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Abstract

Retinoic acid (RA) is one of the most important morphogens, and its embryonic distribution correlates with neural differentiation and
positional specification in the developing central nervous system. To investigate the concentration-dependent effects of RA on neural
differentiation of mouse embryonic siem cells (ES cells), we investigated the precise expression profiles of ncural and regional specific genes
by ES cells aggregated into embryoid bodies (EBs) exposed to various concentrations of RA or the BMP antagonist Noggin. RA promoted
both neural differentiation and caudalization in a concentration-dependent manner, and the concentration of RA was found to regulate dorso-
ventral identity, i.e., higher concentrations of RA induced a dorsal phenotype, and lower concentrations of RA induced a more ventral
phenotype. The induction of the more ventral phenotype was due to the higher expression level of the N-terminus of sonic hedgehog protein
(Shh-N) when treated with low concentration RA, as it was abrogated by an inhibitor of Shh signaling, cyclopamine. These findings suggest
that the conceniration of RA strictly and simultaneously regulates the neuralization and positional specification during differentiation of
mouse ES cells and that it may be possible to use it to establish a strategy for controlling the identity of ES-cell-derived neural cells.
$ 2004 Elsevier Inc. All rights reserved.
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Introduction

Embryonic stem cells (ES cells) are clonal cell lines
derived from the inner cell mass (ICM) of developing
blastocysts and under appropriate conditions are capable of
proliferating extensively and generating various cell types
derived from the three primary germ layers of the embryo in
vitro. This pluripotency of ES cells provides a powerful in
vitro model for investigating the mechanisms that control
differcntiation in early embryonic development. The basic
strategy for in vitro differentiation usually adopted is to
induce cell aggregation into so-called embryoid bodies
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(EBs) through suspension culture in nonadhesive dishes or
hanging drops. Different inducing conditions during EB
formation can drastically affect the proportions of the
various cell types that differentiate in EBs. For example,
exposure to high-concentration RA strongly drives neural
induction, whereas low-concentration RA induces cardio-
myocyte differentiation (Rohwede! et al., 1999). Because
neural cells represent only a small percentage of cells in EBs
cultured in the presence of fetal bovine serum (FBS) and the
absence of an exogenous inducer, efficient generation of
neural cells requires an additional inductive stimulus or
other differentiation method.

There are two major strategies for generating neural cells
from mouse ES cells: EB formation and serum-free direct
induction. The former includes treatment with high-concen-
tration RA (Bain et al, 1995; Fraichard et al., 1995;
Strubing et al., 1995), which has been shown to promote
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neural gene expression and repress mesodermal gene
expression (Bain et al.. 1996), and serum-free culture after
EB formation, which enables sclection of neural cells
(Okabe ct «l., 1996). Direct induction methods consist of
a co-culture system with stromal cell line PA6 as a neural
inducer that has been found to have stromal-cell-derived
inducing activity (SDIA) (Kawasaki ct al., 2000), a low-
cell-density neural stem cell (NSC) culture (neurosphere
culture) with growth factors (Tropepe et al., 2001), and an
adherent monolayer culture method (Ying et al., 2003).

Sequences of ¢vents leading to lincage commitment
similar to those in vivo are ofien observed with all of these
culture strategies, and, for example, exposure to Noggin or
ether manipulations that inhibit bone morphogenetic protein
(BMPs) signaling, which blocks neural differentiation in the
early development, facilitates neural differentiation of ES
cells also in vitro (Finley et al., 1999; Gratsch and O’Shea,
2002; Kawasaki et al., 2000; Tropepe et al., 2001).

