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PARK 1  a@-Synuclein 4q21-23 AD +
PARK 2 parkin 6q25.2-27 AR -
PARK 3 ? 2p13 AD ~+
PARK 4 @ -Synuclein triplication 4q13-22 AD +
PARK 5 UCHL-1 4pl14-15 AD ?
PARK 6 PINKI 1p35-36 AR ?
PARK 7 DIJ-1 1p36 AR ?
PARK 8 Dardarin/LRRK2 12p11.2-q13.1 AD -/ +
PARK9 ? Ip36 AR ?
PARK10 ? 1p32 AD ?
PARKI1 ? 2q36-37 AD 7
NR4A2  Nurr ] 2q22-23 AD 3
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2. B4 EEMPD-SNCA, PARKA
(triplication), PARKS
(LRRK2/dardarin)

1997 55 1998 4E 2T TI— 1T v /3D
AD DFRIWZB T a -synuclein ® A53T,
A3OP DD D EEEIE S/, HITANR

A4 VRAICEI6K D I At v ABERPHE S

N5, AR HEEMIZITERY, IAEYA
LBERIZAEEDRATRIBEN TS, ASITE
FAZ DWW TR B LT 5 Z &0
5 TW5h, BERIERITRL R EEE (—HRI
iR OB, BEHOEALFEITICLY o-
synuclein S EHE LT WIHEE ¢ A L Tw b
ZEDHERES TS, WILICAR ) PARKA &
LTwy 7E3NTwizlowaF R~ v 73
HEWTH Y, «-synuclein @ triplication 12 £ 5
T ENHE AN, BT O Y —HAIEE
HOED BT LI L) BIEFREBAL ANV
WEREE S 2, ZOFHE LT a-synuclein

DRHNOBEEIERINTHD EHEEINT
Wb DF ) o -synuclein D BEIRERLELD
ZEME LR &9 o -synuclein DB EAME T 2 £ T
s, TORESMRELZFELTNLLE
2 5N TWA, Triplication (I ¥ —233fHD b
@ & EF 1) & 1501 duplication (I ¥ —7%2
il & 5 1) A3k 72, duplication (22
WL, BRIRAVICH R & R o 3 ISE B & HEA
L72fER b & 0 BIREE V0 ¥ —J L FRSE
HeoB#E figsnTwib, TRETHR
RO T VT AL OREE WD,
multiplication I3 /R L& F U & 9 2AFI2 LD
FELTWRIRESH L b (ALK
5Tdh o TH —MICAIIAE B R IT D 2 W AE]E)
WD), ANEE ISR < multiplication A3
Uaigetdd b, L LAREEEDEL VWH
AANIAANLD LI DF A TOERNL N
LA FREEND, BERAMESNV—-THZ
DE A TDEEDIFIEIT DT TaqMan probe
PoEREPCRTAZ Y-y 7 LTW

A46T

T ASRE

b~ R33stop
[~ Rizp

Missense, Micredeletion,

1
> . I nt
or Nonsense mutations 1 T % g T . [ 4
%3 gl aemps 3 z 23 i
¢ 7 L g § $ 4 2,
R = 27525 3 © 59 S
E B b 3 s ER
“t g & H
Exenic Deletions 2 3 E Y- T LB TN W V3
T T ey ; t
[O—
e e |
P A———
Prommm———

Ingertions

& ¥
exon L (dups

1 =% VEET
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%o F 72 a-synuclein® I ¥ — 1T X B HiRD
B#H2PRESNLALAAENED B DT,
multiplication D WA L b A — L 1R 5
T, TOEHRLTWALEAM L FDEMICE F
NBBIEFIHICEIVHESNS Z &b +412
HbHLEZTVWD, BHHE,
FIAY T ATIHIEIE A EOWIEE T FPD
DFH e AH L Tz,

a -synuclein DZEEMEII D2 nDH DD,
Lewy/MED EZEHBESTH Y, PDICHBIT
% Lewy /MEZ B E IR 1 Lo &
WG L TwE2 A0 =X LD
E D) AEELGEHETH H I LITHLEN
Vi, ZO&HT RO E LT Lewy /ME L
FHALFIOFFE DT EERE L VW2 b,

PARKS (23504 %5 ADPD D FE(AT & L
TR E & 72 LRRK2/dardarin it « -
synuclein & (X6 EAGIC F D BRI E X072 1
W EPIREINTVE, #Ez Ty 7k
OB DOTEE L T A HEFE S & i e ¢

a -synuclein O 1 3|

T/ LB

B —RHE & FOITHRE Sz, BiETHEE
BN O TN — I E ) R E i, BREEG
STRIFRIZH AR EENTWE, BiZky MR
Ry SBFIET A L) T sV V41 I3HEER
WH BNV RN ghoTnb, BEHOKEREIC
DV S 532> T was, ) VER{kIC
BboTWwahEEREHINL TS,
PARKS D45 & L CTld Lewy /MEMF U &K%
BVTho TCHHFETIEE L L WEas
B LRI EREOEIT R E YRR
FPSPYE DL L) RRADFHETH I &
Thbo BIEFRSEFEDT —AbH 5N HE
HOPDEFOHFESETCRET LT — A H
DERMBEICBEARZIATEE A D, ik 5
PARK2 A Lewy /MEZ — IR L 2 W2 &
T HERLE L, PSPICHRBAI W BET % #5 0
Z & X ) PARKS I3 PARK2 & PD O 1 ] v &
DFIZL B EEZTWA, LRRK2AYY VL
METHH T E LD q-synuclein ¥ F£H LT 5
PEPPEZEDORKILBEETH 5,

