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ABSTRACT

Ubiquitination is required throughout all developmental stag-
es of mammalian spermatogenesis. Ubiquitin C-terminal hydro-
lase (UCH) L1 is thought to associate with monoubiquitin to
control ubiquitin levels. Previously, we found that UCHL1-de-
ficient testes of gad mice have reduced ubiquitin levels and are
resistant to cryptorchid stress-related injury. Here, we analyzed
the function of UCHL1 during the first round of spermatogenesis
and during sperm maturation, both of which are known to re-
quire ubiquitin-mediated proteolysis. Testicular germ cells in the
immature testes of gad mice were resistant to the early apop-
totic wave that occurs during the first round of spermatogenesis.
TUNEL staining and cell quantitation demonstrated decreased
germ cell apoptosis and increased numbers of premeiotic germ
cells in gad mice between Postnatal Days 7 and 14. Expression
of the apoptotic proteins TRP53, Bax, and caspase-3 was also
significantly lower in the immature testes of gad mice. In adult
gad mice, cauda epididymidis weight, sperm number in the ep-
ididymis, and sperm motility were reduced. Moreover, the num-
ber of defective spermatozoa was significantly increased; how-
ever, complete infertility was not detected. These data indicate
that UCHLT is required for normal spermatogenesis and sperm
quality control and demonstrate the importance of UCHLI1-de-
pendent apoptosis in spermatogonial cell and sperm maturation.

apoptosis, early apoptotic wave, epididymis, gad mouse, sperm,
spermatogenesis, sperm quality, testis, UCHLT

INTRODUCTION

Ubiquitin and ubiquitin-dependent proteolysis are in-
volved in a variety of cellular processes, such as cell cycle
progression, degradation of intracellular proteins, pro-
grammed cell death, and membrane receptor endocytosis

1Supported by Grants-in-Aid for Scientific Research from the Ministry of
Health, Labour and Welfare of Japan; Grants-in-Aid for Scientific Research
from the Ministry of Education, Culture, Sports, Science and Technology
of Japan; a grant from the Pharmaceuticals and Medical Devices Agency
of Japan; and a grant from Japan Science and Technology Agency.
2Correspondence: Keiji Wada, Department of Degenerative Neurological
Disease, National Institute of Neuroscience, National Center of Neurol-
ogy and Psychiatry, Kodaira, Tokyo 187-8502, Japan.

FAX: 81 42 341 1745; e-mail: wada@ncnp.go.jp

Received: 16 October 2004.

First decision: 16 December 2004.

Accepted: 21 February 2005.

© 2005 by the Society for the Study of Reproduction, Inc.
ISSN: 0006-3363. http://www.biolreprod.org

29

[1=5]. In spermatogenesis, the ubiquitin-proteasome system
is required for the degradation of numerous proteins
throughout the mitotic, mejotic, and postmeiotic develop-
mental phases [4, 6, 7). Ubiquitin C-terminal hydrolases
(UCHs) control the cellular ubiquitin balance by releasing
ubiquitin from tandemly conjugated ubiquitin monomers
(Ubb, Ubc) and small adducts or unfolded polypeptides [4,
8-10]. UCHLI1 is expressed at high levels in both testis and
epididymis and may play an important role in the regulation
of spermatogenesis [11-14]. In addition to its hydrolase
activity [15], UCHL1 has a variety of functions, including
dimerization-dependent ubiquityl ligase activity, and asso-
ciation with and stabilization of monoubiquitin in neuronal
cells [16-18). Furthermore, it has been suggested that
UCHL1 also functions as a regulator of apoptosis [19]. The
gracile axonal dystrophy (gad) mouse is an autosomal re-
cessive spontaneous mutant carrying an intragenic deletion
of the gene encoding Uchll [21]. We recently found that
testes of gad mice, which lack UCHLI expression [18, 20,
21], have reduced ubiquitin levels and are resistant to crypt-
orchid injury-mediated germ cell apoptosis [22].

