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Abstract

Chromosome 22q12 is one of the most promising regions for harboring a risk gene for schizophrenia. We have
reported significant linkage of intermediate phenotypes for schizophrenia with markers within or near the beta-
adrenergic receptor kinase 2 (ADRBK2, or GRK3) gene, which is highly expressed in dopaminergic pathways in the
central nervous system, and mediates homologous desensitization for a variety of neurotransmitters and hormones
through phosphorylation of G protein-coupled receptors (GPCRs). A polymorphism in the promoter region of the
ADRBK2 was reported to be associated with bipolar disorder. We screened the putative promoter region, and all 21
exonic and flanking intronic regions of the ADRBK2 gene for mutations in 48 schizophrenia probands (including 16
Japanese and 32 Chinese patients), and evaluated the detected polymorphisms and those reported in the JSNP
database for associations with schizophrenia in 113 family trios of schizophrenia probands. Four single nucleotide
variants in the 5'-UTR /promoter region, and 16 rare variants in exonic and flanking regions, were identified. Among
them, the Cys208Ser variant was the only non-synonymous mutation. Cys208Ser was found in one family without
cosegregation between the variant and schizophrenia. Moreover, allelic, genotypic and haplotypic analyses provided
no evidence for association between alleles at these polymorphisms and schizophrenia. The present study indicates
that the ADRBK2 gene is unlikely to contribute strongly to schizophrenia susceptibility in this set of families.
© 2003 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

The evidence from family, twin, adoption, and
molecular studies has demonstrated that genetic
factors play an important role in the etiology of
schizophrenia (Kety, 1988; Gottesman and Bertel-
sen, 1989; Kendler and Diehl, 1993; McGuffin et
al., 1995; Baron, 2001). Efforts have been made
to map the schizophrenia susceptibility genes by
using direct candidate gene analysis, systematic
scans for linkage, and positional candidate gene
approaches by combining the linkage information
and candidate gene analyses. Although the corre-
sponding results are inconsistent, some chromoso-
mal regions have shown potential promise,
including 6p, 8p, 10p, 13q, 22q (Pulver, 2000;
Riley and McGuffin, 2000; Liu et al., 2002),

We previously developed a method called the
exploratory eye movement (EEM) test, and found
that the number of eye fixations in responsive
search (NEFRS) appears to be an indicator of
schizophrenia (Kojima et al., 1992; Matsushima et
al., 1998; Kojima et al., 2001). We performed a
genome-wide linkage analysis utilizing the NEFRS
deficit as an intermediate phenotype to identify
susceptibility gene(s) for schizophrenia, and found
linkage between NEFRS and markers between
D22S429 and D228310 on chromosome 22ql12
(LOD=4.63) (Takahashi et al., 2003). A gene
coding for the beta-adrenergic receptor kinase 2
(ADRBK?2), alternatively known as G protein-
coupled receptor kinase 3 (GRK3), is mapped to
human chromosome 22q12 and located near
D228429. In a linkage study using a quantitative
composite inhibitory phenotype consisting of a
P50 sensory gating measure and antisaccade ocular
motor performance in schizophrenia, a marker,
D22S315, in intron 2 of the ADRBK2 gene yielded
a high LOD score (LOD score=3.55, 6=0)
(Myles-Worsley et al., 1999).

The G protein-coupled receptor kinases (GRKs),
which are widely distributed in the brain and
periphery, play an important role in the regulation
of responsiveness of various G protein-coupled
receptors (GPCRs). These protein kinases have
the unique ability to recognize and phosphorylate
their GPCR substrates only in their active confor-
mations, after which phosphorylated receptors may