During the development of the mammalian central
nervous system (CNS), the differentiation properties of
neural stem cells (NSCs) vary depending on the stage at
which they are generated (temporal identity) and their
focation (positional identity). These properties define the
induction and sequentiai rounds of neurogenesis and glio-
genesis, which seem to be regulated by both intrinsic and
extrinsic factors, and limit their plasticity (Temple, 2001),
Depending on their location, their differentiation is usually
regulated by secreting signals that modulate the rostro-
caudal or dorso-ventral axis of the body and by regional
cues that define the borders of each CNS segment (Hitoshi
et al., 2002; Temple, 2001). In view of these characteristics
of NSCs, the temporal and positional identity of NSCs
derived from ES cells may be controlled in vitro by the
conditions under which they differentiate, the same as
specification in vivo. Indeed, much interest has been
focused on the generation of specific types of neurons or
neural progenitors from ES cells by producing these
identities with inductive signals, such as fibroblast growth
factor (FGF) 8 and Shh, or with SDIA for dopaminergic
neurons (Kawasaki et al., 2000, 2002; Kim et al., 2002; Lee
et al.. 2000; Ying et al, 2003), RA and Shh for motor
neurons (Renoncourt et al., 1998; Wichterle et al., 2002),
and a combination of SDIA and BMPs for dorsal and
neural-crest-derived cells (Mizuseki et al., 2003).

RA is well known as the biologically active form of
vitamin A and has been shown to play an important role
during embryogenesis (Ross et al.,, 2000). RA influences
neural development in the early stage of CNS development
and is required to establish patterned ferritories of cell
groups, which, for example, has been observed in rostro-
caudal axis formation, according to the distribution of RA in
experiments on Xenopus (Blumberg et al., 1997; Sive et al,,
1990) and mice (Kessel, 1992; Kessel and Gruss, 1991
Marshall et al., 1992). For these reasons, RA has been
thought to be one of the most important extrinsic inductive
signals that can be used for neural differentiation of mouse

ES cells in vitro. However, its overall effects have yet to be
clearly identified. and precise analysis of alterations of gene
expression caused by RA treatment should be useful for
establishing proper culture protocols for the differentiation
of ES cells. In the present study, we demonstrated that RA
promotes neural differentiation and caudalization in a
concentration-dependent manner, and that the concentration
of RA affects dorso-ventral positional identity, by determin-
ing the precise gene expression profiles during differ-
entiation of ES cells.

Materials and methods
ES cell culture

Mouse ES cells (EB3) were maintained and used for
induction. ES cells were grown on gelatin-coated (0.1%)
tissue culture dishes in standard ES-cell culture medium
containing GMEM (Sigma G6148) supplemented with 10%
FBS, glutamine (2 mM), nonessential amino acids (0.1
mM), sodium pyruvate (1 mM), 2-mercaptoethanol (2-ME)
(0.1 mM), sodium bicarbonate (3 mM), HEPES (5 mM),
and mLIF. EB3 is a subline derived from El4tg2a ES cells
(Hooper et al., 1987) that was generated by targeted
integration of Oct3/4-IRES-BSD-pA vector (Niwa et al.,
2000) into the Oct3/4 allele, and it was maintained in the
medium containing 10 pg/ml blasticidin § to eliminate
differentiated ES cells.’

Differentiation of ES cells

For embryoid body (EB) formation, ES cells were
detached and dissociated into single cells with 0.25%
trypsin—-EDTA and then plated onto a bacteriological dish
{Kord-Valmark ™) in 10 ml of aMEM (Gibco 11900-024)
supplemented with 10% FBS, sodium bicarbonate (3 mM),
and 0.1 mM 2-ME (EB medium) at a density of 5 x 10*
cells/ml. On day 2, various concentrations of all-frans-
retinoic acid (RA: Sigma R 2625) were added to the
culture medium (2-/4+ protocol). RA was reconstituted
with 100% ethanol to prepare a stock solution. It should be
noted that the effective RA concentrations at which ES
cells grow into EBs may be considerably higher than those
indicated in the text, because FBS contains significant
levels of RA. Furthermore, cells within EBs may produce
endogenous RA, possibly as a secondary effect of the
initially added RA. However, we used conditions in which
FBS did not contsin exogenous RA as a negative control
(stated control in the figures), and evaluated the results in
terms of relative concentrations of RA. Recombinant
mouse Sonic Hedgehog (Shh) protein (amino-teminal
peptide) (Shh-N; R&D Systems Inc., 461-SH) and cyclop-
amine (0.1 pM, 1 uM, Toronte Research Chemicals Inc.,
(C988400) were aiso added on day 2 of the experiment. For
Noggin treatment, 10% (v/v) culture supernatant of Cos7
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cells transfected with Xenopus Noggin/MC BOS (a gift of
Y. Takahashi) (Kohyama et al, 2001; Tonegawa and
Takahashi, 1998) (xNoggin conditioned medium) was
added.

