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The identification of rare monogenic forms of Parkinson’s disease (PD) has provided tremendous insight into
the molecular pathogenesis of this disorder. Heritable mutations in a-synuclein, parkin, DJ-1 and PINKi1
cause familial forms of PD. In the more common sporadic form of PD, oxidative stress and derangements
in mitochondrial complex-l function are considered to play a prominent role in disease pathogenesis.
However, the relationship of DJ-1 with other PD-linked genes and oxidative stress has not been explored.
Here, we show that pathogenic mutant forms of DJ-1 specifically but differentially associate with
parkin, an E3 ubiquitin ligase. Chemical cross-linking shows that pathogenic DJ-1 mutants exhibit impair-
ments in homo-dimer formation, suggesting that parkin may bind to monomeric DJ-1. Parkin fails to specifi-
cally ubiquitinate and enhance the degradation of L166P and M26l mutant DJ-1, but instead promotes their
stability in cultured cells. The interaction of parkin with L166P DJ-1 may involve a larger protein complex
that contains CHIP and Hsp70, perhaps accounting for the lack of parkin-mediated ubiquitination.
Oxidative stress also promotes an interaction between DJ-1 and parkin, but this does not result in the ubiqui-
tination or degradation of DJ-1. Parkin-mediated alterations in DJ-1 protein stability may be pathogenically
relevant as DJ-1 levels are dramatically increased in the detergent-insoluble fraction from sporadic PD/
DLB brains, but are reduced in the insoluble fraction from parkin-linked autosomal recessive juvenile-onset
PD brains. These data potentially link DJ-1 and parkin in a common molecular pathway at multiple levels that
may have important implications for understanding the pathogenesis of inherited and sporadic PD.

INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative dis-
order affecting ~1% of the population at the age of 65
rising to 4% of the population at the age of 85 (1,2). PDisa
movement disorder that is mainly due to the degeneration of
dopaminergic neurons in the substantia nigra pars compacta,
which leads to rigidity, resting tremor, bradykinesia, postural
instability and, in a subset of patients, cognitive and auto-
nomic dysfunction (1,2). Pathologically, PD is characterized
by the presence of intracytoplasmic proteinaceous inclusions
termed Lewy bodies, as well as Lewy neurites, that are
immunoreactive for a-synuclein (3).

The cause of PD remains unknown, and although the
majority of cases appear sporadic in nature, rare monogenic
forms of PD have provided tremendous insight into the

pathogenesis of this disease (4,5). Four genes, a-synuclein,
parkin, DJ-1 and PINK1 have been unambiguously linked to
familial PD (6—9). Missense mutations (A53T, A30P and
E46K) in a-synuclein, as well as whole gene multiplications,
have been linked to autosomal dominant PD (6,10-13).
Mutations in parkin cause autosomal recessive juvenile-
onset PD (AR-JP) and are the most common cause of inherited
PD, accounting for up to 50% of all recessive early-onset PD
cases (7,14,15). A large number of pathogenic mutations have
been identified in parkin and include exonic deletions, dupli-
cations and a variety of missense mutations and truncations.
Parkin may function in the ubiquitin-proteasomal system
(UPS) as an E2-dependent E3 ubiquitin ligase (16-18). A
number of putative substrates for parkin exist, but their patho-
genic role in PD remains elusive (16,19-26). The large
number of parkin substrates may relate to the ability of
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parkin to form protein complexes with components of the UPS
and chaperone systems. For example, parkin associates with
the E3 ubiquitin ligase, CHIP, and the molecular chaperone,
Hsp70, which together control the ubiquitination and degra-
dation of the parkin substrate Pael-R (27).

Mutations in DJ-1 are linked with autosomal recessive
early-onset PD and at least initially appear to be a rare
cause of familial PD, perhaps accounting for 1-2% of all
early-onset cases (28~30). A number of pathogenic mutations
have been identified in DJ-1 and include exonic deletions,
truncations and homozygous (L166P and M™M26I) and
heterozygous (A104T and D149A) missense mutations
(8,28-31). A rare polymorphism (R98Q) has also been
identified although this is not associated with PD (32). The
L166P mutant protein is impaired in its ability to form
homo-dimers and exhibits markedly reduced protein stability,
leading to enhanced proteasomal degradation (33-37). The
biological function of DJ-1 remains obscure, DJ-1 is a
highly conserved protein present in a diverse number of
organisms and belongs to the DJ-1/ThiJ/PfpI protein super-
family. The crystal structure of human DJ-1 has been
resolved and shows that DJ-1 exists in solution as a homo-
dimer and the L166P mutation disrupts DJ-1 dimerization
(38—42). The crystal structure of DJ-1 closely resembles
that of Escherichia coli and yeast Hsp3l (42,43). The
crystal structure of DJ-1 also highlights a Cys-106/His-126
catalytic dyad indicative of protease activity. Preliminary
studies in vitro are consistent with the suggestion that DJ-1
may possess both chaperone activity and weak proteolytic
activity (37,42). DJ-1 may also function as an anti-oxidant
protein and/or as a redox sensor as it exhibits an acidic
shift in p/-value under oxidative stress, owing mainly to oxi-
dative modification of cysteine residues (44—47). Moreover,
in cultured cells, overexpression of DI-1 protects against oxi-
dative injury, whereas DJ-1 knockdown enhances the suscep-
tibility to oxidative stress (45,48).

