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DMEM containing 10% horse serum/0.5% chick embryo
extract at 37C and 5% CO; for up to 72 hr, and then fixed as
described previously.

Lysenin Probing and Immunostaining

To label sphingomyelin with lysenin (Sekizawa et al. 1997,
Yamaji et al. 1998), cultured cells or myofibers were fixed
with 4% paraformaldehyde/PBS for 10 min, blocked with 2%
BSA/PBS, and then incubated with 0.5 wg/ml lysenin (Peptide
Institute Inc; Osaka, Japan, or Sigma) in 2% BSA/PBS for
60 min. To remove sphingomyelin from the plasma mem-
brane, cells were pretreated with 10 mU/m! bacterial sphin-
gomyelinase from Bacillus cereus (Sigma) at 37C for 1 hr
before incubation with lysenin. Where used, BrdU (10 wM)
was added to the cultures for 3 hr before fixation.

For immunostaining, fixed cells were permeabilized with
0.5% TritonX-100. For BrdU detection, cells were then
treated with 3 N hydrochloric acid for 10 min at room tem-
perature. Cells were then incubated with primary antibodies
(mouse monoclonal anti-MyoD clone 5.8A [Dakocytoma-
tion; Carpinteria, CA]), anti-myogenin clone F5D (a gift from
Dr. W. Wright at University of Texas), anti-sarcomeric myo-
sin heavy chain (sMyHC) clone MF20, anti-BrdU clone G3G4
and anti-PAX7 (Developmental Studies Hybridoma Bank;
Towa City, IA), hamster monoclonal anti-Bcl-2 clone 3F11
{BD Pharmingen; San Diego, CA), and rabbit polyclonal anti-
lysenin (Sekizawa et al. 1996) (Peptide Institute Inc; Osaka,
Japan). After washes in PBS, primary antibody binding was
visualized with Alexa Fluor dye-conjugated secondary anti-
bodies (Molecular Probes; Eugene, OR) for 30 min before
washing and mounting in Fluoromount fluorescent mounting
medium (DakoCytomation) containing 100 ng/ml DAPT or
Hoechst 33258. Myofibers were immunostained as above
and mounted in Fluoromount fluorescent mounting medium
{DakoCytomation) containing 100 ng/ml DAPI.

Western Blotting

Cells were lysed in SDS-sample buffer (50 mM Tris-HCl, pH
6.8, 2% SDS, 10% glycerol, 50 mM dithiothreitol, 0.1 mM
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Figure 1 Sphingomyelin levels significantly increase in C2C12
reserve cells. When proliferating C2C12 cells were fixed, probed
with lysenin, and immunostained (A,B), lysenin binding was not
observed, whereas most cells contained MyoD (red). After culture in
differentiation media, however, lysenin immunostaining (green)
was observed in a few cells within 24 hr (C,D). After 4 days, most cells
had differentiated and were MyoD-positive (red; E), with many
having fused into sMyHC-containing myotubes (red; K). Reserve
cells, however, retained lysenin binding (green) but generally lacked
MyoD (E,F) and were undifferentiated as shown by their lack of
sMyHC immunostaining (red; K). Myogenin immunostaining (red;
G,H) confirmed that differentiated mononucleated cells also failed
to bind lysenin (green; G,H). The low level of BrdU incorporation
after 4 days in differentiation medium (red; 1,J) showed that few cells
were still cycling, and those that were did not bind lysenin (green;
1J). Treatment of differentiated cultures with 10 mU/ml! bacterial
sphingomyelinase for 1 hr at 37.5C digests sphingomyelin in the
plasma membrane, and resulted in a loss of lysenin immunostaining
(L), showing that lysenin was binding specifically to sphingomyelin
(compare K with L). Cells were counterstained with Hoechst 33258
(blue) to identify all cells present. Bars: A-H: 50 um; I-L: 100 um.
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phenylmethansulfonylfluoride, bromophenol blue), followed
by boiling for 3 min. Fifty pg of protein were analyzed by
15% SDS-PAGE and transferred to polyvinylidene fluoride
membranes. Membranes were blocked with Odyssey Block-
ing Buffer (LI-COR; Lincoln, NE) and incubated for 1 hr with
primary antibodies. Membranes were washed and incubated
with Alexa-Fluor 680-conjugated secondary antibodies and
analyzed with an Odyssey Infrared Imaging System (LI-COR).