During prepubertal development, an early and massive
wave of germinal cell apoptosis occurs in mouse testis [23,
24]. This early germ cell apoptotic wave affects mainly
spermatogonia and spermatocytes and appears to be essen-
tial for functional spermatogenesis in adulthood. Decreased
apoptosis has been reported in the early phase of sper-
matogenesis in transgenic mice overexpressing the antia-
poptotic proteins Bcl2 or Bcl-xL [23, 251 and in mice de-
ficient in the apoptotic protein Bax [26]. This reduction in
apoptosis is associated with the disruption of normal sper-
matogenesis and infertility. Our previous work demonstrat-
ed that gad mice exhibit pathological changes such as pro-
gressively decreasing spermatogonial stem cell proliferation
[13] and increased expression of the antiapoptotic proteins
Bcl2 and Bcl-xL in response to apoptotic stress [19, 22].
Furthermore, we showed that UCHL1 functions during pre-
pubertal development to effect normal spermatogenesis and
to modulates germ cell apoptosis [22]. However, the mech-
anism by which UCHL1 regulates apoptosis during pre-
pubertal development remains unclear. To further investi-
gate the role of UCHLI in immature testes, we evaluated
the function of UCHL1 during early spermatogenesis. Here,
we show that immature testes of gad mice accumulate pre-
meiotic germ cells and are resistant to the massive wave of
germinal cell apoptosis during the first round of spermato-
genesis, eventually leading to alterations in sperm produc-
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tion, motility, and morphology in adult mice. Our data sug-
gest that UCHL I-dependent apoptosis is essential for nor-
mal spermatogenesis.

MATERIALS AND METHODS

Animals

We used male gad (CBA/RFM) mice [21] at 7, 14, 21, 28, and 35
days and 10 wk of age. The gad mouse is an autosomal-recessive mutant
that was produced by crossing CBA and RFM mice. The gad line was
maintained by intercrossing for more than 20 generations. This strain was
maintained at our institute. Animal care and handling were in accordance
with institutional regulations and were approved by the Animal Investi-
gation Committee of the National Institute of Neuroscience, National Cen-
ter of Neurology and Psychiatry.

Histological and Immunohistochemical Assessment
of Testes

Testes were embedded in paraffin wax after fixation in 4% parafor-
maldehyde, sectioned at 4-pm thickness, and stained with hematoxylin for
counting [13]. Light microscopy was used for routine observations. For
immunohistochemical staining, the sections were incubated with 10% goat
serum for 1 h at room temperature followed by incubation overnight at
4°C with a rabbit polyclonal antibody against UCHL! (1:1000 dilution;
peptide antibody) [20] in PBS containing 1% BSA. Sections were then
incubated for 1 h with biotin-conjugated anti-rabbit IgG diluted 1:200 in
PBS, followed by Vectorstain ABC-PO (Vector Laboratories, Burlingame,
CA) for 30 min at room temperature. Sections were developed using 3,3'-
diaminobenzidine and counterstained with hematoxylin.

Apoptotic cells in testicular tissues were identified by terminal deox-
ynucleotidyl transferase (TdT)-mediated nick end labeling (TUNEL) using
the DeadEnd Fluorometric TUNEL system (Promega, Madison, WI) ac-
cording to the manufacturer’s instructions.

Quantitative Analysis of Testicular Cell Number

The total number of cells was determined by counting the testicular
cells including Sertoli cells of seminiferous tubules. Quantitative deter-
minations were made using four each of wild-type and gad mice at 7 and
14 days of age. Five sections from each mouse were processed in parallel
for counterstaining with hematoxylin. Twenty circular seminiferous tu-
bules in each section were then selected by randomly from those tubules,
and 400 circular seminiferous tubules were measured using the 400X lens
of a Zeiss Axioplan microscope. The total cell number was not determined
by dividing cell types such as testicular germ cells and Sertoli cells be-
cause it was difficult to determine the difference of cell types [26]. There
were no significant differences in nuclear size in either of the group stud-
ies. Thus, the total number of cells reflected all cell types of seminiferous
tubules.

Quantitative Analysis of Apoptotic Germ Cells

Quantification was performed using four each of wild-type and gad
mice at 7, 14, 21, 28, and 35 days of age. The total number of apoptotic
cells was determined by counting the positively stained nuclei in 20 cir-
cular seminiferous tubules in each section [22]. Five sections from each
mouse and a total 400 circular seminiferous tubules per each group were
processed.