EBs were collected at day 6 of culture and allowed to
settle to the bottom of the tube for a few minutes. The cells
were then washed once with PBS and incubated with 0.25%
trypsin--EDTA for 5 min at 37°C. The enzymatic reaction
was quenched by addition of an equal volume of EB
medium, and the cells were dissociated with a transfer
pipette by triturating 30 times. The cells were then washed
twice with serum-free «MEM and resuspended in Media
hormone mix (MHM) medium, which contains DMEM/F-
12 (1:1) (Gibco 12100-046, 21700-075), glucose (0.6%),
glutamine (2 mM), sodium bicarbonate (3 mM), HEPES (5
mM), insulin (25 pg/m!), transferrin (100 pug/ml), progester-
one (20 nM), sodium selenate (30 ng), and putrescine (60
nM) (all from Sigma except for DMEM/F-12) as described
previously (Shimazaki et al., 2001). The dissociated EBs
were plated on poly-L-omithine/fibronectin-coated 10-mm
cover glasses (Matsunami) at a cell density of 1.6 x 10°
cells/0.75 em® on a 48-well culture plate (Coaster) and
allowed to differentiate for 24 h.

To clarify the effects of RA added at different points in
time or of exposure for different periods of culture, ES cells
were differentiated into EBs based on 2—/2+/2—, 2—/2+/2+
and 4-/4-+ protocols (Suppl. Fig. 1). In the 2-/2+/2— and
2—72+/2+ protocol, various concentrations of RA were
added on day 2, and on day 4 the culture medium was
replaced with freshly prepared medium containing the same
concentrations of RA (2—/2+/2+ protocol) or no RA (2-/
2+/2— protocol). In the 4--/4+ protocol, various concen-
trations of RA were added to the culture medium on day 4.
Total RNA was isolated at day 0, 2, 4, 6, and 8 and
processed for RT-PCR analysis.

Immunocytochemistry

Dissociated EBs were cultured for 24 h and fixed with
4% paraformaldehyde for 20 min at room temperature, The
cells were rinsed with PBS twice and pretreated with PBS
containing 0.3% Triton -X100 for 5 min at room temper-
ature. After blocking in TNB buffer (Provided by NEN™
Life Science Products, Inc.) for 1 h at room temperature,
the cells were incubated at 4°C overnight with the
following antibodies: anti-Nestin (Rat-401, mouse IgG,
1:200), anti-Islet-1/2 (40.2D6, mouse IgG, 1:500), anti-
Lim3 (67.4E12, mouse IgG, 1:1000), anti-HB9 (81.5C10,
mouse IgG, 1:100), anti-Otxl (Ox-5F5, mouse IgG,
1:500000), anti-Nkx2.2 (74.5A5, mouse IgG, 1:5000),
anti-Pax7 (mouse IgG, 1:5000) (Developmental Studies of
Hybridoma Bank: DSHB), anti-plll-fubulin (mouse IgG,
1:1000, Sigma T8660), anti-Olig2 (rabbit IgG, 1:30000)
(Mizuguchi et ai., 2001; Takebayashi et al., 2000), anti-
Phox2b (rabbit IgG, 1:25000) (Paityn et al,, 1997), anti-
Nkx6.1 (Ab174.3, rabbit IgG., 1:200000) (Jensen et al.,