Results

To detect cell surface sphingomyelin, we used lysenin, a
peptide isolated from the earthworm Eisenia foetida
(Sekizawa et al. 1997; reviewed in Kobayashi et al.
2004), which binds specifically to sphingomyelin (Yamaji
et al. 1998). We first examined the levels of sphingomye-
lin on the surface of proliferating C2C12 cells maintained
in high-serum medium by probing fixed cells with 0.5 p.g/
ml lysenin. Subsequent immunostaining using a specific
anti-lysenin antibody (Sekizawa et al. 1996) showed that
sphingomyelin on the surface of proliferating C2C12
cells was barely detectable (Figures 1A and 1B and quan-
tified in Figure 2A).

When C2C12 cells were switched to differentia-
tion medium, lysenin+ve cells appeared within 24 hr
(Figures 1C and 1D and quantified in Figure 2A). At
this time, the lysenin+ve cell population contained both
MyoD+ve and MyoD-ve cells (Figures 1C and 1D and
quantified in Figure 2A). After 4 days however,
lysenin+ve mononucleated cells invariably became
MyoD-ve (Figures 1E and 1F and quantified in Figure

2A). On serum deprivation, most C2C12 cells undergo

terminal differentiation (Figure 2B), but differentiated
mononucleated cells identified with myogenin (Figures
1G and 1H) and multinucleated myotubes (Figures 1E,
1F, and 1K) did not label with lysenin. Differentiation,
however, is not the only response to serum withdrawal.
Other myogenic cells stop dividing, downregulate MyoD,
and escape immediate differentiation to form mononu-
cleated reserve cells (Yoshida et al. 1998). Because the
mononucleated cells that bound lysenin after 4 days in
differentiation medium were also MyoD-ve (Figures 1E
and 1F and quantified in Figure 2A) and did not incor-
porate BrdU and so were no longer cycling (Figures 11
and 1]), these cells were identified as reserve cells. Be-
cause only 8.1 *+ 1.2% (mean = SEM, n=3) lysenin+ve
cells incorporated BrdU on Day 1 and virtually none did
on Day 2 (0.3 = 0.3%, mean * SEM, n=3), lysenin+ve
cells rapidly exit the cell cycle after serum withdrawal to
become reserve cells. This is also supported by the ob-
servation that the percentage of lysenin+ve cells did not
increase after Day 1 (Figure 2B).

To ensure that lysenin was faithfully reporting
sphingomyelin levels, reserve cells were treated with
100 mU/ml! bacterial sphingomyelinase for 60 min at
37C to digest sphingomyelin, and then incubated with
0.5 pg/ml lysenin. As expected, lysenin+ve immuno-
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Figure 2 Kinetics of cell surface sphingomyelin during differ-
entiation of C2C12 cells. (A} During culture after serum with-
drawal, the percentage of lysenin-ve/MyoD-ve (white), lysenin-ve/
MyoD +ve (light gray), lysenin+ve/MyoD +ve (dark gray), or lysenin-+
ve/MyoD-ve (black) cells was determined, and it was found that
there was a significant increase in lysenin +ve/MyoD-ve cells. (8)
Over the same period, the percentage of cells that fused (black
diamond) or bound lysenin (white circle) significantly increased,
whereas those that expressed MyoD (black square) or incorporated
BrdU after a 3-hr pulse (black circle) fell. Bars indicate SEM from four
independent experiments.

signals disappeared when reserve cells were pretreated
with bacterial sphingomyelinase, confirming that the
lysenin specifically labels sphingomyelin (Figures 1K
and 1L). Thus sphingomyelin is highly expressed in re-
serve cells, but significantly less so in proliferating and
differentiating myogenic cells.