Germ Cell Isolation, Culture, and Viability Measurement

Germ cells from wild-type and gad mice were prepared using a mod-
ification of the procedure described by Kwon et al. [20]. Briefly, testes
from three 2-wk-old mice were incubated twice for 30 min at 25°C in
Dulbecco Modified Eagle medium (DMEM)-F12 medium containing 0.5
mg/ml collagenase IV-S (Sigma-Aldrich, St. Louis, MO) and then digested
for 60 min at 25°C in DMEM-F12 medium containing | mg/ml trypsin
(Sigma-Aldrich). The cell suspension was digested and washed several
times to eliminate testicular somatic cells. The cells were then counted
and cultured at 2.0 X 105 cells/ml in DMEM-F12 medium containing 10%
fetal bovine serum (FBS). The cells were harvested at each day for 5 days,
and viability was assessed using the Vi-Cell XR cell viability analyzer
(Beckman Coulter, Fullerton, CA).

Quantitative mRNA Analysis of Uchl1 and Uchl3 Genes
by Real-Time PCR

SYBR Green-based real-time quantitative reverse transcription-poly-
merase chain reaction (RT-PCR; PRISM 7700 Sequence detection system,
ABI, Columbia, MD) was performed [20] in SYBR Green Master mix
using the following primers: Uchll, 5'-TTCTGTTCAACAACGTGGAC
G-3' and 5'-TCACTGGAAAGGGCATTCG-3'; Uchi3, 5'-TGAAGGTC
AGACTGAGGCACC-3" and 5'-AATTGGAAATGGTTTCCGTCC-3'; 8-
actin, 5'-CGTGCGTGACATCAAAGAGAA-3’ and 5'-CAATAGTGAT-
GACCTGGCCGT-3' To compare Uchl! and Uchi3 gene expression in the
first round of spermatogenesis, the formula 2-%Ct was used to calculate
relative expression compared with testes of 7-day-old mice.

Western Blotting

Western blots were performed as previously reported [19, 22). Total
protein (5 pg/lane) was subjected to SDS-polyacrylamide gel electropho-
resis using 15% gels (Perfect NT Gel, DRC, Japan). Proteins were elec-
trophoretically transferred to polyvinylidene difluoride membranes (Bio-
Rad, Hercules, CA) and blocked with 5% nonfat milk in TBS-T (50 mM
Tris base, pH 7.5, 150 mM NaCl, 0.1% [w/v] Tween-20). The membranes
were incubated individually with one or more primary antibodies to
UCHLI1 and UCHL3 (1:1000 dilution; peptide antibodies) [20], Bcl-xL,
Bax, TRP53, and inactive caspase-3 (1:1000 dilution; all from Cell Sig-
naling Technology, Beverly, MA). Blots were further incubated with per-
oxidase-conjugated goat anti-mouse IgG or goat anti-rabbit IgG (1:5000
dilution; Pierce, Rockford, IL) for 1 h at room temperature. Immunore-
actions were visualized using the SuperSignal West Dura Extended Du-
ration Substrate (Pierce) and analyzed using a Chemilmager (Alpha In-
notech, San Leandro, CA).

Sperm Motility, Morphology, and Immunohistochemical
Assessments

Sperm were collected from the right cauda epididymidis [27] of 10-
wk-old wild-type and gad mice in 400 pl human tubal fluid medium con-
taining 0.5% bovine serum albumin and then incubated at 37°C under 5%
CO; in air for 1-2 h. Using a computer-assisted semen analysis system
(TOX IVOS, Hamilton Throne Research, Beverly, MA) [28], sperm were
analyzed for the following motion parameters: percentage of motile sperm
(MSP), percentage of progressively motile sperm (PMP), average path
velocity (VAP), straight-line velocity (VSL), curvilinear velocity (VCL),
lateral head displacement (ALH), linearity (VSL/VCL X 100), and
straightness (VSL/VAP X 100). All procedures were performed at 37°C.
To study the spermatozoa morphology, sperm were smeared and then eval-
uated for defects in the head, midpiece, and principal piece and for head
detachment. For immunocytochemical staining, the sections were incubat-
ed with antibodies against UCHL1 (1:1000 dilution; peptide antibody) [20]
and ubiquitin (1:500 dilution; DakoCytomation, Glostrup, Denmark) over-
night at 4°C in PBS containing 1% BSA.

Statistical Analysis

The mean and standard deviation were calculated for all data (pre-
sented as mean * SD). One-way analysis of variance (ANOVA) was used
for all statistical analyses.