1996), anti-Group Bl Sox [Sox1/(2)/3] (rabbit IgG.
1:10000) (Tanaka et al. unpublished). Anti-Group BI
Sox [Sox1/(2)/3] antibody is weakly reactive with Sox2,
which is expressed not only by the neural primordium but
by undifferentiated ES celis, and with Soxl and Sox3
(with preference for Sox! and Sox3 over Sox2). However,
as ail Group Bl Sox genes arc expressed in neural
primordium (Wood and Episkopou, 1999), we used this
antibody to detect neural progenitors, by determining the
immunostaining conditions under which undifferentiated
ES cells, which were used as a negative control, did not
stain (data not shown). Antigen retricval was accomplished
by incubating the samples in the boiled PBS for 10 min for
anti-Isl-1/2 and anti-Lim3, in boiled Target Retrieval
Solution (DAKO) for 10 min for anti-Nkx2.2, or in I N
HCI at 30°C for 15 min for anti-Pax7. Afier washing with
PBS three times, the cells were incubated for 1 h at room
temperature with secondary antibodies conjugated with
Alexa 488 or Alexa 568 (Molecular Probes). For anti-
Islet1/2, anti-Lim3, anti-HB9, anti-Olig2, anti-Phox2b,
anti-Otx1, anti-Nkx2.2, anti-Pax7, and anti-Nkx6.1 stain-
ing, we used biotinylated secondary antibodies (Jackson
Immunoresearch Laboratory, Inc.) afier exposure to 1%
H;0, for 15 min at room temperature to inactivate
endogenous peroxidase. The signals were then enhanced
with streptavidin-HRP (SA-HRP), followed by TSA™
Fluorescein System (NEN™ Life Science Products, Inc.).
After washing with PBS, the samples were mounted on
slides and examined with a universal fluorescence micro-
scope (Axiophot 2, Carl Zeiss) and a confocal laser
scanning microscope (LSM510, Carl Zeiss). The nuclei
of all samples were stained with hoechst33342 (1 ug/ml,
Sigma B2261). For statistical analysis, at least 200 cells
per cover glass were examined, and the numbers of cells
that had immunoreacted with each antibody were counted
and expressed as a percentage of the total number of cells
whose nuclei stained with hoechst33342. The P values for
statistical significance (¢ test) arc stated in the figure
legends.

Western blot analysis

Western blot analysis was performed by the previously
established method. A 20 pg protein sample of a total cell
extract was run on 7.5-15% SDS-PAGE, transferred to
nitrocellulose, and probed with each antibody. The blot was
probed with the following antibodies: anti-Nestin (Rat-401,
mouse IgG, Developmental Studies of Hybridoma Bank:
DSHB), anti-gllI-tubulin (mouse IgG. Sigma T8660), anti-
Glial Fibrillary Acidic Protein (GFAP) (rabbit IgG, DAKO
20334), anti-CNPase (mouse IgG, Sigma C5922), and anti-
Shh N-terminal fragment (goat IgG, Santa Cruz sc-1194).
Signals were detected with HRP-conjugated secondary
antibodies (Jackson Immunoresearch Laboratory, Inc.) by
using an ECL kit (Amersham Biosciences). Quantitative
analysis was performed with Scion Image (Scion Corpo-
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ration). The amounts of proteins loaded in cach slot were
normalized to those of a-tubulin.