bind accessory proteins, known as arrestins, which
further uncouple the receptor from the G protein
(Pitcher et al., 1998). ADRBK2 is one of the beta-
adrenergic receptor kinases (beta-ARK) in the
GRK family. Arriza et al. (1992) showed that beta-
adrenergic receptor kinase 1 [ADRBKI, or G
protein-coupled receptor kinase 2 (GRK2)] and
ADRBK2 are found in presynaptic and postsynap-
tic localizations in various brain regions, consistent
with a general role for these kinases in the desen-
sitization of neuronal GPCRs and their putative
role in the regulation of neuronal activity. Through
phosphorylation of GPCRs, ADRBK2 mediates
homologous desensitization for a variety of neu-
rotransmitters and hormones. For example, dopa-
mine D1 receptors can be phosphorylated and
desensitized via an ADRBK2 mechanism (Tiberi
et al,, 1996), and ADRBK2 expression is particu-
larly high in dopaminergic pathways in the central
nervous system (Arriza et al,, 1992). ADRBK2
has also been shown to play a role in the desen-
sitization of beta-adrenergic receptors and cortico-
trophin-releasing factor receptors, and may mediate
desensitization for a variety of different neurotrans-
mitter receptors (Hauger et al., 2000). These find-
ings suggest that a major physiological role for
ADRBK?2 in neurons may be to act as a brake for
signal transduction by some GPCRs, and a defect
in ADRBK2 function may lead to an inability to
desensitize receptors, and a heightened responsive-
ness to dopamine and other neurotransmitter sig-
nals in the brain (Niculescu et al, 2000).
Niculescu et al. (2000) reported that the ADRBK2
gene was up-regulated in an animal model of
psychotic mania using a GeneChip microarray.
This was further supported by decreased protein
levels of the ADRBK2 gene in lymphoblastoid
cell lines from a subset of bipolar disorder patients
that correlated with disease severity through West-
ern blot analysis. In addition, Garcia-Sevilla et al.
(1999) also found increased levels of ADRBK1/
2 protein in postmortem tissue from the prefrontal
cortex of depressed patients who committed sui-
cide. Furthermore, Barrett et al. (2003) reported
that a single nucleotide polymorphism (SNP) in
the promoter region of ADRBK2 gene was asso-
ciated with bipolar disorder.
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Identified variants in the putative promoter region, exonic, and adjacent intronic region of ADRBK2 gene in patients with

schizophrenia

Position Variant/polymorphism Flanking sequence of the variant ID in dbSNP
database

Promoter —845G/A getettecateag a/g gggetecctaagggeat

Promoter —689A/G gagegaggtiggee a/g cceggecegetgggege

Promoter —465T/C ctictctggatgag t/c tgggegggcatgagaa

Promoter -317T/C agggagggctac t/c gtagagacttggt

Exon 6 459C/T (11531) atacatagaagaaat ¢/t tgtgaaagccticga

Exon 8 623C/G (C208S) gggaagtitatpptt ¢/g caggaaagcagacac

Intron 9 IVS9—-T72T/A agaaacttgcecccag t/a gigacatatattgit 152877289

Intron 9 1IVS9—-58C/T gagtgacatatattg ¢/t ttaaattagtctaga

Intron 12 IVS12-4G/T ttattctetttetgt g/t tagecageaaatatt

Exon 15 1296T/C (D432D) cttgettcagegaga t/c gitagcaageggetg 1s3730316

Intron 15 1VS15-39G/A ttaggatgctgtttc g/a tgaacggattittga rs.3730315

Intron 15 IVS15+13G/C gggtaggecattgtt g/c ctgectttcggtatc

Intron 16 1VS16—18C/T tactcagceactgtta ¢/t gactetttctectec

Intron 19 IVS19-21C/T agcctatttaactcc ¢/t agigattttgtattc 1s3730312

Exon 21 2174A/G cegggactceteeag a/t cleccgagaggagic 15.6519622

Exon 21 2331G/T gaagtgactectact g/t atcacgtaaatiit

Exon 21 2626T/C ctectetgggageeg t/c acccacatgactgee rs6519623

Exon 21 2754C/T ttcatcegtocatea ¢/t tggaaagatttacag

Exon 21 3270A/C gctgggttatgagaa a/c cagegaaatccceca

Exon 21 3431C/A gtcctigatatttit ¢/a geagttccaaatctt

The position of each of the SNPs is indicated relative to the first bp of the translation start site.

Because of the known physiological role of
ADRBK2 in the desensitization of receptors and
its map location, we hypothesized that the
ADRBK?2 gene was a candidate gene for schizo-
phrenia. In order to test this hypothesis, we syste-
matically sequenced the ADRBK2 gene to search
for mutations and genotyped SNPs in a sample of
schizophrenia-segregating families of Japanese and
Chinese origin.

2. Materials and methods
2.1. Subjects

Sixteen Japanese families and 97 Chinese fam-
ilies were analyzed in this study. Each pedigree
included the proband and both parents. The Japa-
nese pedigrees were recruited through schizo-
phrenic probands visiting the Nihon University
Hospital in Tokyo and five other affiliated hospi-
tals. The Han Chinese pedigrees were recruited
through the Mental Health Institute of Beijing
University in Beijing and other affiliated hospitals.

All individuals provided written informed consent
for participation in the study. The study was
approved by the Ethics Committee of Nihon
University.

Of 16 Japanese families ascertained, five had
one affected parent, and one had both affected
parents. Of 97 Chinese families, five had one
affected parent. Each family member was diag-
nosed according to DSM-IV criteria (American
Psychiatric Association, 1994) by two senior psy-
chiatrists with clinical and research experience for
their respective diagnoses. The diagnosis was made
based on the content of the interview, information
provided by the relatives, and a complete review
of the medical chart.