RESULTS

Expression of UCHLT During the First Round
of Spermatogenesis

We used Western blotting to characterize the level of
UCHLI1 and UCHL3 expression in testes from immature
wild-type and gad mice (Fig. 1, B and C). In agreement
with previous data [20], UCHLI! expression was signifi-
cantly elevated on Day 14 in testicular lysates obtained
from 7-, 14-, 21-, 28-, and 35-day-old wild-type mice. The
level of UCHL3 expression increased with age and did not
differ between gad and wild-type mice (Fig. 1B), suggest-
ing that UCHL3 expression is regulated independently of
UCH-L1 during the first round of spermatogenesis [20]. We
also assessed the expression pattern of Uchll and Uchl3
genes during juvenile spermatogenesis using SYBR Green-
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FIG. 1. Expression of UCHL1 and UCHL3during the first round of sper-
matogenesis. A) Comparison of UchlT and Uchi3 gene expression levels
(2-4) by SYBR Green-based real-time quantitative reverse transcription-
polymerase chain reaction (RT-PCR). The value for gene expression from
the testes of 7-day-old mice was set to 1.0. B) Comparison of UCHL1 and
UCHL3 expression by Western blotting of testicular lysates from wild-
type or gad mice. Blots were reprobed for a-tubulin, which was used to
normalize the protein load. Representative images from four independent
experiments are shown. C) Quantitative analysis of changes in UCHL1
and UCHL3 levels by Western blotting. Relative protein expression (op-
tical density) of the bands in panel B, normalized to a-tubulin. Each data
point represents the mean = SD (n = 4; * P < 0.05).

based real-time quantitative RT-PCR (Fig. 1A). Despite the
fact that the percentage of spermatogonia and Sertoli cells
may be diluted by meiotic and postmeiotic germ cells after
Day 14 [20], Uchll expression was high in l4-day-cld
mice, in agreement with our previous findings.

Immunohistochemistry of UCHLT and Quantitative
Morphometric Assessment

Immunohistochemical analysis revealed UCHLI expres-
sion in spermatogonia from wild-type mice but not gad
mice (Fig. 2A). Preliminary examination of tubules from
immature testes revealed an overproduction of germ cells
in gad mice. At 7 and 14 days of age, the number of sper-
matogonia and preleptotene spermatocytes was significant-
ly increased in gad mice compared with wild-type mice
(Fig. 2A). The increase in the number of these cell types
was further confirmed by quantitative analysis, which
showed that the total number of testicular cells, including
Sertoli cells, was significantly higher in 7- and 14-day-old
gad mice (Fig. 2B).

TUNEL Staining of Apoptotic Germ Cells During the First
Round of Spermatogenesis

To further investigate the mechanism underlying the ob-
served differences in testicular cell numbers between wild-
type and gad mice during the first round of spermatogen-
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FIG. 2.  A) Immunohistochemistry of UCHL1 and testicular morphology
during the first round of spermatogenesis. UCHL1-positive germ cells in
wild-type mice are indicated by open arrows. Spermatogonia and prelep-
totene spermatocytes (closed arrows) were more abundant and found fur-
ther from the basement membrane in Postnatal Day (PD) 7 and 14 gad
mice. Magnification x200. Bar = 20 wm. B) The total number of germ
cells in seminiferous tubules was significantly increased in and 7- and
14-day-old gad mice compared with wild-type mice (n = 4; * P < 0.05).
Data represent mean * SD.

esis, we examined germ cell apoptosis in tissue sections
from mice at 7, 14, 21, 28, and 35 days of age by TUNEL
assay. During the first round of spermatogenesis, the total
number of apoptotic cells in 20 circular seminiferous tu-
bules decreased significantly (n = 4; P < 0.05) in gad
mouse testes as compared with wild-type mice (Fig. 3A).
Although germ cell apoptosis significantly increased at Day
14 in the testes of both wild-type and gad mice, gad mice
had significantly fewer apoptotic germ cells (n = 4; P <
0.05) in seminiferous tubules (Fig. 3B).