RNA isolation and RT-PCR

RT-PCR analysis of at least two independent cultures was
performed in most of the experiments, and were similar
results obtained. Total RNA was isolated with Trizo! reagent
(Invitrogen™ 15596-018) and DNase | treatment, or by the
RNeasy Mini Kit (Qiagen). Total RNA (13 ug) was used to
synthesize ¢cDNA with 500 ng oligo-d(T);» 1 primers. The
cDNA synthesis was performed at 42°C for 50 min in a final
volume of 20 pl according to the manufacturer’s instructions
for Superscript II RNase H~ reverse transcriptase
(Invitrogen™). To analyze relative expression of different
mRNAs, the amount of cDNA was normalized based on the
signals from ubiquitously expressed f-actin mRNA. The
PCR was carried out by using a KOD Plus kit (Toyobo)
according to the manufacturer’s standard protocol in a final
volume of 25 pl. Primer sequences and PCR cycling
conditions will be provided upon request. To provide
negative controls and exclude contamination by genomic
DNA, the reverse transcriptase was omitted in the cDNA
synthesis step, and the samples were subjected to the PCR
reaction in the same manner with primer sets for f-actin,
and are indicated at the bottom of each figure as RT(~).
PCR products were clectrophoresed in agarose gel, and
bands were visualized with cthidium bromide under UV
light. The identity of the PCR products was confirmed by
sequencing,.

Results
Differentiation potential of mouse ES cells regulated by RA

RA has been shown to be one of the most important
extrinsic morphogens and precisely modulates the differ-
entiation properties of ES cells into various cell types,
including neural cells, skeletal muscle cells, adipocytes,
cardiomyocytes, and vascular smooth muscle cells, in an
incubation-time- and concentration-dependent manner
(Rohwedel et al., 1999). To examine the concerntration-
dependent cffects of RA on the differentiation of ES cells,
we first differentiated ES cells by inducing the formation of
EBs in the presence of various concentrations of RA. We
also used Noggin, a secreted protein that plays a role in
neural induction by inhibiting BMP-signaling (Finley et al..
1999; Gratsch and 'Shea, 2002; Kawasaki et al., 2000;
Smith and Harland, 1992; Tropepe et al.. 2001; Zimmerman
et al., 1996), to investigate RA-independent neural differ-
entiation. ES cells were plated onto bacteriological dishes
and had been cultured for 6 days in medium containing
various concentrations of RA (added on day 2) or xNoggin
conditioned medium (Fig. 1), and they were analyzed by
RT-PCR for markers of the three primary germ layers

ES
Moggin "= day 0 AIE

EB medium (105%FBS)

RA e dlpy 2 Susgension euliure

v

day 6 EB

24 heurs

1 4

Differentiated
neurons and glial cells

Fig. 1. Experimental protocol for differentiation of ES cells with retinoic
acid (RA) or xNoggin conditioned medium. ES cells were cultured in the
bacteriological dish for é days and formed embryoid bodies (EBs). Various
concentrations of RA were added on day 2 of EB formation. Then, EBs
were dissocinted and differentiated on poly-L-omithine/fibronectin-coated
cover glasses.

(Fig. 2). On day2, oct3/4, which is a marker for
undifferentiated ES cells, was expressed by both control
and Noggin-treated EBs. From day 4 of EB formation
onward, oct3/4 expression was gradually down-regulated
by RA in a concentration-dependent manner and in a
culture period-dependent manner, and it became undetect-
able on day 6 under all conditions, indicating that most of
the ES cells had differentiated by 6 days of EB formation.
On day 6, expression of ck-17 (cytokeratin 17), a marker of
epidermis (McGowan and Coulombe, 1998), and expres-
sion of ngn2, which is expressed in neuronal progenitors
(Mizuguchi et al., 2001; Novitch ¢t al., 2001; Ross et al.,
2003), were enhanced by high-concentration RA treatment
(>10"7 M; high-RA), and thus ectodermal differentiation
was promoted by exposure to high-RA. Expression of ck-17
mRNA in undifferentiated ES cells, which also expressed
oct3/4 (Fig. 2), was also demonstrated in a previous study
(Tropepe et al., 2001). In the control, Noggin, and low-RA-
treated EBs, its cxpression coincided with expression of
oct3/4 at day 4, and was then down-regulated by day 6
along with extinction of oct3/4. In the high-RA-treated EBs,
on the other hand, expression of ck-717 mRNA was detected
at day 4 and day 6, without expression of oct3/4. The
expression of ¢k-/7 in the absence of expression of oct3/4
can be understood as indicating promotion of epidermal
differentiation in EBs treated with high-RA. Mesodenmal
differentiation, represented by expression of brachyury,
which is essential for the formation and organization of
mesoderm (Herrmann et al.. 1990; Wilkinson et al., 1990),
and expression of homeobox gene nkx2.5, the earliest
known marker of cardiac development (Komuro and Izumo,
1993; Lints et al,, 1993), were facilitated by low-concen-
tration RA treatment (107%-10™® M; low-RA). Endodermal
markers, including gatad, expressed in primitive endoderm
{Arceci et al.. 1993), and pdxl, expressed in developing
pancreas (Jonsson et al., 1994; Officld et al., 1996), were
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Fig. 2. Expression of markers of the three primary germ layers in EBs exposed 1o various concentrations of RA. RNA was isolated from ES cells (day 0) and
EBs (duys 2, 4, 6) and analyzed by RT-PCR for expression of markers of undifferentinted ES cells (scr3/4), endodeny differentiation (pdx/ and garad),
mesoderm differentiation {(brachyury and nkx2.5), epidermis differentiation (ck-J7), and neural differentiation (sex/ and ngn2). To normalize their expression
te the amount of ¢cDNA present in the sample, the ¢DNA for endogenous fl-eorin was amplified.