There has been tremendous interest from researchers in
attempting to link the familial-associated gene products in a
common pathogenic pathway of neuronal degeneration in
PD. Suggestions that there might be a converging or
common molecular pathway are the observations that parkin
ubiquitinates the a-synuclein-interacting protein, synphilin-1,
and participates in the ubiquitination of inclusions that are
formed in the presence of a-synuclein and synphilin-1 (20).
Furthermore, parkin may also ubiquitinate a rare O-glycosy-
lated form of a-synuclein (19). In the more common sporadic
form of PD, oxidative stress and derangements in mitochon-
drial complex-I function are thought to play a prominent
role in the demise of dopaminergic neurons (49,50). Recent
observations suggest that a-synuclein and derangements in
complex-I function may converge in a common pathway as
inhibition of complex-I leads to a-synuclein aggregation and
toxicity both in vitro and in vivo (51-56). Oxidative stress
can also modify the normal function of parkin, because
S-nitrosylation of parkin impairs its E3 ubiquitin ligase
activity (57). The role of DJ-1 in such a pathway and its
relationship with parkin, a-synuclein and oxidative stress
has not been explored. Here, we show that parkin selectively
interacts with DJ-1 harboring pathogenic mutations, as well as
following various forms of oxidative stress. These interactions

potentially link parkin, DJ-1 and oxidative stress in a common
molecular pathway.