Ser/t

S'UTR

RERGHER
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3. ARPD-PARKZ (parkin), PARKG
(PINKT), PARK? (DJ-1)

1973 4£ 12 Yamamura 5 12 £ 0 & O FFIREL A%
FEREN, ZFOBREHBEN 2 5 BEFFE
THEFITTAT TEPIENC LY IS/
bOTHY, BIAETITERPE DAL & THFH
AT AR D BEEOFH NS A TTHH I L
ML IS NIz, BRIE, REIERIIZT
%, BHTRBIA LY AEAEARD
microdeletion 254\ (1), FEEAYERARIEIR
&L THWNZEE), L-F/7GaEEZOBRIICHE
$ % motor complication, REIRENF, iRz
Dipnik Sl SR e RHABMOmENH
h, BEFEREY A 7EEREE OMEIZIE
> &) L, O ARPD D#)50% &
WG SN T b, FBIEFEIT40F T E W
BT~12F LR H 5. ARDRIEEZ b D
RADL DS, KIRED %2 W IRFE O AF I
WHIRE D D% v MBI BT
FEIK60%, FE#H DY X b =7 78%, FEAE
R 56%, BEIRRIF63%E T HEDDH B, 10
FUTORET, VAT E2ETLERIE
#&)119% (dopa responsive dystonia ; DRD) & @
RN EETHL, VAMZTHIETH S
BEBEENEEZZTHTr—AbE v, il
BHETEELEEVIZL 22D E T, on DR
Yahr3, off Ol Yahrd %k 2 % X 9 7 TEH
FEA v, FHFEIRICE L Tl —F v =
X L OFNTEMIERP BT L T ETr— A%
b, FBHEEIRE LTI, 9 2WHPEL 0D,
INT AT, NEMEE, MRS RE
DHELHL, Fv )T (NTEEENRT
parkin HIE T RE L RO LHP/N—F V=X
AERBO ) WZBWTHAIERA TR v

56 (336) BIO Clinica 20 (4), 2005

ETAHELH L, To—HOF ¥ ) T T,
SMEFEIL R EBRARLE L TEBILTIES
BHS, BIETHI EPRESNLTwEBY, £
OMFEE LT RIF Y PAAT 4 TRIHR (X
REMPIEFEAOERLAET L) 2T
O (—2O0@ETT7TYNVIERENHL L
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MO EE SN TV 5,

Parkin |3 HUEE S M CULRK I #F DHRE
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Z D FAKIZ ubiquitin-proteasome system (UPS)
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R FHIE Yahr 422 5 2 Eb e &
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NTFOTREES B SN T 5,

PARK71E I — T v ) SOARDRERRE 5 G &
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ZEFDVPRIEI NI, 7 VFRRIIBVT
exonl 7* 5 5 |2 F 72455 2000 bp D Ji # 7 K 2K
RHERWZEN, 451 THRRAICTLIEOEP D B
IEAFRD 5 N7z, DI-1EET 1345 23.5Kb,
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Abstract

Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to UV irradiation and high incidence of skin cancer
caused by inherited defects in DNA repair. Mutational malfunction of damaged-DNA binding protein 2 (DDB2) causes the XP complementation
group E (XP-E). DDB2 together with DDB1 comprises a heterodimer called DDB complex, which is involved in damaged-DNA binding
and nucleotide excision repair. Interestingly, by screening for a cellular protein(s) that interacts with Cullin 4A (Cul4A), a key component
of the ubiquitin ligase complex, we identified DDB1. Immunoprecipitation confirmed that Cul4A interacts with DDB1 and also associates
with DDB2. To date, it has been reported that DDB2 is rapidly degraded after UV irradiation and that overproduction of Cul4A stimulates
the ubiquitylation of DDB2 in the cells. However, as biochemical analysis using pure Cul4A-containing E3 is missing, it is still unknown
whether the Culd4A complex directly ubiquitylates DDB2 or not. We thus purified the Cul4A-containing E3 complex to near homogeneity
and attempted to ubiquitylate DDB2 in vitro. The ubiquitylation of DDB2 was reconstituted using this pure E3 complex, indicating that
DDB-Cul4A E3 complex in itself can ubiquitylate DDB2 directly. We also showed that an amino acid substitution, K244E, in DDB2 derived
from a XP-E patient did not affect its ubiquitylation.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Nucleotide excision repair; E3; Ubiquitin; DDB1; DDB2; Cullin 4A