expressed unstably at low levels, and their levels correlated
poorly with the concentrations of RA.

Neural induction of mouse ES cells by RA

It has been shown that neural differentiation of ES
cells can be promoted by RA, especially by ecarly
exposure of EBs to relatively high RA concentrations
(Bain et al.. 1995, 1996; Fraichard et al., 1995; Gajovic et
al., 1997; Renoncourt ¢t al., 1998; Rohwedel et al., 1999,
Strubing et al., 1995; Wichterle et al., 2002). However, as
the effect of different RA concentrations had never been
precisely described, we next investigated how RA
promotes ncural differentiation. EBs that had been
cultured for 6 days were analyzed for differentiation
markers of neural cells (progenitors, neurons, and glia) by
Western blotting (Figs. 3A, B). Nestin, which is expressed
in undifferentiated neural progenitors, was more strongly
expressed in EBs treated with low-RA. Expression of
plll-tubulin and GFAP, which are markers of differ-
entiated neurons and astrocytes, respectively, increased in
a concentration-dependent manner in EBs exposed to RA
(Figs. 3A, B). By contrast, RT-PCR analysis on day 6
showed that expression of sox] (a marker of undiffer-
entiated neural cells; Pevny ¢t al, 1998; Wood and
Episkopou, 1999) mRNA was higher in EBs treated with
low-RA on day 6 (Fig. 2). Expression of CNPase, a
marker of oligodendrocytes, was detected only slightly
under all of the differentiating conditions, and its
expression was not very strongly affected by the concen-
tration of RA (Figs. 3A,B). To better understand the
cffects of RA on neural differentiation of EBs, we
performed immunocytochemistry of markers of various
neural lineages (Figs. 3C--E and 5A,B). EBs that had been
cultured for 6 days were dissociated and differentiated on
poly-L-omithine/fibronectin-coated cover glasses for 24 h
and then processed for immunocytochemistry of markers

of undifferentiated ncural cells (Nestin, Group Bl Sox,
Olig2) and postmitotic neurons (plil-tubulin). Olig2 is a
basic-helix-loop-helix (bHLH) transcription factor that is
expressed in most of the ventral neural progenitor cells
around the period of neural tube closure (Takebayashi et