When stimulated with serum, reserve cells reinduce
MyoD expression, proliferate, and subsequently differ-
entiate (Yoshida et al. 1998). Reserve cells were sepa-
rated from differentiated cells and reseeded in fresh
growth medium. Lysenin binding was still present on
the surface of stimulated reserve cells after 60 min,
when most of the cells remained MyoD-ve (Figures 3A
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and 3B and quantified in Figure 31), and also after 3 hr,
when MyoD expression was beginning to be induced
(Figures 3C and 3D and quantified in Figure 31). By
24 hr, however, significant number of cells did not bind
lysenin (Figures 3E and 3F and quantified in Figure 31),
and by 48 hr practically no cells did (Figures 3G and 3H
and quantified in Figure 31). Therefore, sphingomyelin
levels in the plasma membrane of reserve cells decrease
as the cells are stimulated to proliferate.

Proportion of Sphingomyelin is Higher in Reserve Cells
than in Myotubes

Changes in the other components of the plasma mem-
brane, such as glycolipids and cholesterols, can interfere
with the efficient binding of lysenin to sphingomyelin
(Yamaji et al. 1998, Ishitsuka et al. 2004). To ensure
therefore that the differences in lysenin binding ob-
served during reserve cell activation accurately reflects
a drop in sphingomyelin levels, we directly quantified
their phospholipid composition. After 4 days in serum-
free differentiation medium, many myotubes were
present, as identified by sMyHC content (Figure 4A)
and morphology (Figure 4C), whereas reserve cells
expressed Bcl-2 (Figure 4B). Cultures were partially
trypsinized to separate myotubes from reserve cells
(Kitzmann et al. 1998). Western blot analysis confirmed
that this separation was effective with sMyHC, myo-
genin, and MyoD detectable in both isolated myotubes
and total C2C12 cultures, whereas Bcl-2 was enriched
in the reserve cell fraction as expected (Dominov et al.
1998) (Figure 4D). Analysis of separated myotube and
reserve cell fractions for total phospholipid composi-
tion using thin layer chromatography showed that
sphingomyelin made up 7.4 mol% of the total phos-
pholipid content in reserve cells, but only 3.8 mol%
in myotubes (Table 1). This increase in sphingomyelin
content of noncycling reserve cells is consistent with the
increase of sphingomyelin in the plasrna membrane,
as revealed by the binding of lysenin to their surface
(Figures 1E and 1F).
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80 A Figure 3 The level of sphingomyelin in the plasma membrane falls
as reserve cells activate. After 4-5 days in differentiation medium,
mononucleated cells were passaged and reseeded into fresh growth
medium. An hour after stimulation, reserve celis still bound lysenin
{green), but remained MyoD-ve (A,B). Cells began to express MyoD
within 3 hr, at which time majority of cells were still lysenin+ve (C,D).
After 24 hr, however, immunostaining showed that the number of
cells binding lysenin (green; E) had fallen, whereas those express-
ing MyoD (red; E) had risen, but after 48 hr, lysenin immunostaining Q7
was virtually absent (G,H). Cells were counterstained with Hoechst
- 33258 (blue) to identify all cells present. Bar: 50 pm. (I} Determin-
ing the percentage of lysenin-ve/MyoD-ve (white), lysenin-ve/
MyoD +ve (light gray), lysenin+ve/MyoD +ve (dark gray), or lysenin+
ve/MyoD-ve (black) cells at 1, 3, 24, and 48 hr after reseeding into
growth medium confirmed the loss of cells binding lysenin.
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Figure 4 Reserve cells and myotubes can be effectively separated.
To analyze phospholipid content (Table 1), it was first necessary to
establish that reserve cells and myotubes could be separated.
Immunostaining of cultures after 4 days in serum-free differentia-
tion medium showed that myotubes containing sMyHC (A) and
reserve cells expressing Bcl-2 (B) were mutually exclusive. Phase
contrast image is shown in (C). Bar: 50 pm. Mild trypsinization was
used to separate myotubes and reserve cells, the purity of which was
determined by Western blot analysis (D). As expected, sMyHC,
myogenin, and MyoD were present in total C2C12 and the myotube
fraction, whereas Bcl-2 was greatly enriched in the reserve cell
fraction (D). Protein loading was assessed using a-tubulin.

