nine of them are confirmed
by clinical diagnosis. All of these 17 samples show
underexpression of genes specific for lung adenocarcinoma
(Fig. 6B). Therefore, the expression pattern of these marker
genes provides useful information about tumor origin.
Sample AD172 was diagnosed as probably breast meta-
stasis, but did not show either of the two breast-specific
expression patterns. On the contrary, AD131 was diagnosed
as primary lung adenocarcinoma, but shows an expression
profile similar to that of basal-like breast cancer. These are
some discrepancies between our prediction and diagnosis.
With these marker genes, it is possible to train some
machine-learning algorithms to predict tumor origins. The
data shown in Fig. 6A were used to train a prototype
matching algorithm described in Ref. [44] (available at
http://www.jsbi.org/journal/GI14.html), which is similar to
the one proposed in Ref. [45] but emphasizes the minimi-
zation of false positive errors. When tested with the lung
dataset of Fig. 6B, the algorithm makes confident predictions
for 16 of the 17 secondary tumors in agreement with clinical
diagnosis. Only three false positive predictions are made for
the remaining 112 primary lung adenocarcinomas. There-
fore, with a set of carefully selected tissue-specific genes, it
is possible to predict the origin of tumors with high accuracy.

Discussion

Through expression profiling of a spectrum of normal
human tissues, we identified sets of tissue-specific genes,
and then studied their expression in cancers by analyzing a
wealth of previously published DNA microarray datasets.
Through unsupervised clustering of tissue-specific genes
differentially expressed in tumors from the same anatomical
site, we identified groups of coexpressed genes character-
istic of different cell types within the organ, thus revealing
cell lineage of tumor subtypes. Similar observations are
made in liver, brain, and breast, as well as lung tumors.

The expression pattern of tissue-specific genes in
tumors could be univariant (liver cancer), bivariant (breast
cancer), or multivariant (brain and lung cancers). We
identified a set of liver-specific genes whose expression in
HCC changes according to the degree of tumor differ-
entiation (Fig. 2). This set of genes can be used to classify
tumors into differentiation categories more accurately than
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A

Colon Breast1 Breast2 Liver Lung (AD)

Fig. 6. Prediction of tumor origin with selected markers genes. Predictor genes for colon and liver cancers are selected from the result shown in Fig. 5, while
those for two major types of breast cancers are from Fig. 4. Predictors of lung adenocarcinoma are from Ref. [21]. (A) Expression of these genes in the dataset
of primary colon, breast, liver, and lung cancers (data from Ref. [21]). (B) The expression of these genes in the dataset of lung tumor dataset [28]. Some
samples are diagnosed as colon or breast metastases, indicated by red and green, respectively.

using the global expression profile. For brain tumors, we
identified neuron-specific expression signatures in medul-
lobrastoma and glia-specific signatures in glioma. No such
feature is observed for rhabdoid and PNET. We also found
a small set of 26 genes that are highly expressed in the
normal breast but are divided into two groups, whose
expression in breast tumors is mutually exclusive and
defines two types of differentiation (Fig. 4). We observed
that different subtypes of lung cancers show different
patterns of tissue specificity, e.g., high expression of skin-
specific genes in SQ and high expression of brain-specific
genes in SCLC and COID (Fig. 5). In addition, expression
signatures of primary sites is detectable in lung tumors
originating from colon, liver, and breast. Notably, we were
able to detect lung tumors with expression profiles
resembling two subtypes of breast cancers. Summarizing
these results, we selected molecular markers that can be
used to predict tumor origins (Fig. 6).

DNA microarrays are powerful tools for studying cancer.
But biological interpretation of the obtained levels of gene

expression is often challenging. Our work shows that
categorization of genes according to their tissue specificity
is useful for the interpretation of the data of cancer. Starting
from a small set of a normal tissue gene expression dataset,
we reanalyzed multiple cancer datasets of liver, breast,
brain, and lung cancers, and obtained valuable information
on tumor differentiation, molecular heterogeneity, and
tumor origin. Such information is often difficult to extract
when each dataset is analyzed independently in a stand-
alone manner. This illustrated the far-reaching benefits of
systematic studies on normal tissues. The creation of a
collective normal control panel that includes gene expres-
sion datasets of a spectrum of normal tissues is beneficial for
research on tumors in all organs.

As a proof-of-concept study, the present work used
pooled RNA to reduce the cost of biological replicates, a
strategy supported by some recent comparative studies
[46,47]. Although we showed that our list of tissue-specific
genes are already useful for analyzing gene expression data
of various cancers, further work is needed to refine these
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lists by including biological replicates in a systematic study
on normal tissue gene expression. During the preparation of
the current manuscript a larger database of normal tissue
gene expression was published (see Ref. [52]).