1. Introduction ity of damaged DNA is thought to reside in this heterodimeric
complex (for reviews, see [2,3]).
Xeroderma pigmentosum (XP) is a rare genetic disease

characterized by clinical and cellular hypersensitivity to UV

Several proteins that bind specifically to ultraviolet (UV)
irradiation damaged-DNA have been discovered by elec-

trophoretic mobility shift assay or filter-binding assay since
1970s [1]. Previous studies that have characterized the
damaged-DNA binding (DDB) protein indicated that the min-
imal DDB complex is a heterodimer comprised of a 127 kDa
DDB1 subunit and 48 kDa DDB2 subunit. The binding activ-

* Corresponding author. Tel.: +81 3 3823 2237, fax: +81 3 3823 2237.
E-mail address: tanakak @rinshoken.or.jp (K. Tanaka).

1568-7864/$% — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.dnarep.2004.12.012

radiation and high incidence of skin cancer [4]. Cells from XP
patients show defective repair of DNA damage that had been
induced by UV or chemical agents, and tendency for skin
carcinogenesis. In 1988, Chu and Chang [5] reported that
cells from XP complementation group E (XP-E) individu-
als (GMO02415/XP2RO) lacked this damaged-DNA binding
activity, suggesting that DDB is functionally involved in the
XP-E disease. This is also true for some other alleles of XP-E
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patients [6]. Further evidence for the involvement came from
microinjection experiments indicating that the purified DDB
complex complements the XP-E cells’ defect [7,8]. Other
studies demonstrated that ectopic expression of human DDB2
enhanced DNA repair in Chinese hamster V79 cells, which
rarely express endogenous rodent DDB2 [9]. Soon after the
identification of DDBI and DDB2 genes, Nichols et al. [10]
revealed that DDB2 was in fact mutated in XP-E cells lack-
ing DDB activity. However, the molecular basis of the XP-E
phenotype was ambiguous, because several groups found that
cells from other patients with XP-E had normal levels of DDB
activity (DDB+) and possessed no mutation in DDB2 gene
(reviewed in [2,3]). This discrepancy was puzzling until re-
cently. Based on a thorough analysis, however, it was found
that some DDB+ cell lines were mistakenly assigned to XP-
E, and now it appears that all known authentic cases of XP-E
are caused by DDB2 mutations [11,12].

In eukaryotic cells, selective protein degradation is largely
mediated by the ubiquitin/proteasome system. When ubiqui-
tin is attached to the target protein by the ubiquitylation ma-
chineries, the proteasome recognizes the poly-ubiquitylated
substrate to be degraded. This ubiquitin conjugating system
requires the cascade reaction of three enzymes, namely El,
a ubiquitin-activating enzyme, E2, a ubiquitin-conjugating
enzyme, and E3, a ubiquitin ligase. In 1999, Shiyanov et
al. [13] reported that Cullin 4A (Cul4A) associates with the
DDB complex. The cullin family of proteins compose a mul-
timeric E3 complex. Cullin 1, which is the most well charac-
terized cullin, serves as arigid scaffold of its E3 complex and
catalyses ubiquitylation through appropriate positioning of
E2 and the substrate [ 14]. Other cullin family proteins includ-
ing Cul4A are believed to function as well. The interaction
between Cul4A and DDB1 was also demonstrated by several
other groups recently ([15-20] and this work). These results,
together with the rapid degradation of DDB?2 after UV irradia-
tion [21,22], suggest the involvement of Cullin 4A in DDB2
ubiquitylation and degradation. Strikingly, over-production
of Cul4A stimulates the ubiquitylation of DDB2 [15,16].
However, since the latter studies did not show biochemical ev-
idence of Cul4A involvement in the ubiquitylation of DDB2,
it is still unknown whether the Cul4A-containing E3 com-
plex in itself directly ubiquitylates DDB2 or not. To further
investigate the mode of this ubiquitylation, an in vitro re-
constitution by biochemical approach is obviously required.
Here, we show that DDB2 can be ubiquitylated directly by
the purified DDB—Cul4A E3 complex in a reconstitution in
vitro experiment.

2. Materials and methods
2.1. Protein identification by LC-MS/MS analysis
The Cullin 4A-associated complexes were digested with

Achromobacter protease-1 and the resulting peptides were an-
alyzed using a nanoscale LC-MS/MS system as described

previously [23,24]. The peptide mixture was applied to a
Mightysil-PR-18 (1 wm particle, Kanto Chemicals, Tokyo,
Japan) frit-less column (45 mm x 0.150 mm i.d.) and sepa-
rated using a 0~40% gradient of acetonitrile containing 0.1%
formic acid over 30 min at a flow rate of 50 nl/min. Eluted
peptides were sprayed directly into a quadruple time-of-
flight hybrid mass spectrometer (Q-T of Ultima, Micromass,
Manchester, UK). MS and MS/MS spectra were obtained in
data-dependent mode. Up to four precursor ions above an
intensity threshold of 10 counts/s were selected for MSMS
analyses from each survey scan. All MS/MS spectra were
searched for protein sequences of Swiss Prot and RefSeq
(NCBI) using batch processes of Mascot software package
(Matrix Science, London, UK).