High Levels of Sphingomyelin in the Plasma
Membrane Are Characteristic of Quiescent
Satellite Cells

Our observations on reserve cells show that sphingo-
myelin levels in the plasma membrane of noncycling
myogenic reserve cells are high, but then fall as they
activate. To see if quiescent myogenic cells in vivo also
have high levels of sphingomyelin in their plasma mem-

Table 1 Phospholipid composition of myotubes and
reserve cells

Phospholipid composition (mol%)

Phospholipid classes Myotubes Reserve cells
Phosphatidylethanolamine 340 £ 05 25.7 £ 0.9*%
Phosphatidylinositol 7.4 %03 7.8+ 1.0
Phosphatidylserine 6.7 £ 0.3 8.9 + 0.4*
Phosphatidylcholine 48.1 + 0.6 50.1 + 0.9
Sphingomyelin 3.80.3 7.4 £0.3*

Myotubes and reserve cells were separated after 4 days in serum-free differen-
tiation medium and assayed for phospholipid content using thin layer chro-
matography. Values represent mean * SEM mol% of total phospholipids
determined from five independent experiments.

“Statistically significant difference (p<0.01, Student's t-test).

branes, adult extensor digitorum longus myofibers and
their associated quiescent satellite cells were isolated,
immediately fixed, and incubated in 0.5 pg/ml lysenin.
Immunostaining showed that quiescent satellite cells
on the edge of the myofiber, identified by Pax7 expres-
sion (Seale et al. 2000), had strong cell surface lysenin
labeling (Figures 5A-5C), showing that they too have
high levels of sphingomyelin in their plasma mem-
branes. Notably, almost all (98.2 *+ 0.8%, mean =
SEM, »=60 myofibers) Pax7 +ve quiescent satellite cells
were lysenin+ve, whereas 96.9 + 1.0% (mean = SEM,
n=60) of lysenin-+ve satellite cells were Pax7+ve.

Sphingomyelin Levels Drop during
Satellite Cell Activation

Next, we investigated the levels of sphingomyelin during
satellite cell activation. Incubation of isclated myo-
fibers in serum stimulates the associated satellite cells to
activate, as shown by the induction of MyoD (Yablonka-
Reuveni and Rivera 1994; Beauchamp et al. 2000).
Coimmunostaining of quiescent satellite cells showed
that the majority were lysenin+tve and MyoD-ve
(Figures 5D-SF and quantified in Figures SM and SN),
but, on stimulation, MyoD-tve satellite cells rapidly
appeared, with a concomitant drop in the number of cells
binding lysenin (Figures SG-51 and quantified in Figures
5M and 5N). After 48 hr, lysenin staining was absent
from virtually all activated MyoD+ve satellite cells
(Figures S]-SL and quantified in Figures 5SM and 5N).
Satellite cells immunostaining for lysenin and myogenin
were mutually exclusive, showing that sphingomyelin
levels drop significantly before the cells enter terminal
differentiation (data not shown).

Some Satellite Cells Again Increase the Level of
Sphingomyelin in Their Plasma Membranes

We have recently shown that when satellite cells are
activated on an isolated myofiber, most are destined for
differentiation. Some, however, maintain Pax7, down-
regulate MyoD, and stop cycling (Zammit et al. 2004),
thus reacquiring characteristics of quiescence. Although
lysenin immunostaining was universally lost in acti-
vated/proliferating satellite cells (Figures 5]-51 and
quantified in Figures 5M and SN), some satellite cell
progeny later reacquired lysenin binding (Figure 6).
Lysenin+ve cells tended to express Pax7 (Figures 6A
and 6B), but not MyoD (Figures 6C and 6D). At this
time in culture, most MyoD+ve satellite cells also ex-
press myogenin (data not shown; Zammit et al. 2004)
and are thus committed to differentiation. Therefore
the increased levels of sphingomyelin in the plasma
membrane of Pax7+ve/MyoD-ve satellite cell progeny
to levels characteristic of quiescent satellite cells is fur-
ther evidence that some satellite cells have returned to a
quiescent-like state.

