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Fig. 3. Antitumor chemotherapeutic effect of DOX against 3LL tumor in C57BL/6 mice. (A) Effect of DOX treatment in 3LL tumor growth.
3LL cells (5x10%) were inoculated s.c. on day 0. Saline (for control group [O]), DOX (2.5 mg/kg {@]), was administrated i.p. on days 1-5, 7—
11, and 14-16. The tumor volume was measured on the days indicated. Each group consisted of eight mice; bars, S.D. (B) Tumor weights at day
17. Mice were sacrificed, and the tumor weights were measured. All mice survived at the end of the experiment. *P<0.05, ***P<0.005 in
comparison between the indicated groups; bars, S.D. No significant difference was observed in wild-type control vs. gld control, wild-type
control vs. [pr control, gld control vs. gld DOX, and wild-type DOX vs. lpr DOX.

Next, we examined the antitumor effect of DOX on tumor growth in wild-type mice. Furthermore, Fas
an established tumor in the syngeneic models. DOX expression in vivo was increased in two out of three
was administered i.p. at days 8 and 14. As shown in 3LL solid tumors by only once injection of DOX (Fig.
Fig. 4A and 4B, DOX showed no significant 5). As [pr mice were used as hosts for this experiment,

antitumor effect in gld mice, while it inhibited the the mRNA of Fas was not derived from the host cells.
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These results suggest that Fas and Fasl. play an
essential role in the antitumor effect of DOX against
3LL solid tumor possibly through enhanced Fas
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Fig. 4. Antitumor chemotherapeutic effect of DOX against
established 3LL tumor in C57BL/6 mice. (A) Effect of DOX
treatment in 3LL tumor growth. 3LL cells (5% 105) were inoculated
s.c. on day 0. Saline (for control group [O]), DOX (1 mg/kg [-]),
DOX (4 mg/kg [A]) was administrated i.p. on days 8 and 14. The
tumor volume was measured on the days indicated. Contro! group
and DOX (1 mg/kg) group consisted of seven mice, and the DOX (4
mg/kg) group consisted of six mice; bars, S.D. (B) Tumor weights
on day 17. Mice were sacrificed, and the tumor weights were
measured. All mice survived at the end of the experiment. *P<0.05,
*#%P<0.005 in comparison with control group; bars, S.D. No
significant difference was observed in wild-type control vs. gld
control, gld control vs. gld DOX (1 mg/kg), and gld control vs. gld
DOX (4 mg/kg). Results show one representative experiment of the
three performed.
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Fig. 5. Expression of Fas mRNA in 3LL solid tamor. C57BL/6-lpr
mice bearing 3LL tumor were treated with saline (mice 1 and 2), 1
mg/kg of DOX (mice 3, 4, and 5), 4 mg/kg of DOX (mice 6, 7, and
8); after 24 h, the mice were sacrificed, and the solid tumors were
obtained. mRNA expressions of Fas and GAPDH were analyzed as
detailed in Materials and methods.

expression in the tumor cells and host immune
response.

4. Discussion

In the present study, we have found that DOX does
not show antitumor effect against 3LL solid tumor in
FasL-deficient C57BL/6-gld mice. In addition, DOX-
induced expression of Fas was detected in vivo as
well as in vitro. Although there was significant
reduction in Fas expression in some DOX-treated
mice, it is possible that the Fas-expressing 3LL cells
were efficiently eliminated in vivo. These evidences
suggest that DOX inhibits the tumor growth through
the host immune response in this syngeneic model. Tt
has been considered that there are several mechanisms
as in vivo antitumor effect of DOX: (i) direct
antiproliferative effect, (ii) apoptosis of tumor cells
by autocrine signaling via Fas and FasL. [21-23], and
(iii) selective elimination of immune suppressor cell
activity and subsequent augmentation of immune
response [15,16]. DOX showed no significant inhib-
ition of the growth of 3LL solid tumor in gld mice,
indicating that the neither mechanism (i) nor (ii) is
involved in the antitumor effect of DOX in this
syngeneic model. Mechanism (iii) is also neglected
because inhibition of the tumor growth was observed
in /pr mice but not in gld mice. Therefore, in this
model, it is considered that DOX exerted in vivo
antitumor effect against 3LL solid tumor through
enhanced Fas expression in the tumor cells and host
immune response. Kalechman et al. [24] reported that
AS101, synthetic immunomodulator that enhances
Fas expression, shows antiproliferative effect against
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B16 melanoma i vivo through a host immune
response. Moreover, Micheau et al. [9] reported that
cisplatin increases Fas expression and sensitivity to
Fas-dependent cytolysis by peripheral blood leuko-
cytes in human colon HT29 cells. Therefore, these
reports support our findings that the antitumor effect
of DOX, at least in part, depends both on Fas
expression in tumor cells and on host immune
response. Especially in the 3LL-syngeneic model,
inhibition of the tumor growth mainly depends on
CTL-mediated cytolysis via Fas because significant
therapeutic effect of DOX was not observed in FasL-
deficient gld mice. Moreover, DOX-pretreated 3LL
cells were significantly killed in vitro by the splenic T
cells prepared from 3LL-bearing C57BL/6 mice.
Antitumor drug-induced Fas expression and enhanced
sensitivity to Fas-mediated apoptosis were also
observed in several human cancer cell lines as well
as in 3LL cells [9-11], which suggested that the
antitumor drug-induced Fas expression and subse-
quent host immune response could also take place in
human malignancies.

We report here for the first time that an antitumor
drug used clinically induces Fas expression in solid
tumor in vivo, and that the Fas expression contributes
to the chemotherapeutic effect. It was reported that
administrations of certain antitumor drugs augmented
host immune responses against tumors [15,16]. The
Fas expression might disrupt immune evasion of
tumor cells and be one of possible mechanisms for the
augmentations of host immune responses. Thus, it
should be considered that hematologic toxicity at
higher doses of drug could reduce the host immune
response and thereby reduce the antitumor effect. In
addition, this theory could be one of possible
explanations for efficacy of cancer chemotherapy
using low-dose antitumor drugs [25,26]. Furthermore,
the combination of antitumor drugs with biological
response modifiers that activate tumor immunity or
with adoptive immunotherapy using tumor-specific
CTLs would improve cancer treatment.
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