RESULTS

Parkin specifically but differentially interacts with
pathogenic DJ-1 mutants

To investigate the relationship between DJ-1 and a-synuclein
or parkin, co-immunoprecipitation experiments were per-
formed (Fig. 1). SH-SYSY cells were co-transfected with HA-
tagged wild-type (WT) a-synuclein together with C-terminal
myc-tagged DJ-1 (WT or L166P) followed by immunoprecipi-
tation (IP) with anti-myc antibody (Fig. 1A). WT a-synuclein
fails to co-immunoprecipitate with WT or L166P DJ-1
(Fig. 1A). In additional experiments, WT and L166P DJ-1
also fail to interact with a-synuclein pathogenic mutants
(A30P or AS3T) or UCH-L1 (data not shown). Similar exper-
iments were performed with FLAG-tagged parkin and myc-
tagged WT or mutant DJ-1 (Fig. 1B). Imtriguingly, parkin
specifically interacts with pathogenic mutant forms of DJ-1
(Fig. 1B). In particular, the interaction of parkin with L166P
DJ-1 is particularly robust, whereas that with other pathogenic
mutants (M26I, A104T and D149A) are considerably weaker,
producing an interaction profile of LI166P 3> M26I >
A104T = D14%A. WT DJ-1 and non-pathogenic R98Q DJ-1
fail to interact with parkin (Fig. 1B); on the other hand,
parkin also fails to interact with non-pathogenic K130R DJ-
1 (data not shown). As L166P DJ-1 has a number of N-term-
inal truncation products that may result from proteolytic pro-
cessing (Fig. 1B) (33,36), we next examined whether parkin
interacts with full-length or truncated forms of DJ-1 by per-
forming co-immunoprecipitation experiments. Parkin inter-
acts robustly with full-length L166P DJ-1 but only weakly
with truncated L166P DJ-1, in addition to truncated WT DJ-
1 (Fig. 1C), suggesting that full-length L166P DJ-1 primarily
associates with parkin. In additional experiments, L166P DJ-1
fails to co-immunoprecipitate with various modular domains
of parkin, including the RING box motif and ubiquitin-like
domain (data not shown), suggesting that full-length parkin
is probably required for the interaction with L166P DJ-1. To
determine whether the interaction of parkin with pathogenic
mutant forms of DJ-1 is associated with alterations in DJ-1
protein stability or homo-dimer formation, we examined the
steady-state levels of myc-tagged WT and mutant DJ-1, as
well as the capacity of myc-tagged WT and mutant DJ-1 to
associate, and therefore homo-dimerize with FLAG-tagged
WT DJ-1 (Fig. 1D and E). As previously reported (33),
L166P DJ-1 is highly unstable, exhibiting markedly reduced
steady-state levels, and fails to form homo-dimers, whereas
most other DJ-1 mutants exhibit comparable steady-state
levels to WT protein and share the capacity to form homo-
dimers (Fig. 1D and E). A mild reduction in the steady-state
levels of M26I DJ-1 is also noted, as described previously
(33). Taken together, these results suggest that parkin interacts
specifically with pathogenic mutant forms of DJ-1, particu-
larly the L166P mutant, but this does not initially appear to
relate to their intrinsic protein stability or their capacity to
form homo-dimers.
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Figure 1, Parkin differentially associates with pathogenic DJ-1 mutants. (A) DJ-1 fails to interact with a-synuclein. Lysates from SH-SY5Y cells co-transfected
with myc-tagged DJ-1 (WT or L166D) and HA-tagged WT a-synuclein were subjected to IP with anti-myc antibody. IP and input lysates (1% total soluble
lysate) were analyzed by western blotting (WB) with anti-HA and anti-myc antibodies. (B) Interaction of parkin with pathogenic DJ-1 mutants. SH-SY5Y
lysates co-expressing myc-tagged WT or mutant (L166P, M261, A104T, D149A or R98Q) DJ-1 or control plasmid, together with FLAG-tagged parkin, were
subjected to IP with anti-myc antibody, and IP and input lysates were analyzed by WB with anti-FLAG and anti-myc antibodies. (C) Parkin interacts primarily
with full-length L166P DJ-1. SH-SYSY lysates co-expressing myc-tagged DJ-1 (WT or L166P) together with FLAG-tagged parkin or controf plasmid were
subjected to IP with anti-FLAG antibody, and IP and input lysates were analyzed by WB with anti-myc and anti-FLAG antibodies. Full-length (FL) and
N-terminally truncated {AN1 and AN2) myc-tagged DJ-1 species are indicated by arrows. (D) Analysis of steady-state protein levels of DJ-1 mutants.
Lysates from SH-SYSY cells transfected with mye-tagged WT or mutant (L166P, M26I, A104T, D149A or R98Q) DJ-1 werc analyzed by WB with
anti-myc antibody or with anti-actin antibody to demonstrate equal loading. (E) Analysis of dimerization of DJ-1 mutants. Lysates from SH-SYSY cells
co-transfected with myc-tagged WT or mutant (L166P, M261, A104T, D149A or R98Q) DJ-1 or control plasmid, together with FLAG-tagged WT DI-1,
were subjected to IP with anti-myc antibody, and IP and input lysates were analyzed by WB with anti-FLAG and anti-myc antibodies. Molecular weight
markers are indicated in kDa. All experiments were replicated three times with similar results.

Pathogenic DJ-1 mutants share a reduced capacity
to form home-dimers

Parkin interacts robustly with L166P DJ-1, however, this
mutant exists largely in a monomeric form through its inability
to form homo-dimers owing to protein instability (33,38). We
reasoned therefore that parkin might interact preferentially
with monomeric DJ-1 and that pathogenic mutations in
DJ-1, other than L166P, might reduce but not completely
abrogate the capacity of DJ-1 to form homo-dimers. To
investigate this possibility, SH-SY5Y cells were transfected
with myc-tagged DJ-1 (WT or L166P) and soluble cell
lysates were treated with the covalent chemical cross-linking
agent disuccinimidyl suberate (DSS). As expected, myc-
tagged WT DJ-1 forms homo-dimers in a dose-dependent
manner concomitant with a progressive decrease in mono-
meric DJ-1, whereas L166P DJ-1 fails to form homo-dimers
(Fig. 2A), consistent with our co-immunoprecipitation

studies (Fig. 1E). Incidentally, the level of monomeric
L166P DJ-1 also decreases in a dose-dependent manner, but
fails to appear at a higher molecular weight (Fig. 2A),
perhaps suggesting that it becomes incorporated into an inso-
luble protein complex. Endogenous DI-1 also forms robust
homo-dimers, whereas hetero-dimer formation appears
nominal (Fig. 2A). These data demonstrate that DJ-1 homo-
dimers are amenable to chemical cross-linking and further
confirm that L166P DJ-1 fails to form homo-dimers.