Master Proof JHC 6675



SRR

208

Sphingomyelin Levels in Satellite Cells

Figure 5 Sphingomyelin levels are high in
the plasma membranes of quiescent, but not
activated, satellite cells. Coimmunostaining
of freshly isolated extensor digitorum fongus
myofibers demonstrates that the majority of
associated Pax7+ve (red) quiescent satellite
cells (arrowheads) bind lysenin (green) on
their surface (A-C). Myofibers were then in-
cubated in mitogen-rich medium that causes
the satellite cells (arrowheads) to activate.
Quiescent satellite cells are MyoD-ve (D-F),
but as they activate, MyoD (red) is rapidly
expressed (G-L); concomitantly, however,
lysenin immunostaining (green) decreases,
so that by 48 hr. it is practically undetectable
in most satellite cells (D-L). Counterstaining
with DAPI was used to identify all nuclei
present on the myofiber (C,F1,L). Bar: 50 um.
Both counting the number of lysenin and
MyoD positive satellite cells at time points
up to 48 hr (mean = SEM of satellite cells per
myofiber in each category from at least 50
myofibers from three separate experiments;
M), or the number of lysenin+ve/MyoD-
ve, lysenin+ve/MyoD+ve, or lysenin-ve/
MyoD-+ve satellite cells (mean number in
each category per myofiber from at least
50 myofibers; N), confirms that lysenin bind-
ing, and therefore sphingomyelin levels, fall
significantly as satellite cells activate.

Discussion

In this study, we have examined the levels of sphingo-
myelin at the cell surface of myogenic cells using the
sphingomyelin-specific binding protein lysenin (Yamaji
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et al. 1998). Cycling C2C12 cells are either MyoD+ve
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or MyoD-ve (Yablonka-Reuveni and Rivera 1997), but
do not bind lysenin, showing that proliferating
myogenic cells have little sphingomyelin in their plasma
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Figure 6 Some satellite cell progeny reacquire lysenin binding.
Coimmunostaining of extensor digitorum longus myofibers that had
been in culture for 72 hr showed Pax7 +ve (red) satellite cells, some
of which bound lysenin {(green) on their surface (arrowheads in A,B).
At this time, most satellite cells were MyoD+ve (red), and these
lacked lysenin immunostaining (green) (arrowheads in C,D). Coun-
terstaining with DAPI was used to identify all nuclei present (B,D).
Bar: 50 um.

found that virtually all quiescent satellite cells bound
lysenin, demonstrating that they too have high levels of
sphingomyelin in their plasma membranes. The culture
of myofibers in mitogen-rich medium stimulates their
associated satellite cells to activate, proliferate, and
subsequently differentiate, and this process is accom-
panied by a significant decrease of sphingomyelin on
their cell surface. However, although lysenin is useful
for identifying quiescent satellite cells on isolated myo-
fibers, it should be noted that sphingomyelin is present
to varying degrees in the membranes of all cells. Sig-
nificantly, sphingomyelin levels fall rapidly on activa-
tion, whereas most other commonly used molecular
markers for satellite cells, including M-cadherin, Pax7,
and the Myf-5/B-galactosidase fusion protein, persist in
proliferating cells (Irintchev et al. 1994; Beauchamp
et al. 2000; Seale et al. 2000).

Why is the transition from quiescence to activation
in myogenic cells associated with a change in the levels
of sphingomyelin in the plasma membrane? Because
activation itself is rapid, the change in sphingomyelin
observed in this study might be secondary to the acti-
vation. It would be important to examine the relation-
ship between sphingomyelin and the certain stimuli
known to involved in satellite cell activation such as

HGF {Allen et al. 1995), mechanical stretch (Tatsumi Q9—10
et al. 2001), and nitric oxide (Anderson and Pilipowicz Q11
2002). One possible role for sphingomyelin in the Q12

membranes. This remains the case in differentiated
myocytes and myotubes. However, other myogenic
cells respond to serum withdrawal by downregulating

MyoD and escaping immediate differentiation to be-
come reserve cells (Yoshida et al. 1998). In the course of
this process, the levels of sphingomyelin in their plasma
membranes of reserve cells significantly increased. In-
deed, direct measurement showed that reserve cells
contained almost twice as much sphingomyelin as
myotubes. The differences in the level of sphingomyelin
may appear smaller than expected from lysenin stain-
ing, but only ~50% of cellular sphingomyelin is lo-
cated in the plasma membrane [reviewed in van Meer
and Holthuis (2000)], with the rest in intracellular mem-
branes. In addition, the low levels of sphingomyelin on
the surface of myotubes may be below the level of detec-
tion with lysenin at the concentration used in this study.
Taken together, our data suggest that quiescence is ac-
companied by a specific increase in sphingomyelin levels
in the plasma membrane. We are examining the changes
in sphingomyelin metabolism during the activation of
satellite cefls to determine how much breakdown or
synthesis of sphingomyelin occurs during this event.
Muscle satellite cells contribute myogenic cells to
growing muscle to provide new myonuclei, but then
become quiescent in normal adult muscle (Schultz et al.
1978). The rapid isolation of intact myofibers allows
their associated satellite cells to be examined while
still quiescent (Yablonka-Reuveni and Rivera 1994;
Beauchamp et al. 2000). Using this preparation, we