Testicular Germ Cells of gad Mice Are Resistant
to Apoptosis-Inducing Conditions In Vitro

Sertoli cells, which support germ cells, express UCHL1
[12}. To explore the viability of germ cells independently
of the effect of Sertoli cells, testicular germ cells from 2-
wk-old wild-type and gad mice were cultured in suspension
for 5 days in the presence of 10% FBS. We then examined
the resistance of these in vitro cell culture to apoptosis-
inducing conditions. Although both wild-type and” gad
mouse cells were sensitive to apoptosis-inducing condi-
tions, the gad mouse cells had comparatively greater via-
bility (Fig. 4). Overall results clearly show that the absence
of UCHL! increase germ cell survival.
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FIG. 3. A) The total TUNEL-positive germinal cells per 20 circular sem-
iniferous tubules in wild-type and gad mice on various postnatal days. In
each group, the data represent the mean = SD (n = 4; * P < 0.05). B)
The extent of apoptosis in 2-wk-old mice. i, wild-type mice; ii, gad mice.
Green fluorescence, TUNEL-positive cells; red fluorescence, nuclei
stained with propidium jodide. Magnification X100. Bar = 30 um.

Levels of Apoptotic Proteins During the First Round
of Spermatogenesis

Germ cell apoptosis involves genes encoding various
factors, such as Trp53, the Bcl2 family, and caspase, which
are targets for ubiquitination [29-31]. Our previous work
demonstrated that the expression of antiapoptotic proteins
(Bcl2 family and XIAP) is significantly elevated following
cryptorchid stress in gad mice [22]. To explore whether the
germ cell apoptotic wave is associated with changes in the
levels of proteins known to be associated with cell death
or survival, Western blot analysis was performed on testic-
ular lysates obtained from 7-, 14-, 21-, 28-, and 35-day-old
wild-type and gad mice (Fig. 5). Levels of TRP53 and Bax
proteins were strikingly elevated in 7-day-old mice but
barely detectable on Day 35. Caspase-3 was also strikingly
elevated in 7-day-old mice. Since TRP53 modulates Bax
expression [22, 32], the observed up-regulation of Bax is
consistent with elevated TRP53 levels during the early ap-
optotic wave. Expression of the antiapoptotic protein Bcl-
xL was weaker in immature compared with mature testes.
Levels of TRP53, Bax, and caspase-3 proteins were signif-
icantly decreased in 7- and 14-day-old gad mice relative to
the levels observed in wild-type testes (Fig. 5B). By con-
trast, the level of Bcl-xL protein appeared to be up-regu-
lated earlier in gad mice (at 28 days) than in wild-type mice
(at 35 days) (Fig. 5B).

Assessment of Cauda Epididymidis and Spermatozoa
Morphology in gad Mice

The cauda epididymidis from wild-type and gad mice
were weighed, and the sperm were collected and analyzed.
The cauda epididymidis from gad mice weighed signifi-
cantly less, likely resulting from the lower sperm concen-
tration measured in gad mice (19.5 X 10%ml) compared
with wild-type mice (23.6 X 10%ml) (Table I). Further-
more, abnormal sperm morphology, including head and
midpiece defects or a detached head, occurred significantly
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FIG. 4. In vitro survival of testicular germ cells. Testicular germ cells
were isolated from wild-type and gad mice at 14 days of age. After cul-
ture, viability was determined using a Vi-Cell XR cell viability analyzer
(Beckman Coulter). Viability at each time point was normalized to that at
Day 0. Each data point represents the mean = SD (n = 4; * P < 0.05).

more often in gad mice (Table 1 and Fig. 6A). Immuno-
cytochemical analysis showed that UCHL1 and ubiquitin
were expressed in defective spermatozoa but not in normal
spermatozoa (Fig. 6B). Ubiquitin, a marker for sperm ab-
normalities [33], was detected mainly in defective sper-
matozoa. However, despite a significantly elevated number
of defective spermatozoa, ubiquitin expression in gad
mouse spermatozoa was similar to that in wild-type mice
(data not shown).
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FIG. 5. A) Western blot analyses showing TRP53, Bax, caspase-3, and
Bcl-xL levels in wild-type and gad mice during the first round of sper-
matogenesis. Protein (5 pg/lane) was prepared from whole testes at 7, 14,
21, 28, and 35 days of age. Blots were reprobed for a-tubulin to nor-
malize for differences in the amount of protein loaded. Representative
images of four independent experiments are shown. B} Quantitative West-
ern blot analysis of changes in TRP53, Bax, caspase-3, and Bcl-xL levels.
Relative protein expression (optical density) of the bands in panel A, nor-
malized to a-tubulin. Each data point represents the mean = SD (n = 4;
* P < 0.05).