As tumors are the result of uncontrolled proliferation of
certain cells within an organ, they are more homogeneous
than normal organs and could serve as natural subject for
studying expression signatures of individual cell types. The
expression patterns shown in Fig. 2 to Fig. 5 contain many
well-known markers for different cell types, such as ALB
for heptocyte, GFAP and OLIG2 for glia cells, and the
keratin genes for basal and luminal epithelial cells. Other
genes in the list might serve as potential candidates for new
markers. It might be possible to take advantage of the
homogeneity of cell population in tumors and gain insights
on expression signatures of different cell types from the
expression profiles of tumors.

As these expression patterns are cell-type specific, we
should be able to detect common transcription factor
binding motifs on the promoter regions of these genes in
the human genome. For the gene lists shown in Figs. 2, 3,
and 4, we extracted upstream sequences and compared the
occurrence of known transcription factor motifs with a
group of control genes (see Supplementary Information
for more details). We found statistically significant
enrichment of motifs for hepatic nuclear factors (HNFI,
HNF3, HNF4, and HNF6) in the hepatocyte-specific
genes (Fig. 2), and neuron-restrictive silencer factor
(NRSF) for neuron-specific genes marked as Group P in
Fig. 3. Without the combination of normal and cancer
expression profiles, such regulatory motifs would be more
difficult to detect.

In summary, we demonstrated the importance of inte-
grating tissue specificity into the interpretation of the
expression profiles of tumors, especially for the study of
tumor differentiation, cell lineage, and metastasis. System-
atic, large-scale studies on normal tissue gene expression
profiles could both give rise to baseline controls in basic
data analysis and be used to define each gene’s breadth of
expression in normal tissues. Knowing how genes are
expressed under normal physiological conditions is impor-
tant for dissecting complicated cancer transcriptomes.

Materials and methods
Sample preparation

Twenty-five total RNA specimens were purchased from
Clontech (Palo Alto, CA), Ambion (Austin, TX) and
Strategene (La Jolla, CA). In order to define breadth of
expression accurately at a reasonable cost, we tried to
cover as many tissue types as possible by using pooled
RNA samples. Each specimen represents a human organ.
We used RNA samples pooled from 2 to 84 donors to
avoid differences at the individual level. But still many
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specimens from single donors are included because of the
difficulty in obtaining healthy tissues. We also purchased
seven poly(A) RNA specimens of spinal cord and several

- brain regions such as corpus callosum, hippocampus,

thalamus, pituitary gland, caudate, and amygdala. In
addition to these purchased RNAs, we obtained tissue
specimens of liver, stomach, lung, and fetal lung from
individuals with informed consent. The specimens were
immediately preserved in liquid nitrogen for further
analysis. Total RNAs were extracted from these specimens
by using ISOGEN (Isogen Life Science, Industrieweg 66-
68, 3606 AS Maarssen, Netherlands). For further demo-
graphic information, please refer to the Supplementary
Information.

Microarray experiments

Total RNA or Poly(A) RNA was used to synthesize
cRNA which was then hybridized to HG-U133A oligonu-
cleotide array (Affymetrix, Santa Clara, CA) according to
standard protocols as described previously [18].

Data acquisition

After hybridization, all scanned images were visually
inspected for artifacts and overall quality. Affymetrix’s
MicroArray Suite 5.0 software was used to analyze image
files. The software calculates a “signal” to characterize each
gene’s expression level based on the difference between the
densities of mutiple pairs of perfect match (PM) and mismatch
(MM) probes. In addition, it also produces a “detection P
value” to indicate how confidently a gene’s expression is
detected. If the densities on most PM probes are significantly
larger than their corresponding MM probes, the algorithm will
return a smaller P value. Usually, a gene is considered present
if P <0.05, and absent if P > 0.06. Absent calls indicate that
the corresponding expression data are not reliable. Raw DNA
microarray data have been deposited with NCBI Gene
Expression Omnibus (GEO) under accession: GSE2361.
The data is also available at the authors’ web site: http://
www.genome.rcast.u-tokyo.ac.jp/normal/.

Data normalization

Normalization is done among the probe sets with
present calls in each array. After the top and bottom 5%
are removed, the average of the logarithm of signals
produced by these probe sets is centered to the logarithm
of a positive number, here 160, to be comparable with a
target density of 100 in global scaling for most tissues.
Scores are then transformed by an inverse logarithm. This
kind of procedure is preferred when comparing multiple
tissue types because the total number of present calls
varies significantly with tissues, which leads to biases to
the default global scaling method. Finally signals smaller
than 10 are set to 10.