plasma membrane is to act to concentrate signaling
molecules. It is well established that sphingolipids,
together with cholesterol and signaling molecules, are
organized into lateral assemblies within cell membranes.
These assemblies, including lipid rafts and caveolae,
are emerging as important centers for cell signaling
(reviewed in Simons and Toomre 2000) and could act
as platforms to coordinate molecules needed to initi-
ate myogenic cell activation. Alternatively, the loss of
sphingomyelin may reflect its metabolism to produce
bioactive lipids. It has been proposed that sphingo-
myelin in the plasma membrane acts as a store that can
then be cleaved to generate ceramide, sphingosine, or
sphingosine-1-phosphate, which have been shown to
act as second messengers in a variety of cell types
(Ohanian and Ohanian 2001). Ceramide, generated by
agonist-induced sphingomyelin hydrolysis, has been
implicated in cell differentiation, growth arrest, and
apoptosis (Hannun 1996). Ceramide is further me-
tabolized into sphingosine-1-phosphate, which is mito-
genic in diverse cell types and has been shown to oppose
ceramide-mediated apoptosis (Spiegel and Milstien
2003). Recent studies have revealed that sphingolipids
are also active in skeletal muscle. Sphingosine controls
muscle contraction by regulating calcium concentra-
tion in myofibers (Sabbadini et al. 1999), whereas cer-

amide has an inhibitory effect on IGF-I-induced protein Q13

synthesis in mouse myogenic C2C12 cells (Strle et al.
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2004). Neutral sphingomyelinase catalyses the cleavage
of sphingomyelin to produce bioactive lipid metabolites
and is present in skeletal muscle (Ghosh et al. 1998);
therefore, the sphingomyelin in the plasma membrane
could be accessed for signaling purposes. It is then
intriguing to speculate that bioactive lipids may also
play a role in satellite cell activation.

When both reserve cells and satellite cells were
stimulated with serum, sphingomyelin levels in their
plasma membranes dropped significantly. However,
at later times in culture, a limited number of satellite
cell progeny reacquired lysenin binding, showing that
the level of sphingomyelin in their plasma membranes
had again increased. The effective response to repeated
injury shows that the satellite cell pool is maintained
(Sadeh et al. 1985; Luz et al. 2002), but there is debate
at present about how this is achieved. It has been
proposed that satellite cells may be part of a hierarch-
ical system and merely represent a committed myogenic
precursor that is restricted to providing myonuclei. In
this system, the replacement of satellite cells occurs
from a stem cell located within the muscle interstitium
(Gussoni et al. 1999; Asakura et al. 2002) or outside
muscle tissue (Fukada et al. 2002; LaBarge et al. 2002;
LaBarge and Blau, 2002), but there is no evidence that
this accounts for more than a very minor contribution.
More likely is that satellite cells self-renew, as originally
proposed by Moss and Leblond (1971). Indeed we have
recently shown that satellite cell progeny maintained on
isolated myofibers adopt divergent fates in culture.
When they activate, satellite cells coexpress Pax7 with
MyoD and most then proliferate, downregulate Pax7,
and differentiate. In contrast, other proliferating cells
maintain Pax7 but lose MyoD and withdraw from both
the cell cycle and immediate myogenic differentiation,
characteristics consistent with a quiescent state (Zam-
mit et al. 2004). Similar observations have been made
in chicken during muscle growth, showing that this
may be a widespread mechanism in vertebrates (Halevy
et al. 2004). The demonstration that some of these
Pax7+ve/MyoD-ve cells also reacquire lysenin binding
on their surface, a characteristic of quiescence in myo-
genic cells, is further evidence that these cells have re-
entered a quiescent state.