Next, the capacity of myc-tagged WT or mutant DJ-1 to form
homo-dimers was examined using a non-saturating concen-
tration of DSS (5 mM). With the exception of L166P DI-1,
WT DJ-1 and the other DJ-1 mutants form varying amounts of
homo-dimer following cross-linking (Fig. 2B), consistent with
our co-immunoprecipitation studies (Fig. 1E). To obtain a
measure of dimerization capacity or efficiency, densitometry
was used to generate a ratio of dimer to monomer (Fig. 2C).
When compared with WT DJ-!, pathogenic mutant forms of
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Figure 2, Reduced homo-dimerization of pathogenic DJ-1 mutants. (A) Cross-finking of DJ-1 homo-dimers. Equivalent soluble lysates from SH-SYSY cells
transfected with myc-tagged DJ-1 (WT or L166P) were treated with increasing concentrations of DSS and myc-tagged or endogenous DJ-1 was detected by
WB with anti-myc (upper panel) or anti-DJ-1 (N) (lower panel) antibodies, respectively. The corresponding position of myc-tagged (Myc) or endogenous
(endo) DJ-1 monomers and homo-dimers are indicated. (B) Reduced cross-linking of pathogenic DJ-1 mutants. Equivalent lysates from SH-SY5Y cells trans-
fected with myc-tagged WT or mutant (L166P, M26I, A104T, D149A or R98Q) DJ-1 were treated with 5 mM DSS and homo-dimer formation was assessed by
WB with anti-myc antibody. (C) Quantification of homo-dimer levels and normalization 1o monomer levels from (B) by densitometry reveals a significant
reduction in the homo-dimerization of pathogenic DJ-1 mutants. DJ-1 dimer~monomer ratios are expressed as a percentage (%) of WT levels, and bars represent
the mean + SE of three independent experiments, * P << 0.005 when compared with WT levels (Student’s ¢-test). (D) Parkin fails to cross-link to pathogenic DJ-1
mutants. SH-SYSY cells were co-transfected with myc-tagged WT or mutant (L166P, M261, A104T, D149A or R98Q) DJ-1 or control plasmid, together with
FLAG-tagged parkin. Equivalent lysates were treated with 5 mmM DSS and then subjected to IP with anti-myc antibody. IP and input lysates were analyzed by WB
with anti-FLAG and anti-myc antibodies. *NS denotes non-specific band detected with anti-myc antibody. Molecular weight markers are indicated in kDa, All

experiments were replicated three times with similar results.

DJ-1 exhibit a significantly reduced capacity to form homo-
dimers, i.e. a reduced ratio of dimer to monomer, whereas dimer-
ization of non-pathogenic R98Q DJ-1 is comparable with WT
protein (Fig. 2C). Next, to determine whether parkin interacts
preferentially with monomeric or dimeric forms of mutant
DJ-1, co-immunoprecipitation experiments were performed
with DSS cross-linked SH-SY5Y lysates co-transfected with
FLAG-tagged parkin and myc-tagged DJ-1 (WT or mutant)
(Fig. 2D). Parkin fails to covalently cross-link to either mono-
meric or dimeric forms of mutant DJ-1 (Fig. 2D), as suggested
by the absence of modified forms of DJ-1 or parkin with

increased molecular weight. These data suggest either an
indirect interaction between parkin and DJ-1 mutants, or that
particular amino acid side chain residues (e.g. primary amines)
are not available for cross-linking at the protein interaction inter-
face. However, pathogenic DJ-1 mutants, especially the L166P
mutant, retain the ability to co-immunoprecipitate with full-
Iength parkin in addition to a substantial proportion of high
molecular weight (HMW) parkin (>250kDa; Fig. 2D),
suggesting that (i) a proportion of parkin may exist as part of a
large protein complex or is extensively modified, i.e. by auto-
ubiquitination and (ii) DJ-1 mutants can differentially associate
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lysates were subjected to IP with anti-myc antibody, and IP and input lysates were analyzed by WB with anti-HA and anti-myc antibodies. (B) Similar ubiqui-
tination experiments were performed using transfected cells treated with the proteasome inhibitor MG132 (5 pm) for 24 b, as described earlier. (C and D) Effect
of parkin on DJ-1 stcady-state protein levels. (C) SH-SY5Y cells co-transfocted as detailed carlier were fractionated into 1% Triton X-100-solublc or -insoluble
fractions, and equivalent fractions analyzed by WB with anti-myc and anti-FLAG antibodies or with anti-actin antibody to demonstrate equal loading. (D)
Similar steady-state experiments were performed using transfected cells treated with the proteasome inhibitor MG132 (5 M) for 24 h, as described earlier.
Full-length (FL), N-terminally truncated (AN1 and AN2) and mono-ubiquitinated (DJ-1-(Ub);) myc-tagged DJ-1 species or HMW FLAG-tagged parkin
species are indicated by arrows. Molecular weight markers are indicated in kDa. All experiments were replicated at least three times with similar results.