2000). Treatment of EBs with low-RA (107% M)
induced a 1.6-, 3.0-, and 9.1-fold increase in Nestin-,
Group Bl Sox, and Olig2-positive undifferentiated neural
progenimrs, respectively, over those treated with high-RA
@ % 10°% M) (Ylgs 3C-E). Treatment of EBs with high-
RA (2 x 107% M) induced very few Nestin-, Group B!
Sox-, and Olig2-positive progenitor cells, and instead
induced many plll-tubulin-positive postmitotic neurons
[3.0-fold more than by treatment with low-RA (10”* M)]
(Figs. 3C-E and 5A). RT-PCR analysis showed that olig2?
was expressed in EBs treated with high-RA at day 4 and
down-regulated by day 6, whereas it was expressed highly
on day 6 in EBs treated with low-RA (Fig. 6A). These
results indicate that higher concentrations of RA facilitate
differentiation of neural progenitors into postmitotic
neurons and glia, in contrast to lower concentrations of
RA, which preferentially induce undifferentiated neural
progenitor cells from ES cells; that is, that RA strongly
promotes terminal differentiation of ES-cell-derived neural
progenitors in a concentration- and culture-period-depend-
ent manner in addition to its action that promotes neural
induction of ES cells.

ES-cell-derived neural cells acquire positional identity
through EB formation

To investigate how RA regulates the specification of
rostro-caudal and dorso-ventral positional identity during
EB formation, RT-PCR analysis of regionally specific
markers was performed (Carpenter, 2002; Caspary and
Anderson, 2003; Helms and Johnson, 3003; Hitoshi et
al., 2002; lJessell. 2000; Marquardt and Pfaff, 2001;
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Fig. 3. RA promotes neural differentiation in a concentration-dependent manner and regulates the differentiation of ES-cell-derived neural progenitors. (A)
Western blot analysis of markers for neural differentiation in EBs cultured for 6 days. (B) Quantitative analysis was performed with Scion Image. The amounts
of proteins were normalized to those of a-tubulin (1 = 3, mean + SEM, %, P < 0,05 vs. control. }, P < 0.05 v&. RA 2%10 ® M). (C) Immunocytochemistry of
dissociated EBs for Olig2 and Nestin. Nuclear locslization of Olig2 in Nestin immunoreactive cells was confirmed by three-dimensional reconstruction of
confocal microscopic images (right end of lower panels). (D, E) The proportions of cells positive for Nestin, Group B1 Sox, Olig2, and #1ll-tubulin among the
total number of cells in dissociated EBs were determined by immunocytochemically. Immunorcactive cells as a percentage of the total number of cells counted
on the basis of nuclear staining with hoechst33342 are shown (5 = 3, mean  SEM, *, P < 0.05 vs. control. §, P < 0.05 vs. RA 2x 10 ® M). The percentages of
cells expressing Olig2, Group B1 Sox, and Nestin were higher in dissociates of EBs treated with low-RA (<10 * M) than in EBs reated with high-RA (=10 ’
M). Scale bar: 50 um.
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Fig. 4. Concentration-dependent effects of RA on the specification of vostrol-caudal positional identity of ES-cell-derived neural progenitors. (A) Effect of RA
on rostrol-caudal exis formations was analyzed by RT-PCR on days 0, 2, 4, and 6 of differentiation. The expression patterns are summarized in (B). RA
caudalized FS-cell-derived neural cells in a concentration-dependent manner. Control and Noggin-treated-EBs expressed forebrain-type markers, whereas EBs
treated with low-RA and high-RA expressed midbrain- hindbrain-type markers and spinal-cord-type markers, respectively.