2.2. DNA Analysis

Genomic DNA was extracted from peripheral
blood cells.

2.2.1. Mutation screening
The mutation-screening sample consisted of 16
Japanese probands and 32 Chinese probands ran-
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domly selected from our subjects. Primers were
designed to amplify the putative promoter region,
all 21 exons, and flanking intronic splice sites
from genomic DNA using the Primer3 program
based on the Whitehead Institute Center for
Genome Research (http://www-genome.wi.mit.
edu/cgi-bin /primer/primer3.cgi) (Table 1). In the
putative promoter region and exon 21, the sequenc-
es were split into several pieces with sufficient
overlap. The genomic nucleotide sequence was
based on GenBank NT_011520.9.

PCRs were performed in a final volume of 20
wl containing the following: 3 ng genomic DNA;
4 mM each of dATP, dGTP, dTTP, and dCTP; 4
mM MgCl,; 5 pmol primers for each; 2 pl
10XPCR Gold Buffer IT [150 mM Tris—HCI (pH
8.0), 500 mM KCl], 0.8 U Gold Taq polymerase
(ABD) or 1 U native Pfu (Stratagene) by a
GeneAmp PCR System 9700 (Perkin-Elmer, Fos-
ter City, CA). The PCR reaction began with an
initial denaturation step at 95 °C for 10 min,
followed by 35 cycles of denaturation at 95 °C for
30 s, annealing at 60 or 55 °C or 65 °C for 30 s,
and extension at 72 °C for 1 min. The reaction
was completed with a final synthesis step consist-
ing of 7 min at 72 °C.

PCR products were then purified by a Multi-
screen-PCR 96-well Filtration System (Millipore)
and sequenced in both directions, using the same
primers with the ABI PRISM BigDye™ Terminator
Cycle Sequencing Ready Reaction Kit Mix v2
(Applied Biosystems, Foster City, CA). Sequenc-
ing fragments were filtered by Multiscreen-HV
Filter Plates for High Throughput Separations
(Millipore) using Sephadex™ G-50 Fine (Amer-
sham Pharmacia Biotech AB), separated by cap-
illary electrophoresis, and detected via laser-
induced fluorescence on an ABI PRISM 3700
DNA Analyzer (Perkin-Elmer) using POP6 poly-
mer (Applied Biosystems, Foster City, CA).
Sequence data were compared with the published
sequence for ADRBK2 using the Sequencher 3.1
gene analysis computer program (Gene Codes
Corporation).

2.2.2. SNP typing
The Cys208Ser variant, detected in this study,
was genotyped by the restriction fragment length

polymorphism (RFLP) method after PCR ampli-
fication using EcoRII in all available subjects. The
Cys allele is 371 bp, and the Ser allele is 200
bp+171 bp. The fragments were separated on 2%
agarose gel, and the bands were visualized by
ethidium bromide staining and ultraviolet trans-
illumination.

The other six variants detected in the mutation
screening, and all SNPs in or near the ADRBK2
gene reported in the JSNP database (http://
SNP.ims.u-tokyo.ac.jp/cgi-bin/), were genotyped
by direct sequencing in all our subjects. The
primers and PCR conditions were the same as the
mutation screening or chosen according to the
JSNP Database.

2.3. Statistical analysis

The transmission disequilibrium test (TDT), and
D' and r? of linkage disequilibrium were conducted
with  TDTPHASE (Dudbridge et al., 2000).
Options of ‘EM’ in TDTPHASE were not used.

3. Results

We detected sixteen single nucleotide variants
in the exonic and flanking intronic region in 48
probands (Table 2). Three were in the coding
region, six were in the 3’ untranslated region, and
seven were in the intronic regions. Six of
them, IVS9—72T/A, 1296T/C, IVS15—39G/A,
IVS19—21C/T, 2174A/G and 2626T/C have
been reported in the dbSNP database. Among the
variants, only 623C/G in exon 8 was a non-
synonymous mutation with a substitution of Cys
with Ser in codon 208. The I1VS9—T72T/A,
IVS15—39G/A, 1VS19-21C/T, 2174A/G,
2626T/C and 2754C/T polymorphisms were
found in the same five Chinese probands. The
other variants were found in only one or two
probands. All variants were observed to be
heterozygous.

We genotyped the Cys208Ser variant in all
family members, and found that it was only in the
one Chinese family that was initially identified.
The mother and proband were heterozygous for
the Cys208Ser polymorphism; however, only the
proband had schizophrenia.
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The ADRBK2 gene promoter has yet to be
functionally identified, but the putative promoter
region was considered to lie in the genomic region
immediately 5’ to the first coding sequence (Bar-
rett et al., 2003). We screened 1500-bp upstream
of exon 1, and identified four single nucleotide
variants in 48 probands (Table 2). Except the
— 845G > A reported as P-4 previously (Barrett et
al., 2003), all are novel.