with both full-length and HMW forms of parkin. Tmportantly,
using chemical cross-linking, we are unable to determine
whether parkin associates preferentially with monomeric or
dimeric forms of mutant DJ-1. Collectively, these findings
suggest that pathogenic mutant forms of DJ-1 share a reduced
capacity to form homo-dimers that strongly correlates with
their propensity to interact with parkin, perhaps suggestive of
parkin binding preferentially to monomeric DJ-1.

Parkin fails to ubiquitinate DJ-1 but instead enhances
DJ-1 protein stability

As parkin specifically and differentially interacts with
pathogenic mutant forms of DIJ-1, the ability of parkin to

ubiquitinate and to enhance the degradation of these mutants
was explored (Fig. 3). We chose to study forther the L166P
and M26I DJ-1 mutants, because these show the strongest
interaction with parkin (Fig. 1B). To ascertain whether
parkin ubiquitinates DJ-1, SH-SY5Y cells were co-transfected
with HA-tagged ubiquitin and myc-tagged DJ-1 (WT, L166P
or M261) with and without FLAG-tagged parkin. This was
followed by TP with anti-myc antibody and probing with
anti-HA antibody to monitor ubiquitination of DJ-1, or with
anti-myc antibody to monitor the formation of DJ-1-ubiquitin
conjugates (Fig. 3A). In the absence of parkin, a small
proportion of WT and M261 DJ-1 is mono-ubiquitinated,
whereas mono-ubiquitination of L166P DJ-1 is not detected
probably secondary to its reduced protein stability (Fig. 3A).
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In the presence of parkin, we fail to observe enhanced ubiqui-
tination of WT and mutant DJ-1 (Fig. 3A). Moreover, with the
exception of mono-ubiquitinated DJ-1, we fail to observe any
HMW DJ-1-ubiquitin conjugates (Fig. 3A), suggesting the
absence of poly-ubiquitinated forms of DJ-1. To determine
whether the failure to observe enhanced ubiquitination of
DJ-1 by parkin was potentially due to the proteasomal degra-
dation of poly-ubiquitinated forms of DJ-1, similar experi-
ments were performed in the presence of the proteasome
inhibitor MG132 (Fig. 3B). Following proteasome inhibition,
we fail to detect the formation of HMW DJ-1-ubiquitin conju-
gates but instead consistently detect mono-ubiquitinated DJ-1
species, including L166P DJ-1 (Fig. 3B). However, we also
observe a marked accumulation of full-length and truncated
forms of L166P DJ-1 to near WT levels, further suggesting
that this mutant is not subject to poly-ubiquitination. Parkin
overexpression does not influence the overall levels of
mono-ubiquitinated DJ-1 following proteasome inhibition,
but rather redistributes them from a detergent-soluble to an
insoluble fraction (Fig. 3B and D). Taken together, these
findings demonstrate that L166P and M261 mutant DJ-1 are
not ubiquitinated by parkin despite their interaction, whereas
DJ-1 can exist in a mono-ubiquitinated form independent of
parkin overexpression.

The failure to observe ubiquitination of L166P and M26I
mutant DJ-1 in the presence of parkin was surprising. To
explore whether the absence of HMW DJ-1-ubiquitin conju-
gates in the detergent-soluble fraction was secondary to
these conjugates residing or being sequestered into the deter-
gent-insoluble fraction, we examined and compared the 1%
Triton X-100-soluble and -insoluble fractions from the
earlier mentioned ubiquitination experiments (Fig. 3C and
D). Unexpectedly, parkin dramatically increases the amount
of full-length L166P and M26I mutant DJ-1 in the deter-
gent-insoluble fraction, and also has a smaller effect on WT
DJ-1 (Fig. 3C). In the detergent-soluble fraction, parkin also
facilitates a small increase in the steady-state levels of WT,
L166P and M26I DJ-1 (Fig. 3C), suggesting that parkin may
generally enhance the stability of DJ-1. Although full-length
and HMW forms of parkin are present in the insoluble frac-
tion, only full-length parkin is detected in the soluble fraction
(Fig. 3C). In the detergent-insoluble fraction, the stabilizing
effect of parkin on full-length L166P and M26I mutant DJ-1
steady-state levels is markedly enhanced following treatment
with the proteasome inhibitor MG132, having only a small
effect on WT DJ-1 (Fig. 3D). In addition, parkin also enhances
the levels of N-terminally truncated forms of both WT
L166P and M26I DJ-1 following proteasome inhibition
(Fig. 3D), and parkin also promotes the redistribution of
mono-ubiquitinated DJ-1 from the soluble into the insoluble
fraction (Fig. 3B and D). The enhanced levels of DJ-1 in the
insoluble fraction following proteasome inhibition also corre-
late with the dramatic accumulation of full-length and HMW
forms of parkin in this fraction (Fig. 3D), whereas in the
soluble fraction only full-length parkin is detected. These
HMW forms of parkin likely represent poly-ubiquitinated
species that accumulate following proteasome inhibition. In
the detergent-soluble fraction, the small stabilizing effect of
parkin on DJ-1 levels is still observed following proteasome
inhibition (Fig. 3D). In these experiments, we fail to observe