XJ. Ge et al. / Genomics 86 (2005) 127141 139

Selection of tissue-specific genes

We consider a gene specific to a tissue type if it is
exclusively highly expressed in this tissue. An example of
the expression pattern of tissue-specific genes is shown in
Supplementary Fig. 2. To select such genes, we used ¢ test
and several empirical criteria. Suppose a gene’s expression
level (g) is the highest in a certain tissue, for example, liver.
We first require that this score is associated with a present
call. Then the expression level g is compared with the mean
(m) and standard deviation (SD) observed in the rest of the
tissues. This gene is considered liver-specific if (a) g >
m=+38D, (b) g/g2 > 2, and (c) g > 160 (d) g2 < 150, where
g2 is the second highest expression score in all the tissues. To
avoid missing lowly expressed tissue-specific genes, we also
included genes that meet an alternative criterion: a gene must
be confidently present in this tissue (detection P value <
0.02) and absent (detection P value > 0.08) in all others. Also
the absolute expression level must meet condition (b).

In addition to tissue-specific genes, which are exclusively
expressed in one particular organ, there are some genes
whose expression is restricted to two or more organs or
anatomical sites. As an example, the expression pattern of
cytokeratin 20 (KRT20), which is highly expressed in
stomach, colon, and small intestine, is shown in Supple-
mentary Fig. 3. To define such tissue-selective genes, we
used Sprent’s nonparametric method [19]. For each gene,
the log-transformed signal values of all tissues are used to
calculate a median and median absolute deviation (MAD).
Then those tissues with a signal larger than median by more
than 5 MAD (equivalent to 3.375 SD in normal distribution)
are considered significant. The number of tissues with
significantly higher expression must be smaller than 8. The
usage of median and MAD are preferred over the mean and
SD because they are more robust and less sensitive to
outliners, e.g., extremely large signal values in a few tissues.

Clustering analysis

A filtering process is applied to eliminating genes whose
expression does not show much variance among the
samples in question. A gene should show more than a 2-
fold change between the maximum and the median. Also the
absolute difference should be larger than 100. Then the data
are log-transformed, and the gene vector is median-centered
and divided by SD. Average linkage hierarchical clustering
is done using the Cluster and Treeview program [20] with
Pearson’s correlation coefficient as a distance metrics.

Public gene expression datasets and metaanalysis

In addition to our own data, we also use two normal
tissue gene expression database, namely HuGe Index
database (Ref. [13], available at http://www.hugeindex.org)
and Gene Expression Atlas database (Ref. [15], http:/
www.expression.gnf.org/). To study the expression of

tissue-specific genes in cancers, we analyzed a dataset of
multiple cancer types (Ref. [21], http:/www.carrier.gnf.
org/welsh/epican/), a liver cancer dataset (Ref. [22], http://
www.lsbm.org/db/), two datasets of breast cancer (Refs.
[26,27], http://www.genome-www.stanford.edu/breast_
cancer/molecularportraits/, and Ref. [2], http:/www.rii.
con/publications/vantveer.htm), and a lung cancer dataset
(Ref. [28], http://www-genome.wi.mit.edu/cancer/). Several
datasets of other cancer types are also used in our study of
maintenance genes. A full list of data sources is available
in Supplementary Table 1.

Most of these datasets are based on Affymetrix Gen-
eChip systems (HuGeneFL, HG-U95A, or HG-U133A), for
which annotation information about probe sets are available
at http://www.affymetrix.com. We also used one dataset of
cDNA microarrays. Mapping between these different data-
sets is performed according to the latest version of UniGene
(as for May 2003) by using the SOURCE database (Ref.
[31], http://www.source.stanford.edu).

Classification of HCC samples

We tested two sets of predictor genes for classifying
HCC samples into well, moderate, and poorly differentiated
tumors. This first set consists of 64 liver-specific transcripts
shown in Fig, 2A; the other set includes 3536 genes passed
through a variation filter (max/min > 2, max—min > 100).
A standard k-nearest neighbor (ANN) algorithm with (k =
4) was employed to classify each of 25 tumors withheld
from training. To make a positive prediction, a winning
type must receive a percentage of votes larger than a
certain margin over all other types. This threshold is
adjusted from 0, 10, 30%, 50, 70, and 90% to produce the
ROC curve in Fig, 2B.

Gene ontology analysis

Statistical association of gene lists with GO categories
are performed with the Onto-Expression software [24]),
available at http://www.vortex.cs.wayne.edu. Binominal
distribution is used to calculate the P value at which the
list is enriched by genes belonging to a certain function
category.

Promoter analysis

To search for cell-specific promoter binding motifs, we
extract promoter sequences from 2500 bp upstream to 500
bp downstream transcription starting site (TSS) using the
Promoser web service ([50], http://www.biowulf.bu.edu/
zlab/PromoSer/). As a control group, we also extract similar
sequences of 1144 maintenance genes. We developed a set
of Perl scripts to scan these sequences for binding sites of
known transcription factors included in the TRANSFAC
database [51]. Then we calculated the P value of over-
representation for each motif by comparing the frequency
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