We genotyped the —845G/A, —689A/G,
—465T/C, —317T/C, 2626T/C and 2754C/T
polymorphisms detected in the mutation screening
and seven other SNPs in the JSNP database in all
family members. The results of the TDT analysis
are summarized in Table 3. No significantly devi-
ated transmission patterns were observed for any
polymorphisms. No significant association was
observed for three-marker sliding window haplo-
types (data not shown). Linkage disequilibrium
between polymorphisms is shown in Table 4,

4. Discussion

In this study, we hypothesized that the ADRBK2
gene was an important candidate for schizophrenia;
however, we found only one rare non-synonymous
variant, and noticed that even synonymous variants
were rarer than expected. We calculated the nucle-
otide diversity () defined as the average heter-
ozygosity per nucleotide site based on the variants
that we found in 3627 bp of 21 exons of the
ADRBK2 gene. The 7 was 1.1X107* in our
population, which is lower than the nucleotide
diversity found in most other human autosomal
genes (Halushka et al., 1999). The = was
0.9X10~* across 4601 bp in the intronic region
that we screened in our population. Although five
SNPs in ADRBK2 exons were reported in the
dbSNP database, they were in unconfirmed vali-
dation status at the time of manuscript preparation.
Only one validated SNP, which we did not find in
our mutation screening sample, was reported in
exon 21 in the JSNP database (IMS-JST098743).
The minor allele frequency was 0.06, These SNP
databases also suggest low nucleotide diversity in
the ADRBK2 gene,

We found the Cys208Ser variant in one family,
Cys208 localizes in the protein kinase domain and

the serine/threonine protein kinase region of
ADRBK?2, and is conserved in the mouse, rat,
bovine, Didelphidae, Homarus, and Drosophila
genomes; it is also conserved in ADRBKI1, There-
fore, the Cys208Ser variant may alter kinase func-
tion; however, since the variant was also found in
a non-schizophrenic mother, no hint of association
of this variant with schizophrenia was obtained.

Barrett et al. (2003) reported that the polymor-
phism that the authors named as P-5 in the pro-
moter region was associated with bipolar disorder.
However, we did not find the polymorphism in
our samples, It is likely that the P-5 is not present
in Asian populations. We genotyped four SNPs
identified in the promoter region, and one of them,
—317T/C, is 10 bp downstream to the P-5, and
—465T/C and —317T/C are in complete linkage
disequilibrium (Table 4). We did not find an
association between these polymorphisms and
schizophrenia.

In conclusion, the data in this study indicate
that the ADRBK2 gene is not largely associated
with schizophrenia in our population.
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Abstract

Antisaccade tasks require a subject to inhibit a saccade toward a briefly appearing peripheral target and instead to
immediately generate a saccade to an equivalent point in the opposite hemifield. Using functional magnetic resonance imaging
(fMRI), we investigated the neural networks required to inhibit reflexive saccades and to voluntarily generate saccades. The
results demonstrated that saccade and antisaccade tasks often bilaterally activate frontal, parietal and supplementary eye fields,
lenticular nuclei and occipital cortex. Additional activation of bilateral dorsolateral prefrontal cortices, supramarginal gyri,
anterior cingulate cortices and thalamus was observed during antisaccade tasks. These results indicate that fronto-parietal and
fronto-striato-thalamo-cortical circuits are involved in antisaccade tasks. The fronto-parietal circuit is thought to be related to the
planning of saccadic eye movements that involve attentional control, while the fronto-striato-thalamo-cortical circuits connect to
cortical region as a feedback network. We speculate that the abnormalities in spatial attention and eye movement control
observed in schizophrenia stem from dysfunctions in the fronto-parietal and fronto-striato-thalamo-cortical circuits.
© 2004 Elsevier Ireland Ltd, All rights reserved.

Keywords: Saccade; Antisaccade; Functional MRI; Eye movements; Fronto-parietal network; Fronto-striato-thalamo-cortical network

1. Introduction

Saccadic eye movements represent the primary
mechanism used by primates to visually explore their
environment. Saccades serve to focus points of visual
interest on the fovea or parafoveal region of the retina.
Several processing steps are usually performed before
the neural command signals are sent to the oculomotor

* Corresponding author. Tel.. +81-3-3972-8111x2431; fax:
+81-3-3974-2920
E-mail address: matsuda.psyc@tmd.ac.jp (T. Matsuda).

nuclei in the brainstem for saccade execution. These
processes include disengagement of attention from a
fixated target, saccade target selection, reallocation of
spatial attention to the saccade target, calculation of
spatial information for the saccade target, and the
decision of when to give the signal to execute saccade.