2.2. Cell culture condition

High-Five insect cells were maintained as an adherent cul-
ture in Grace insect media (Invitrogen, Carlsbad, CA, USA)
supplemented with 8% fetal bovine serum (Sigma, St. Louis,
MO, USA) and 1% penicillin-streptomycin (Invitrogen). ts4 1
cells established from Chinese hamster [25] were maintained
in Dulbecco’s modified Eagle’s medium (Sigma) containing
10% fetal bovine serum and 1% penicillin—streptomycin un-
der 5% CO4 condition at 34 °C.

2.3. Immunoprecipitation experiment

To express DDB1, DDB2 and cullin family proteins, all
plasmids were constructed from pcDNA3 or pcDNA3.1 plas-
mid (Invitrogen). Additional details of the plasmid construc-
tion processes will be provided upon request. Mammalian
ts41 cells at 48h after DNA transfection were harvested,
washed by phosphate-buffer saline (PBS) and lysed with
buffer A containing 20 mM Tris~HCI, pH 7.5, 150 mM NaCl,
0.5% Nonidet P-40 and 10% glycerol. After removal of the
debris by centrifugation, anti-Flag antibody (M2)-conjugated
agarose (Sigma) was added to the lysate and the mixture was
incubated at 4 °C for 2 h under constant rotation. After exten-
sive washing of immunoprecipitates with buffer A, binding
proteins were eluted with sodium dodecyl sulphate (SDS)-
containing bufter and boiled at 95°C for 5min. The elu-
ate was subjected to immunoblotting using anti-Flag (M2;
Sigma), anti-Myc (Santa Cruz, Delaware, CA, USA), anti-
Cul4A (our laboratory collection) and anti-DDB1 antibodies
(Zymed, San Francisco, CA, USA).

2.4. Protein purification

To overproduce His-DDB1, Flag-DDB2, Cullin 4A-HA
and T7-Rbx1 proteins in insect cells, the tagged full-length
cDNAs were inserted into pFastBac donor plasmid (Invitro-
gen). Additional details of the plasmid construction processes
can be provided upon request. Subsequent production of bac-
ulovirus particles was carried out according to the protocol
provided by the manufacturer. Baculovirus particles for His-
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DDB1 and Flag-DDB2 were used to simultaneously infect
High-Five cells, as well as viruses for Cullin4A-HA and T7-
Rbx!. Insect cells were incubated for 48 h after infection,
washed using PBS at 4 °C and then harvested by centrifuga-
tion. The cell extract was collected using buffer B containing
20 mM Tris—HCI, pH 7.5, 0.5% Nonidet P-40, 150 mM NaCl,
100 uM ZnSQ4, 10mM 2-mercaptoethanol, 6% glycerol
and a protease inhibitor mixture without ethylenediaminete-
traacetic acid (EDTA) (Roche, Mannheim, Germany). After
centrifugation, the cell lysates were mixed together and in-
cubated at 4°C for 5h with occasional gentle mixing. For
initial purification, the cell lysate was loaded on a single-
stranded DNA cellulose (Sigma) column equilibrated with
buffer B. The column was then washed with buffer B contain-
ing 0.3 M NaCl followed by elution with buffer B containing
0.7M NaCl. The eluted fraction was subsequently purified
with nickel-chelating agarose (Qiagen, Stanford, CA, USA)
pre-equilibrated with buffer B and eluted by 120 mM imida-
zole. This purified complex was further separated on a glyc-
erol gradient sedimentation, which was carried out through a
10-40% glycerol gradient in 25 mM Tris—=HCI, pH 7.5, 1 mM
dithiothreitol (DTT) and 2mM ATP for 22 h at 25,000rpm
ultracentrifugation. Fractions of 1 ml were collected from the
top of the gradient and subjected to silver staining and im-
munoblotting.