In conclusion, sphingomyelin levels are high in the
plasma membrane of quiescent satellite cells and then
fall as they activate and proliferate. These results im-
plicate lipid rafts/caveolae as platforms to coordinate
activation signals or the involvement of bioactive lipid
metabolism in the process of activation and the sub-
sequent return to quiescence. This increase in sphingo-
myelin levels on some satellite cells that appear to be
reentering quiescence supports the conclusion that
they are able to self-renew. Assaying the sphingomyelin
level in the plasma membrane using lysenin therefore
provides a positive marker of quiescence that actually

9

drops during activation, in contrast to most other
molecular markers of satellite cells.
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Tyropeptin A, a petent proieasome inhibitor, was
isolated from the culture broth of Kifasafospora sp.
MK 993-dF2. We synthesized the derivatives of tyropep-
tin A to enhance its imhibitory potency. Among the
synthesized derivatives, the most potent compound, TP-
104, exhibited a 20-fold inhibitory petency enhancement
for chymotrypsin-like activity of 20S proteasome com-
pared to tyropeptin A. Additionally, TP-110 specifically
inhibited the chymotrypsin-like activity, but did not
inhibit the post-glutamyl-peptide hydrolyzing (PGPH)
and the trypsin-like activities of 20S proteasome. In vifio
TP-110 strongly inhibited the growth of various cell
lines.

Key words: proteasome inhibitor; tyropeptin A deriva-
tive

The 26S proteasome consists of a central catalytic
208 proteasome and two terminal regulatory complexes,
termed PA700 (also known as the 19S regulatory
complex), which are attached to both ends of the central
portion.'? The 20S proteasome is a large cylindrically-
shaped complex composed of two copies each of seven
distinct a- and seven distinct S-type subunits. The 208
proteasome possesses at least three distinctive protease
activities: PGPH, trypsin-like and chymotrypsin-like.

The ubiquitin-proteasome pathway is involved in
many biological processes. In particular, numerous
regulatory proteins, which are critical to tumor growth,
are degraded by this pathway.>® Proteasome inhibitors
can stabilize these regulatory proteins, and cause cell
cycle arrest and apoptosis, and, as a result, can limit
tumor development. Therefore, proteasome inhibitors
can be useful for cancer treatment. The dipeptide boronic
acid proteasome inhibitor, PS-341,7% has already been
approved as a therapeutic agent for multiple myeloma

patients.

We have previously found a new proteasome inhibitor,
tyropeptin A, which was produced by Kifasatospora sp.
MK993-dF2.5-1V The structure of tyropeptin A is iso-
valeryl-L-tyrosyl-L-valyl-DL-tyrosinal. To enhance its
inhibitory potency, we constructed a structural model
of tyropeptin A bound to the site responsible for the
chymotrypsin-like activity of mammalian 20S protea-
some.'? Based on these modeling experiments, we
designed several derivatives of tyropeptin A. We report
here the synthesis and activity of a series of tyropeptin A
derivatives in detail.

Results and Discussion

The structural model for tyropeptin A bound to the

. site responsible for the chymotrypsin-like activity of 208

proteasome suggested the presence of an open space in
the vicinity of its N-terminal.'” We thought that the
compound that was able to fill the open space might
exhibit enhanced inhibitory activity against the chymo-
trypsin-like activity of the 20S proteasome. Since the
isovaleryl moiety in tyropeptin A only partially filled
this area, therefore, we designed tyropeptin A deriva-
tives having a bulky N-terminal moiety. Tyropeptin A
derivatives modified at the N-terminal moiety of
tyropeptin A were synthesized as shown in Scheme 1.
The Boc group of 1'9 was removed with TFA, and the
resulting free amine was coupled to a variety of acids
(R-CH,COOH). Resulting 2 was hydrogenolyzed with
palladium on charcoal to give 3. Oxidation of the
primary alcohol of 3 with sulfur trioxide in DMSO gave
a tyropeptin A derivative modified at the N-terminal
moiety (TP-101, TP-102, TP-105 and TP-111) as an
epimeric mixture (approximatelyl:1). The naphthyl-
derivatives (TP-103 and TP-104) were prepared from
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