Single unit recording studies in animals have
revealed contributions from several cortical and sub-
cortical regions to the generation of saccades. Knowl-
edge of the human cortical control of saccades has been
accumulated from observations of cerebral lesions
(Guitton et al., 19835; Evdokimidis etal., 1996; Crevits

0925-4927/% - see front matter © 2004 Elsevier Ireland Ltd. All rights reserved.
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et al., 2000), transcranial magnetic stimulation (TMS)
(Kapoula et al.,, 2001; Leff et al, 2001), positron
emission tomography (PET) (Anderson et al., 1994,
O’Driscoll et al,, 2000), and functional magnetic reso-
nance imaging (fMRI) (Gaymard et al., 1999; Connolly
et al., 2000; Nobre et al., 2000; Matsuo et al,, 2003).
These previous studies have indicated that saccadic eye
movements are controlled by a cortical network that
includes the parietal eye field (PEF) located in the
intraparietal sulcus and superior parietal lobule (SPL),
the frontal eye field (FEF) located in the precentral
gyrus, and the supplementary eye field (SEF) located in
the upper medial wall of the frontal lobe. The PEF is
thought to be involved in visuospatial integration, the
FEF may be involved in the preparation and triggering
of intentional saccades, and the SEF is probably in-
volved in the temporal control of sequences of visually
guided saccades and eye-hand coordination (Gaymard
et al., 1998; Heide and Kompf, 1998). Saccades and
voluntary blinks are associated with similar loci of
activation patterns (Bodis-Wollner et al., 1999).
Recent research has revealed an association be-
tween some psychiatric and neurological disorders
and inability to inhibit unwanted reflexive saccades.
One task used to investigate the inhibition of saccades
is the antisaccade task (Evetling and Fischer, 1998),
which requires subjects to inhibit a saccade toward a
briefly appearing peripheral target, and instead to
generate a saccade to an equivalent point in the
opposite hemifield. Inhibitory ability can be examined
using the same oculomotor task with visually guided
saccades by presenting a visual stimulus at one side
and asking the subject to look at the opposite side.
In an experiment comparing reflexive saccade and
antisaccade generation, a higher BOLD activation was
found in the antisaccade than in the reflexive saccade
task (Kimmig et al.,, 2001). The FEF and IPS were
reported to be activated during voluntary eye move-
ments, and FEF activity was related to the suppression
of reflexive saccades {Moxt et al., 2003). Within fron-
toparietal networks, the human FEF, but not the IPS,
was reported to be critically involved in preparatory set,
coding both the readiness and intention to perform a
particular movement (Connolly et al., 2002; DeSouza
etal,, 2003). Curtis and D’Esposito (2003) investigated
interactions between voluntary top-down and reflexive
bottom-up processes using event-related fMRI, and
reported that activity in the pre-SMA and SMA was

higher than in the FEF and IPS during the preparatory
period, and that FEF and IPS activity was higher than
pre-SMA and SMA activity in the stimulus response
period. The rostral portions of the SEF and FEF, as well
as the rostral and lateral parts of the PEF, were reported
to contribute to the suppression of prepotent responses
(Merriam et al., 2001; Cornelissen et al., 2002).

In an animal study, saccade-related neurons in the
FEF and superior colliculus (SC) were reported to
decrease their rate of firing and those in the SEF were
reported to increase their rate of firing before antisac-
cade (Schlag-Rey et al., 1997). Neural activity in the
SC is known to be involved not only in the generation
of fast saccades but also in antisaccade generation, and
this neural activity is concerned with top-down signals
from the frontal cortex (Everling et al., 1999).

A deficit in the inhibition of reflexive responses
may result in a high number of saccades towards the
visual stimulus. Previous studies have shown that
patients with frontal brain lesions (Vilis and Hore,
1986), schizophrenia (Fukushima et al., 1988, 1990),
and Alzheimer’s disease (Currie et al.,, 1991) display
difficulty generating antisaccades. Some authors have
argued that the dorsolateral prefrontal cortex (DLPFC)
is responsible for the correct performance of antisac-
cade tasks (Pierrot-Deseilligny et al., 1991).

McDowell et al. (1999) reported that poor anti-
saccade performance is related to genetic risk for
schizophrenia. Furthermore prefrontal activity was
not found during antisaccade tasks in schizophrenic
patients (McDowell et al., 2002). However, Rae-
mackers et al. (2002) reported that schizophrenic
patients did not show a selective dysfunction of the
prefrontal region, but that they showed abnormalities
of a frontosiriatal network that is engaged in the
suppression of automatic' eye movements.