To purify DDB2 (K244E)-containing complex, cell
lysates containing His-DDB1, Flag-DDB2 (K244E), Cullin
4A-HA and T7-Rbx1 proteins in buffer B were collected
as mentioned above. The DDB2 (K244E) complex was
roughly purified with nickel-chelating agarose (Qiagen) pre-
equilibrated with buffer B and eluted by 100 mM imidazole.
Obtained fractions were then loaded onto HiTrap Heparin
HP column (Amersham Biosciences, Piscataway, NJ, USA),
washed with buffer C [20mM Tris—-HCl, pH 7.5, 150 mM
NaCl, 100 uM ZnSOg4, | mM DTT, 4.5% glycerol and pro-
tease inhibitor mixture without EDTA (Roche)], and eluted
with a 0.15-0.75M NaCl gradient in buffer C. The DDB2
(K244E)-containing complex was eluted around 0.5 M NaCl
and was subjected to dialysis with buffer D containing 20 mM
Tris-HCI, pH 8.0, 20mM NaCl, 100 uM ZnSQy4, and 1 mM
DTT. A protein complex containing wild-type DDB2 was
simultaneously isolated by the same method and used as a
control.

To collect the authentic DDB-CuldA complex from
mammalian cells, HeLa cells stably expressing N-
terminally FLAG-HA-tagged DDB2 were used. The genuine
DDB-Cul4A complex was immunoprecipitated with anti-
FLAG antibody followed by anti-HA antibody as described
previously [17]. The eluates were further purified by Mini Q
(Amersham Biosciences) column chromatography instead of
glycerol density gradient centrifugation.

2.5. Invitro ubiquitylation assay

The ubiquitylation assay was essentially performed as de-
scribed previously [26,27). Briefly, the purified DDB-~Cul4 A

complex was incubated in 25 mM Tris-HCI, pH 7.5, 1 mM
DTT, 25 uM MGI132 (Peptide Inc., Osaka, Japan), 5 mM
MgCly, 100pM ZnSO4, 2mM ATP, 50 pg of ubiqui-
tin (Sigma)/ml, 2 pg of El/ml and 70 g of various E2-
expressing Escherichia coli lysate/ml at 32°C for 2h and
subjected to immunoblotting with anti-His (penta-His anti-
body; Qiagen, Stanford, CA, USA), anti-HA (HA.11, Berke-
ley Antibody Company, Berkeley, CA, USA), anti-Flag (M2;
Sigma) and anti-T7 (Novagen, Madison, WI, USA) antibod-
ies. In some cases, GST-ubiquitin was used instead of native
ubiquitin.

3. Results
3.1. DDB complex physically interacts with Cullin 4A

To explore the molecular function of Cullin 4A, we ex-
amined the cellular partner(s) that interact with Cul4A in
cells. A thorough analysis of human EST and genome se-
quences showed that the registered human CuldA sequence
(659 amino acid protein [28]) lacks its N-terminal 100 amino
acid residues and thus the full-length Cul4A was obtained by
PCR-assisted cDNA cloning and used hereafter. The com-
plete nucleotide sequence of full-length Cul4A has been reg-
istered under accession number AB178950.

Flag-tagged Cul4A was expressed in HEK293 cells fol-
lowed by immunoprecipitation by anti-Flag antibody. The
immunoprecipitates were eluted with a Flag peptide and
then digested with Lys-C endopeptides (A. protease I) and
the cleaved fragments were directly analyzed using a highly
sensitive “direct nano-flow LC-MS/MS” system (for detail,
see Section 2). Following database search, a dozen of pep-
tides were assigned to MS/MS spectra obtained from four
nano-LC-MS/MS analyses for the Flag-Cul4A-associated
complexes and DDB1 was identified as one of the Cul4A-
interacting proteins.

To confirm the interaction between Cul4A and DDB1, we
performed immunoprecipitation experiment. Plasmids carry-
ing Flag-tagged cullin family proteins (Cull, 2, 3,4A, 4B and
5) and myc-tagged DDB1 were concurrently transfected into
ts41 cells. Extracts of the transfected or mock-transfected
cells were subjected to immunoprecipitation using anti-Flag
antibody followed by immunoblotting with anti-DDB1 an-
tibody. As shown in Fig. 1A, Cul4A significantly interacted
with DDBI. Cull also bound DDBI weakly, whereas the
other Cullins tested did not interact with DDB1. We next ex-
amined whether DDB2 also associates with Cul4A, because
DDB1 and DDB2 are part of the DDB complex. Plasmids car-
rying 6myc-tagged cullin family proteins were transfected
into ts41 cells along with a plasmid harboring Flag-tagged
DDB2. Each extract was then subjected to immunoprecipita-
tion using anti-Flag antibody and immunoblotting with anti-
myc antibody. Consistent with the above results, DDB2 also
interacted strongly with Cul4A and weakly with Cull and
Cul4B (Fig. 1B). DDB2 did not bind with other cullin fam-
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Fig. 1. DDB complex interacts with Cullin 4A. (A) Cul4A interacts with DDB1. Flag-tagged cullin family proteins and Myc-tagged DDB 1 were simultaneously
transfected into ts41 cells. After immunoprecipitation (IP) by anti-Flag antibody, the resulting immunoprecipitates were subjected to immunoblotting using
anti-DDB1 antibody. (B) Cul4A also associates with DDB2. IP was similarly performed using FLAG-tagged DDB2 and Myc-tagged cullin family protein
concurrently transfected into ts41 cells. After IP by anti-FLAG antibody, the resulting immunoprecipitates were analyzed using anti-Myc antibody.

ily proteins (Cul2, 3 and 5) examined. These results showed
that DDB complex preferentially interacts with CuldA, as
reported previously [16].