detergent-insoluble HMW DJ-1-ubiquitin conjugates in the
absence or presence of parkin (Fig. 3C and D), further
suggesting that parkin does not poly-ubiquitinate mutant
DJ-1. Collectively, these findings demonstrate that parkin
can increase the steady-state levels of L166P and M261
mutant DJ-1, primarily of detergent-insoluble species, and
this effect is enhanced by proteasome inhibition. Taken
together, these results indicate that although parkin interacts
with L166P and M26I mutant DJ-1, parkin enhances neither
their ubiquitination nor their degradation or turnover.
Instead, parkin may promote the stability of L166P and
M261 mutant DJ-1. This may suggest that the interaction of
parkin with these mutants is either indirect or subserves an
alternative as yet undetermined biological function.

Oxidative stress promotes the association of parkin
and DJ-1

As parkin interacts selectively with pathogenic DJ-1 mutants
but not with WT protein, the possibility that parkin may
only interact with DJ-1 under pathogenic or stressful con-
ditions was explored. To this end, the ability of WT DJ-1
and parkin to associate under conditions of oxidative stress
was examined by co-immunoprecipitation experiments
(Fig. 4A—C). First, the effects of hydrogen peroxide on the
ability of parkin and WT DJ-1 to interact were monitored.
Hydrogen peroxide oxidatively modifies cysteine residues
in DJ-1, particularly Cys-106, resulting in an acidic shift in
pl-value (44,45,58). SH-SYS5Y cells were co-transfected with
FLAG-tagged parkin and myc-tagged WT DIJ-1, followed by
treatment with hydrogen peroxide for 24 h, and IP with anti-
myc antibody. Hydrogen peroxide treatment results in a
dose-dependent increase in the interaction of WT DJ-1 with
parkin (Fig. 4A). However, WT DJ-1 and parkin fail to inter-
act under control conditions. To determine whether parkin
interacts with WT DJ-1 under other forms of oxidative stress,
the effects of the mitochondrial complex-I inhibitor, 1-
methyl-4-phenylpyridinium ion (MPPY), and the nitric oxide
(NO) donor, S-nitroso-N-acetylpenicillamine (SNAP) were
examined, Treatment with both MPPt and SNAP leads to a
dose-dependent increase in the interaction of parkin with
WT DJ-1 comparable with that observed with hydrogen
peroxide (Fig. 4B and C). Under all three oxidative conditions,
a dose-dependent decrease in cell viability is observed
(data not shown). Taken together, these results suggest that
parkin and DJ-1 can be linked together under conditions of
oxidative stress.

To determine the consequences of the interaction of parkin
and WT DJ-1 following oxidative stress, we examined the
ability of parkin to ubiquitinate DJ-1, as well as the effect of
parkin on DJ-1 steady-state levels, under oxidative conditions.
First, ubiquitination experiments were performed as described
earlier with myc-tagged WT DJ-1 and FLAG-tagged parkin
under similar conditions of oxidative stress that promote the
maximal interaction of both proteins (Fig. 4D). We fail to
detect HMW DJ-1-ubiquitin conjugates in the absence or pre-
sence of parkin following oxidative stress, but we continue to
consistently observe mono-ubiquitinated DJ-1 irrespective of
the presence of parkin (Fig. 4D). Parkin does not modify the
actual level of mono-ubiquitinated DJ-1 observed following
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Figure 4. Oxidative stress promotes the association of parkin and DJ-1. (A) Hydrogen peroxide treatment promotes the interaction of parkin and DJ-1. SH-SY5Y
cells were co-transfected with myc-tagged WT DJ-1 or control plasmid, together with FLAG-tagged parkin, followed by treatment with increasing concentrations
of hydrogen peroxide (H,Os) for 24 h. Lysates were subjected to IP with anti-myc antibody, and IP and input lysates were analyzed by WB with anti-FLAG and
anti-myc antibodies. Similar experiments were performed using transfected cells treated with increasing concentrations of (B) MPP* and (C) SNAP for 24 h, as

described earlier, (D) Parkin fails to ubiquitinate DJ-1 following oxidative stress.