The aim of this study is to use fMRI to investigate
the physiological neural bases of antisaccade perfor-
mance, suppression of reflexive saccades, and gener-
ation of voluntary saccades.

2. Methods
2.1. Subjects

Twenty-one healthy volunteers (mean age 39.2 +
10.2) participated in this study. All subjects were free
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from neurological or psychiatric illness, and no
abnormalities were observed on brain structural
MRI. Written informed consent was obtained from
all subjects. The project was conducted in accordance
with the Declaration of Helsinki and approved by the
Ethical Committee of Nihon University School of
Medicine.

2.2. Magnetic resonance imaging

MRI data were acquired using a 1.5-T Siemens
Symphony system (Siemens, Erlangen, Germany).
Gradient-recalled echo planar imaging (EPI) was
used for the fMRI sequence to obtain blood oxygen
level-dependent (BOLD) contrast. Interleaved multi-
slice gradient EPI was used to produce 40 continu-
ous, 3-mm=thick axial slices encompassing the
entire brain (echo time=62 ms, repetition
time=4000 ms, flip angle=90°, field of view=192
mm, 64 X 64 matrix). Each subject performed five
series contrasting saccade and control tasks and five
series contrasting antisaccade and control tasks. For
each series, subjects alternated between 40 s of
control task and 40 s of oculomotor task. Each series
comprised 104 scans with a complete duration of
416 s. The run began with four dummy volumes to
allow for T1 equilibration effects. The head of the
subject was fixed using cushions to minimize motion
artifacts.

2.3. Task design

Subjects were instructed to fixate on a central
fixation point. A visual stimulus was then presented
in the visual periphery, at which point subjects were
required to generate a saccade towards the stimulus
(saccade task) or towards the horizontal mirror
position (antisaccade task). Fixation point offset
occurred after 500—1500 ms before a peripheral
(randomized left or right on the horizontal axis)
target appeared for a duration of 1000 ms. During
the control task, subjects were in total darkness and
were asked to maintain fixation and not blink. The
target size was 1° of visual angle. The number of
left and right saccadic eye movements was equated,
with position of 10° in either direction. While
subjects performed either the saccade or antisaccade
task and baseline control tasks, fMRI scans were

obtained. Visual targets were generated using a
personal computer (OS: Windows 98) and custom-
ized software. The stimulus was projected on a small
screen attached to a head coil, using a liquid crystal
display projector system customized to our MRI
machine (Kiyohara Optics, Tokyo). To measure per-
formance during saccade and antisaccade tasks, elec-
tro-oculography (EOG) was undertaken outside the
MRI scanner before functional imaging.

2.4. Data analysis for fMRI

Activity related to saccades and antisaccades rel-
ative to activity during the control task was analyzed
independently. Image analysis was performed using
an Ultra5 work-station (Sun Microsystems, Palo Alto,
CA, USA) using MATLAB (Mathworks Inc., Natick,
MA, USA) and statistical mapping (SPM99, Well-
come Department of Cognitive Neurology, London,
UK http://www.filion.ucl.ac.uk/spm). Before statisti-
cal parametric maps were calculated, EPI images for
each time series were realigned to the first functional
image to remove residual head movement. Images
were then coregistered and transformed into the
Montreal Neurological Institute template. Confound-
ing effects of global volume activity and magnetic
noise were removed using linear regression and
cosine functions (up to a maximum of 1 cycle per
40 scans). Removing the latter confounds corre-
sponds to high-pass filtering of the time series to
remove low-frequency artifacts that can arise due to
aliased cardiac and other cyclical components. After
normalization, three-dimensional spatial smoothing
was applied to each volume using a Gaussian kernel
of 8 X 8 X 8 mm. Alternating periods of baseline and
activation were modeled using a simple delayed box-
car reference vector to account for delayed cerebral
blood flow after stimulus presentation. Significantly
activated pixels were searched for using the General
Linear Model approach for time-series data.

Data were analyzed using random-effect analysis.
Statistical significance was set at the level of
P<0.001, uncorrected for multiple comparisons;
T'=3.35. Intra-individual comparisons between sac-
cades and antisaccades were analyzed using paired ¢
tests, and statistical significance was set at the level
of P<0.029, uncorrected for multiple comparisons;
T=2.00,
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Fig. 1. Brain regions displaying greater activity during saccades () or antisaccades (b) than during control conditions. Statistical parametric
maps, rendered onto standard brain close to MNI space. Height threshold at £<0.001, uncorrected to demonstrate extent of each activated

cluster; 7=3.35.
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3. Results

Analysis of EOG revealed that no subjects
exhibited directional errors during saccade tasks, and
the mean percentage of errors during antisaccade tasks
was 1.12 £ 2.7%.