3.2. Purification of DDB—Cul4A complex

We next attempted to purify DDB-Cul4A E3 complex us-
ing baculovirus expression system to perform biochemical
experiments. Flag tag was fused to DDB2 at its N-terminus
to facilitate its detection. This Flag-tagged DDB2 is thought
to be functional because recent studies showed that ectopic
expression of Flag-DDB2 enhanced DNA repair in Chinese
hamster V79 cells [9], and purified Flag-DDB?2 protein could
restore damaged-DNA binding activity in extracts of XP-
E patient cells [12]. DDB complex has been purified pre-
viously using DNA affinity column [13] and we also used
DNA cellulose for initial purification of this complex. His6-
tagged DDB1 and Flag-tagged DDB2 were simultaneously
expressed in High-Five insect cells by the baculovirus induc-
tion system. Cul4A-HA and T7-Rbx1 were expressed con-
currently as well. Each cell lysate was mixed and the re-
sulting protein complex was purified by sequential column
chromatography on single-stranded DNA cellulose, nickel-
chelating agarose and subsequent 10-40% glycerol gradient
by ultracentrifugation. The E3 complex comprised of DDB1,
DDB2, Cul4A and Rbx! was collected to near homogeneity
as a peak fraction of glycerol gradient as shown in Fig. 2.
Note that several other proteins were also detected in the fi-
nal preparation (for example, a typical protein is shown by

an asterisk in Fig. 2). However, since the peak fraction of

such protein was inconsistent with that of the E3 complex in
the glycerol gradient (data not shown), we think the protein
is a contaminant derived from insect cells or a degradation

product of the expressed protein, rather than a protein phys-
iologically associated with the E3 complex.

3.3. DDB2 is ubiquitylated by purified CuldA complex

Using this purified complex, we next tried to reconstitute
the ubiquitylation of DDB2 to check whether DDB-Culd4A
complex per se can ubiquitylate DDB2. Since E3 gener-
ally requires specific E2 to mediate ubiquitylation, we tested
eight different E2 enzymes (E2-20k, E2-25k, Ubc3, Ubc4,
UbcH5a, UbcHSc, Ubc7 and Ubc8). Slower-migrating lad-
ders derived from auto-ubiquitylation of Cul4A (see below)
were observed only from the reaction with Ubc4, UbcHS5a
and UbcH5c, whereas the other E2 enzymes tested did not
support this modification (Fig. 3A). We thus used UbcHS5
family as a source of E2 in the following experiments. Puri-
fied DDB-Cul4A complex was incubated with ATP, ubiqui-
tin, E1 and UbcHS5a, and subjected to immunoblotting with
the antibody for each component. As expected, ladders de-
rived from the auto-ubiquitylation of Culd4A were observed
(Fig. 3B, single asterisk in the middle panel). Moreover,
apparent high molecular-mass ladders were evident when
DDB2 was detected using the anti-Flag antibody (Fig. 3B,
single asterisk in the left panel). In order to demonstrate that
this modification was due to ubiquitylation, we repeated the
ubiquitylation assay in the presence or absence of ubiqui-
tin. The slower migrating ladders were not detected without
ubiquitin, and the addition of GST-ubiquitin instead of native
ubiquitin resulted in the appearance of larger molecular-mass
bands (Fig. 3B, double asterisks), indicating that this modifi-
cation indeed is ubiquitylation. In the case of DDB1, a single
high-molecular band also emerged after in vitro ubiquityla-
tion (Fig. 3B, right panel). However, this ubiquitylation sig-
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Fig. 2. Purification of the baculovirus-expressed DDB-Cul4A complex. The DDB-Cul4A complex was purified by sequential column chromatography and
subsequently separated onto a 10~40% glycerol gradient by ultracentrifugation. The peak fraction of DDB—Cul4A complex was resolved by SDS-PAGE and
visualized by silver staining, Asterisk shows the contaminant protein (see Section 3).

nal of DDB1 was fainter than that of Cul4A and DDB2 (see
Section 4).