SH-SYSY cells were co-transfected with myc-tagged WT DJ-1 and HA-tagged

ubiquitin, with or without FLAG-tagged parkin, followed by treatment with SNAP (500 pMm), MPP' (1 mM) or H,O, (500 pM) for 24 h. Equivalent soluble
lysates (2.5 mg protein) were subjected to IP with anti-myc antibody, and IP and input lysates were analyzed by WB with anti-HA and anti-myc antibodies.
Full-length (FL) and mono-ubiquitinated [DJ-1-(Ub),] myc-tagged DJ-1 species are indicated by arrows. (E) Effect of parkin on DJ-1 steady-state protein
levels following oxidative stress. SH-SYSY cells co-transfected and treated as in (D) were fractionated into 1% Triton X-100-sofuble or -insoluble fractions,
and equivalent fractions analyzed by WB with anti-myc, anti-DJ-1 (C) and anti-FLAG antibodies or with anti-actin antibody to demonstrate equal loading.
Myc-tagged (Myc) or endogenous (endo) DJ-1 are indicated. Molecular weight markers are indicated in kDa. All experiments were replicated at least three

times with similar results,

oxidative stress, but instead marginally enhances the steady-
state levels of soluble DJ-1 (Fig. 4D and E), as demonstrated
earlier (Fig. 3C), thus leading to IP of greater quantities of
full-length and mono-ubiquitinated DJ-1 in this experiment.
This is particularly apparent under control conditions
(Fig. 4D and E). It was not possible to perform this experiment
in the presence of proteasome inhibitors secondary to exces-
sive cell death (data not shown). These results suggest that
WT DJ-1 is not ubiquitinated by parkin under conditions of
oxidative stress.

To determine the effects of parkin on the steady-state levels
of WT DJ-1 following oxidative stress, we examined and com-
pared the detergent-soluble and -insoluble fractions from the
earlier mentioned ubiquitination experiment (Fig. 4E). Under
control conditions, parkin marginally enhances the levels of
WT DJ-1 in both the soluble and insoluble fractions

(Fig. 4E), as observed earlier (Fig. 3C). This stabilizing
effect of parkin on WT DJ-1 is abrogated under oxidative
conditions (Fig. 4E). Furthermore, these oxidative conditions
lead to a marked reduction in the steady-state levels of
WT DJ-1 in the detergent-insoluble fraction irrespective of
parkin overexpression, with no obvious changes in the
soluble fraction. Oxidative stress also has a similar effect on the
steady-state levels of detergent-insoluble endogenous DJ-1
in these cells (Fig. 4E). These results suggest that oxidative
stress may reduce the stability of detergent-insoluble forms
of DJ-1. In contrast, treatment with MPP™, and to a lesser
extent SNAP, results in a marked redistribution of full-
length parkin from the detergent-soluble to the insoluble frac-
tion (Fig. 4E). This redistribution may reflect moverent of
parkin between different cellular compartments or organelles,
or a change in the biochemical properties of parkin. Additional
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experiments using quantitative DSS cross-linking show that
oxidative stress has no effect on homo-dimer formation of
detergent-soluble WT DJ-1 (data not shown). Collectively,
these results indicate that although parkin interacts with WT
DJ-1 under oxidative stress, this does not promote the parkin-
mediated ubiquitination or degradation of DJ-1. Instead, the
small stabilizing effect of parkin on WT DJ-1 may be impaired
by oxidative stress. Intrigningly, oxidative stress can reduce the
stability of insoluble DJ-1, as well as reducing the solubility of
parkin. Our findings support the idea that the interaction of DJ-1
and parkin under oxidative stress may be an indirect association
or may serve an alternative biological role.