Activation areas are shown in Fig. la for saccade
tasks, in Fig. 1b for antisaccade tasks and in Table 1
for both. Montreal Neurological Institute coordinates
were determined based on averaged activation maps
(P<0.001, uncorrected for multiple comparisons:
T=13.53). During saccade tasks, regional activation
was observed in bilateral FEF, SEF, and PEF, left
lenticular nucleus and bilateral occipital cortices (V1).
During antisaccade tasks, activation was observed in
the same regional areas as in saccade tasks. Additional
sites of activation were observed in bilateral inferior

Table 1

parietal lobules (IPL), ACC and thalamus, right len-
ticular nucleus and left DLPFC during antisaccade
tasks.

Fig. 2 and Table 2 show the regions that were more
active during antisaccade than during visually guided
saccade tasks (P<0.029, uncorrected for multiple
comparisons: 7=2.00). Activation of bilateral FEF,
PEF, IPL, ACC, thalami and DLPFC was observed.

4. Discussion

In this study, fMRI was used to reveal thalamic
activation during antisaccade tasks, and lenticular
nucleus activation during both saccade and antisac-
cade tasks. A previous PET study (Sweeney et al,,
1996) reported task-related activation in the right

Brain regions more active during visually guided saccade and antisaccade than during control tasks

Brain region Saccade vs. rest T-value Antisaccade vs. rest T-value
coordinates coordinates
X Y Z X Y V4
DLPFC R N.S NS
L N.S —44 50 4 424
FEF R 46 6 50 5.34 40 -2 50 8.87
L —42 —4 58 6.66 —22 -2 68 8.30
SEF R 6 4 62 3.64 8 8 52 4.20
L —4 4 60 5.87 -2 10 46 5.56
PEF R 22 — 68 60 3.80 12 — 64 64 12.36
L -30 —56 56 4.28 —10 -72 56 11.30
Lenticular nucleus R NS 22 8 -2 6.93
L —20 8 2 445 —20 6 0 4.71
Visual cortex R 38 —-90 ~8 9.81 26 - 102 —6 8.12
L -22 - 102 —8 10.75 —-22 - 102 —12 8.11
SMG R NS 64 -36 28 6.14
L N.S — 64 —40 34 5.75
ACC R N.S 8 8 52 4.20
L N.S -2 10 46 5.56
Thalamus R N.S 10 — 14 8 8.30
L N.S —12 - 16 2 5.61

DLPFC: dorsolateral prefrontal cortex, FEF: frontal eye fields, SEF: supplementary eye fields, PEF: parietal eye fields, SMG: supramarginal

gyrus, ACC: anterior cingulate cortex.
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Fig. 2. Brain regions displaying greater activity during antisaccade than during saccade. Statistical parametric maps, rendered onto standard
brain close to MNI space. Height threshold at P<0.029, uncorrected to demonstrate extent of each activated cluster; T=2.00.

posterior thalamus during visually guided saccades
and in the left pulvinar during antisaccade tasks. The
thalamus is known to subserve visual attention, and
monkey studies have revealed thalamic activation
during spatial working memory tasks (Petersen et
al., 1985). Patients with thalamic infarcts display
disrupted saccades (Brigell et al.,, 1984). The present
result also indicated an important role for the thalamus
in facilitating and inhibiting voluntary saccadic eye
movements.

The basal ganglia tonically inhibit the thalamus
through two parallel pathways (Alexander and
Crutcher, 1990). A direct pathway runs from the
striatum to the thalamus, and activation of the striatum
disinhibits the thalamus, thus increasing thalamo-cor-
tical activity. An indirect pathway passes from the
lenticular nucleus to the subthalamic nucleus, and
finally to the brainstem nuclei. Activation of the
indirect pathway further inhibits thalamo-cortical neu-
rons. As a result, activation of the direct pathway
facilitates saccades, whereas activation of the indirect
pathway inhibits saccades.

Schizophrenia patients display dysfunction of the
dopaminergic neural networks (Gerfen et al, 1990)
and demonstrate fronto-siriato-thalamic circuit dys-
function (Buchsbaum et al, 1992). The direct and
indirect pathways from the basal ganglia are affected
differently by dopaminergic projections from the
substantia nigra pars compacta to the striatum. Striatal
neurons that project directly to the two output nuclei
possess D1 dopamine receptors that facilitate trans-
mission, while those projecting in the indirect path-
way display D2 receptors that reduce transmission
(Gerfen et al., 1990). Dysfunction of the striato-
thalamo-cortical dopaminergic circuiiry may reduce
inhibition and thus facilitate saccades in schizophre-
nia. Our results indicate that this dysfunction has an
important role on subtle motor control and therefore
affects antisaccade production through both the direct
and indirect pathways.