To further investigate the biochemical characteristics of
DDB-Cul4A complex, we next purified it under more physi-
ological conditions, HeLa cells stably expressing FLAG-HA-
tagged DDB2 [17] were used to collect E3 complex. The
DDB2-containing complex was immunoprecipitated with

anti-FLAG antibody followed by anti-HA antibody as de-
scribed previously [17] and the eluates were further purified
by Mini Q column chromatography. The authentic E3 com-
plex, comprised of DDB 1, DDB2, Cul4A and Rbx1, was pu-
rified to almost homogeneity (Fig. 4A). When this complex
was incubated with ATP, ubiquitin, E1 and UbcHS5a, appar-
ent high molecular-mass ladders derived from the ubiquity-
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Fig. 3. In vitro reconstitution of DDB2 ubiquitylation. (A) The DDB~-Cul4A E3 complex cooperates with Ubc4 and UbcHS5 subfamily of E2 enzymes. Purified
DDB-CuldA E3 was incubated with the indicated E2 enzymes and subjected to immunoblotting with anti-HA antibody to identify the auto-ubiquitylation.
(B) DDB2 was directly ubiquitylated by the DDB-Cul4A complex, Pure DDB1-DDB2-Cul4A complex was subjected to in vitro ubiquitylation assay in the
absence (no) or presence of ubiquitin (Ub) or GST-ubiquitin (GST-Ub) and analyzed by immunoblotting with each antibody. Single asterisks show the ubiquitin
conjugation and double asterisks indicate GST-ubiquitin conjugation.
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Fig. 4. In vitro ubiquitylation of DDB2 using authentic DDB-Cul4A complex. (A) Purification of the genuine DDB-CuldA complex. Purified complex was
resolved by SDS-PAGE and visualized by silver staining. (B) In vitro ubiquitylation of DDB2 and auto-ubiquitylation of Cul4A. The authentic DDB-Cul4A
complex was subjected to in vitro ubiquitylation assay in the absence (no) or presence of ubiquitin (Ub) or GST-ubiquitin (GST-Ub) and analyzed by
immunoblotting with anti-HA (DDB2), anti-Cul4A and anti-DDBI antibodies. Single asterisks show the ubiquitin conjugation and double asterisks indicate

GST-ubiquitin conjugation.

lation of DDB2 and Cul4A were again observed (Fig. 4B,
single asterisk). The exclusion of ubiquitin from the assay
quenched these bands and replacement of native ubiquitin
with GST-ubiquitin retarded their mobility (Fig. 4B, double
asterisks). In contrast, DDB1 was rarely ubiquitylated, al-
though a faint ubiquitylation signal was observed after long
exposure (Fig. 4B, right panel). Because the DDB-Cul4A
complex derived from both insect (Fig. 3) and mammalian
(Fig. 4) cells directly ubiquitylated DDB2, we concluded that
DDB?2 was ubiquitylated by genuine DDB-Cul4A complex.

3.4. XP-E mutation does not affect ubiquitylation of
DDB?2 in vitro

Two cell lines established from XP-E patients, XP2RO
and XP82TQO, have been characterized in detail. XP2RO and
XP82TO cells harbor naturally occurring single amino acid
substitutions, R273H and K244E, in DDB2 protein, respec-
tively. It has been reported that the XP82TO mutant protein
(DDB2-K244E) interacts normally with DDB1 and Cullin
4A. Conversely, XP2RO mutant protein (DDB2-R273H) in-
teracts with neither of them [13,29]. We also confirmed by
immunoprecipitation experiments that DDB2-K244E inter-
acts with DDB1 and Cullin 4A normally, but DDB2-R273H
did not associate with either of them (Fig. 5A). Intriguingly,
Rapic-Otrin et al. [21] reported that UV-induced rapid degra-
dation of DDB2 protein did not occur in XP82TO cell line.
This information prompted us to test whether K244E mu-
tation affects the in vitro ubiquitylation of DDB2. Because
DDB1-DDB2 (K244E)-Cul4A complex did not interact ef-
fectively with DNA cellulose, we were unable to purify it

compared with the wild-type complex (data not shown). We
thus purified this mutant protein complex by affinity chro-
matography on nickel-chelating column and subsequent hep-
arin column, and the bound DDB2 (K244E) complex was
eluted around 0.5M NaCl (Fig. 5B). As a control, the wild
type DDB2-containing complex was simultaneously isolated
by the same method. The DDB1-DDB2 (K244E)-Cul4A
complex was incubated with ATP, ubiquitin, El and UbcHS5a,
and subjected to immunoblotting with the anti-Flag antibody.
The mutant DDB2 protein was ubiquitylated in a manner
equivalent to that of the wild-type control (Fig. 5C), indicat-
ing that XP82TO mutation (K244E) did not affect the ubig-
uitylation of DDB2 in vitro. This result also suggests that
the mutated site of DDB2 (244th K) per se is not the unique
ubiquitylation site.