L166P mutant DJ-1 associates with parkin, CHIP
and Hsp70

Parkin exists in a macromolecular protein complex with CHIP
and Hsp70, where this complex participates in the ubiquitina-
tion and degradation of parkin substrates such as Pael-R (27).
To ascertain whether DJ-1 mutants could additionally interact
with components of this parkin complex, co-immunoprecipitation
experiments were performed (Fig. 5). We chose to study only
L166P DJ-1 in these experiments because this mutant
displays the most robust interaction with parkin. SH-SY5Y
cells were co-transfected with myc-tagged DJ-1 (WT or
L166P) together with HA-tagged CHIP, FLAG-tagged parkin
or both proteins, followed by treatment with the proteasome
inhibitor MG132 for 24 h to restore L166P DJ-1 levels to
those of WT, and IP with anti-myc antibody. L166P DJ-1
specifically interacts with CHIP in the presence or absence of
parkin, whereas WT DIJ-1 fails to interact with CHIP
(Fig. 5A). Parkin fails to appreciably alter the interaction of
CHIP with L166P DJ-1. In a similar manner, CHIP fails to
alter the interaction of parkin with L166P DJ-1, suggesting
that parkin and CHIP may interact with L166P DJ-1 indepen-
dently of each other. In similar co-immunoprecipitation exper-
iments, we also monitored the ability of L166P DI-1 to interact
with Hsp70. SH-SY5Y cells were co-transfected with myc-
tagged DJ-1 (WT or L166P) together with V5-tagged Hsp70
or control plasmid, followed by treatment with or without
MG132 for 24 h, and IP with anti-V5 antibody. We find that
only full-length L166P DJ-1 interacts with Hsp70, on the
other hand, Hsp70 also interacts with N-terminally truncated
forms of WT and L166P DJ-1 (Fig. 5B). In the presence of
the proteasome inhibitor MG132 to restore L166P DJ-1
levels, the interaction of Hsp70 with full-length and truncated
forms of L166P DI-1 is enhanced and we additionally
observe a weak interaction of full-length WT DI-1 with
Hsp70 (Fig. 5B). The interaction of full-length WT DJ-1 with
Hsp70 following proteasome inhibition may relate to the puta-
tive chaperone function of DJ-1. To determine whether Hsp70
can promote the stability of L166P DJ-1, similar to the effect of
parkin (Fig. 3D), we examined the steady-state levels of WT or
L166P DJ-1 in the detergent-insoluble fraction in the absence or
presence of Hsp70 following proteasome inhibition (Fig. 5C).
Hsp70 markedly enhances the level of full-length L166P
DJ-1, as well as N-terminally truncated forms of WT and
L166P DJ-1, with smaller effects on full-length WT DJ-1
(Fig. 5C). This finding suggests that Hsp70 can promote the
stability of detergent-insoluble DJ-1, primarily L166P DJ-1.
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Figure 5. Association of L166P DJ-1 with parkin, CHIP and Hsp70. (A) Inter-
action of L166P DJ-1 with CHIP and parkin. SH-SYSY cells were co-
transfected with myc-tagged WT or L166P DJ-1, together with HA-tagged
CHIP, FLAG-tagged parkin or both protcins, followed by treatment with the
proteasome inhibitor MG132 (5 pM) for 24 h. Lysates were subjected to IP
with anti-myc antibody, and IP and input lysates were analyzed by WB
with anti-HA, anti-FLAG and anti-myc antibodies. (B) Interaction of L166D
DJ-1 with Hsp70. SH-SY5Y cells were co-transfected with myc-tagged WT
or L166P DJ-1, together with V5-tagged Hsp70 or control plasmid, followed
by treatment with or without the proteasome inhibitor MG132 (5 M) for 24 h.
Lysates were subjected to IP with anti-V35 antibody, and IP and input lysates
were analyzed by WB with anti-myc and anti-V5 antibodies. (C) Effect of
Hsp70 on DJ-1 steady-state protein levels. The 1% Triton X-~100-insoluble
fraction from cells co-transfected with myc-tagged WT or L166P DJ-1 with
or without V5-tagged Hsp70, followed by treatment with MG132 (5 pM) for
24 h, was analyzed by WB with anti-myc and anti-actin antibodies. Full-
length (FL) and N-terminally truncated (AN1 and AN2) myc-tagged DJ-1
species are indicated by arrows. Molecular weight markers are indicated in
kDa. All experiments were replicated with similar results.

This stabilizing effect reflects the interaction profile of
Hsp70 with WT and L166P DI-1 (Fig. 5B). Taken together,
these results indicate that both CHIP and Hsp70 are able to
interact with L166P DJ-1, and suggest that parkin may associate
with L166P DJ-1, and possibly other DJ-1 mutants, as part
of a larger protein complex containing CHIP and Hsp70.
This observation may explain the failure of parkin to directly
ubiquitinate L166P and M261 mutant DJ-1 (Fig. 3A and B).
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