The activation of bilateral DLPFC was observed
during antisaccade tasks, but not during visually
guided saccade tasks, according to a previous fMRI
study (Muri et al., 1998) and a PET study (O’Driscoll
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Table 2
Brain regions more active during antisaccades than visually guided
saccades

Brain regions Coordinates T-value
X Y Z
DLPFC R 42 46 18 2.72
L —38 52 12 473
FEF R 28 4 54 6.24
L —28 4 48 6.40
PEF R 16 — 66 52 8.74
L —26 —50 56 6.84
SMG R 64 -20 24 4.26
L — 66 —36 28 6.17
ACC R 10 18 36 3.04
L —12 12 38 5.83
Thalamus R 12 —14 —4 2.76
L -12 —18 -2 2.31

DLPFC: dorsolateral prefrontal cortex, FEF: frontal eye fields, SEF:
supplementary eye fields, PEF: parietal eye fields, SMG: supra-
marginal gyrus, ACC: anterior cingulate cortex.

etal., 1993). DLPFC activation confirms the results of
previous lesion studies, in that patients with DLPFC
lesions demonstrate an increased percentage of anti-
saccade errors, reflecting difficulties suppressing un-
wanted reflexive saccades (Guitton et al., 1985;
Evdokimidis et al.,, 1996; Crevits et al., 2000). The
fronto-striato-thalamo-cortical network (Alexander et
al, 1986; Petit et al,, 1993; McFarland and Haber,
2002), including the prefrontal cortex and thalamus, is
important in the control of antisaccades. These results
suggest schizophrenia patients displaying inhibition
errors during antisaccades may have a dysfunction of
the fronto-striato-thalamo-cortical network.

Bilateral FEF were activated during both saccade
and antisaccade tasks, as in several previous fMRI
studies (Muri et al., 1998; Connolly et al., 2000). In a
monkey study, the majority of FEF neurons displayed
vigorous presaccadic activity {(Hanes et al., 1995).
Patients with lesions restricted to the FEF demonstrate
a normal percentage of directional errors during an
antisaccade task, but increased antisaccadic latencies
(Rivaud et al., 1994). The FEF is considered respon-
sible for triggering antisaccades and suppressing un-
wanted reflexive saccades (Merriam et al., 2001;

Cornelissen et al., 2002). The FEF is also concerned
with preparatory set, which is involved in readiness
and intention to perform a saccade (Connolly et al,,
2002; DeSouza et al., 2003).

Bilateral SPL were activated during both saccade
and antisaccade tasks, while the IPL, including the
SMG, was activated only during antisaccades, in
accordance with a previous fMRI study (Connolly et
al.,, 2000). The SPL is active during covert orienting
tasks (Nobre et al., 2000), and activation in the SPL
might be associated with overt eye movement
responses in addition to spatial attention shifts. Sac-
cade tasks require only local attention, while antisac-
cade tasks require an attentional shift from local to
global. Patients with lesions restricted to the right
SMG make few saccades to the left, and show
abnormal performance on covert attentional shift to
the left. The SMG may not carry a topographic
representation of visual space, and may instead be
involved in switching from local to global features of
a stimulus (Perty and Zeki, 2000). Co-activation
between SPL and IPL may be needed to perform
antisaccade tasks that require attentional shifts from
local to global.

The fronto-parietal network, including the FEF, the
SPL and the IPL, is considered important for control
of attention, and has been implicated in planning
saccadic eye movements. These regions also project
from the thalamus. These two networks, the fronto-
striato-thalamo-cortical and front-parietal networks,
are thus considered to be important for accurate
control of antisaccades.

In conclusion, saccade and antisaccade tasks com-
monly activate bilateral FEF, SEF, PEF, lenticular
nuclei and V1. Additional activation of bilateral
DLPFC, IPL, ACC and thalami were observed during
antisaccade tasks. These results indicate the involve-
ment of two important neural networks of fronto-
parietal and fronto-striato-thalamo-cortical circuits in
the control of inhibition of reflexive saccades and
voluntary saccades {Alexander et al., 1986; Petit et al,,
1993; McFarland and Haber, 2002). Specific antisac-
cade errors have been reported in patients with
schizophrenia, who are believed to possess abnormal-
ities in the dopaminergic neural network. We specu-
late that abnormalities in spatial attention and
processing of voluntary movement information in
schizophrenia stem from dysfunctions in the fronto-
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parietal and fronto-striato-thalamo-cortical circuits
networks.
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