4. Discussion

The DDB complex is regulated through several processes
when cells are exposed to UV irradiation, namely very
rapid translocation into the nucleus and binding to chro-
matin [17,29-31], hasty degradation of DDB2 protein [21,22]
and final transcriptional induction of DDB2 mRNA [32,33].
Chemical inhibition of proteasomes prevents rapid degrada-
tion of DDB2 protein, suggesting that this process is mediated
by the ubiquitin/proteasome system. Among these regulation
processes of DDB2, proteolytic degradation is the most in-
triguing because several recent reports [13,15-17] and our
present results have shown a tight relationship between the
DDB complex and proteins involved in ubiquitylation.
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Fig. 5. XP82TO mutation (K244E) does not affect the in vitro ubiquitylation
of DDB2. (A) DDB2-K244E interacts with DDB1 and Cul4A, but DDB2-
R273H associates with neither. Flag-DDB2 (WT, K244E or R273H) was co-
transfected with Myc-Cul4A and HA-DDBH into ts41 cells. After immuno-
precipitation (IP) by anti-Flag antibody, the resulting immunoprecipitates
were subjected to immunoblotting using anti-Cul4A and anti-DDB1 anti-
bodies. (B) The DDB2 (K244E) complex was resolved by SDS-PAGE and
visualized by silver staining. (C) Ubiguitylation of DDB2 protein with XP-E
mutation (DDB2-K244E) was comparable with that of wild-type DDB2 in
vitro. The DDB-Cul4A complex containing mutant or wild type DDB2 was
subjected to in vitro ubiquitylation in the presence (Ub) or absence (-) of
ubiquitin, Asterisk indicates the ubiquitin-conjugated DDB2.

Interestingly, ectopic over-production of Cullin 4A ac-
celerates the degradation of DDB2, suggesting that Cul4A
ubiquitylates DDB2 [15,16]. However, no reconstitution ex-
periments were performed and thus this information did not
exclude the possible involvement of other E3(s) downstream
of Cul4A in the ubiquitylation of DDB2, rather than directly
by Cul4A. This situation prompted us to reconstitute the in
vitro ubiquitylation of DDB2 and we presented in this study
biochemical evidence for the ubiquitylation of DDB2 directly
by the DDB-Cullin 4A complex.

4.1. In vitro ubiquitylation of each subunit of the DDB
complex

It is well established that a significant fraction of DDB2 is
degraded promptly after UV irradiation [21,22] and is also de-
graded in a cell cycle-dependent manner [16]. Conversely, it
is still controversial whether another component of the DDB
complex, DDB1, is a target of ubiquitylation and subsequent

degradation. Zhou’s group reported that overproduction of
Cul4A in cells stimulates the ubiquitylation of DDB1{15].1In
contrast, neither ectopically expressed Cul4A nor UV irradi-
ation accelerates degradation of DDB1 was reported by other
groups [12,16]. In our reconstitution experiment, DDB1 was
very weakly ubiquitylated in the DDB—Cul4A complex from
insect cells (Fig. 3B) and seldom ubiquitylated in the complex
from HeLa cells (Fig. 4B). Because the HeLa cell-derived
complex is purer and was considered to be isolated under
more physiological conditions, this result supports the notion
that DDBI is not ubiquitylated by the Cul4A E3 complex.
Even though DDBI1 was faintly ubiquitylated, such mono-
or di-ubiquitylation is insufficient for the proteasomal degra-
dation. Therefore, we favor the scenario that not DDB1 but
DDB2 is the target of ubiquitylation by Cul4A E3 complex
in vivo [12,16].

4.2. XP-E mutation did not affect the ubiquitylation of
p48 in vitro

Rapic-Otrin et al. [21] reported that UV-induced rapid
degradation of DDB2 did not occur in the XP-E cell line
(XP82TO) whose DDB2 harbors a K244E mutation. Be-
cause this mutant protein (DDB2-K244E) can interact with
DDBI and Cullin 4A (Fig. 5A [13]) but not with damaged
DNA [8,12,34], this result suggests that the binding activity
to damaged-DNA is necessary for the degradation of DDB2.
Another possibility is that the mutated site of DDB2 (244th
K) per se is the main ubiquitylation site, as suggested previ-
ously [21]. However, the latter is unlikely because we showed
that this mutant protein was still ubiquitylated in a manner
similar to the wild-type DDB2 protein in vitro (Fig. 5C).
Perhaps binding to damaged-DNA renders the conforma-
tion of DDB complex more acquiescent for ubiquitylation
and/or UV recruits DDB to some specialized chromatin place
where the other ubiquitylation machinery is easy to access
in vivo.

4.3. Biochemical role of DDB in nucleotide excision
repair

In XP-E cells lacking the DDB activity, the nucleotide ex-
cision repair (NER) of cyclobutane pyrimidine dimer (CPD)
is significantly impaired [32], suggesting the importance of
DDB complex in NER in vivo. However, this DDB complex
is not essential for the reconstitution of the cell-free NER in
vitro. The NER reaction was successfully reconstituted in the
absence of DDB [35-37], although it may exhibit some stim-
ulatory or inhibitory effects under certain conditions [38-40].
One interpretation of these results is that some partner pro-
tein(s) of DDB complex may be missing in such NER assay in
vitro. Recent studies [13,15-20,41-43] and the present work
emphasize the role of the DDB1 complex in the ubiquitin lig-
ation. We can thus speculate that the effect and requirement
of DDB could change if other ubiquitylation machinery was
added to the in vitro NER assay.