Fig. 5. RA caudalizes EB-desived neurons in a concentration-dependent manner. (A) Immunocytochemical analysis of neural progenitors and neurons
differentiated from dissaciated EBs with Otx1, which is expressed in developing forebrain and midbrain, and Phox2B, Lim3, HB9Y, and Isl-1/2, which are
expressed in developing motor neurons and their progenitors. Immunoreactive cells as 8 percentage of the total number of cells counted on the basis of the
nuclear staining with hoechst33342 are shown in B (n > 3, mean 4 SEM, %, P < (.05 vs. control. {, P < 0.05 vs. RA 2 X 10 6 M. (C) RT-PCR analysis of
phox2h and AbY. Control and Noggin-treated EBs generated significant numbers of Otx1-and Group Bl Sox-positive anterior neural progenitors. Low-RA
{10 "-10 * M) induced many Phox2b-positive hindbrain brachisl snd visceral motor neurons and fewer Otx1/Group Bl Sox-positive anterior neural
progenitors, whereas high-RA (10 7 M) induced more HB9-positive hindbrain and spinal cord somatic motor neurons without any Otx1-positive cells. Scale
bar; 50 um.
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Niederreither ¢t al., 2000; Schuurmans and Guillemot,
2002; Wurst and Bally-Cuif, 2001). As shown in ¥ig. 4,
EBs were caudalized in a concentration-dependent man-
ner during the first 2 days of RA exposure (days 2-4).
After day 4, control and Noggin-exposed EBs expressed
genes specific to forebrain (emx/, emx2, akx2.1, orxl,
otx2} and midbrain~hindbrain (oix], otx2, enl), but no
hindbrain or spinal cord markers. EBs treated with low-
RA mainly expressed midbrain-hindbrain markers (otx/,
otx2, enl, gbx2, hoxbl, hoxa2, hoxa3), and did not
express spinal cord markers (hoxcd, hoxeS, hoxc6, hoxc§,
hoxcl0). Expression of telencephalic markers (emxl,
emx2, dix2) in EBs treated with low-RA was lower than
in control and Noggin-exposed EBs. However, at day 4,
expression of one of the telencephalic markers, joxgl,
was somehow highest in the EBs exposed to low-RA. On
the other hand, high-RA induced expression of hindbrain
and rostral spinal cord markers (hoxcd, hoxc5, hoxc6)
and reduced expression of forebrain and midbrain
markers. These patterns of gene expression were detected
at day 4 and were maintained thereafier. The expression
levels of enzymes involved in RA metabolism, raldh2
and oyp26al (Fig. 4A), were higher in EBs treated with
high-RA, a finding that was consistent with the EBs
exposed to high-RA acquiring the identity of rostral
spinal cord, where the concentration of RA and the
expression level of its synthesizing enzyme Raldh2 are
the highest in the developing CNS (Swindeli et al,
1999). The RA catabolizing enzyme Cyp26al may have
been induced by high-RA as part of a negative feedback
mechanism. The total gene expression patterns indicating
rostro-caudal specification in EBs differentiated under
different conditions are summarized in Fig. 4B. The
concentration-dependent caudalization of EBs by RA
treatment shown by the result of the RT-PCR analysis
was confirmed by immunocytochemisiry of dissociated
EBs with antibodies for markers expressed in developing
forebrain and midbrain (Otx1) (Acampora et al, 1998),
visceral or brachial motor neurons in the hindbrain
(Phox2b) (Pattyn et al, 2000), and somatic spinal motor
neurons (HBY, Lim3) (Arber et al, 1999) (Figs. 5A,B).
Virtually all of the marker-positive cells were also
positive for either a neural progenitor marker Group Bl
Sox, or pan-neuronal marker BIII-tubulin. A significant
number of cells derived from EBs and grown under all
conditions cxpressed Isi-1/2, a marker of postmitotic
cholinergic neurons, including not oaly spinal motor
neurons but those in ventral forebrain (Kohtz et al., 2001;
Wang and Lin, 2001). Somatic motor neurons of the
hindbrain and spinal cord expressing Lim3 and HB9 were
found more frequently when treated with high-RA,
whereas hindbrain visceral or brachial motor neurons
expressing Phox2b were found more frequently when
treated with low-RA. By contrast, an enormous number
of neural progenitors that were positive for both Otx]
and Group Bl Sox and acquired anterior positional

identity were induced from control and Noggin-treated
EBs, and less frequently from low-RA treated EBs,
whereas no such cells were induced from high-RA-treated
EBs. Taken together, these findings indicate that RA
induced both caudalization of EBs based on the
expression patterns of regionally specific genes during
neural induction and neuronal differentiation in a con-
centration-dependent manner, resulting in significant
generation of forebrain and midbrain (control and
Noggin), hindbrain (low-RA), and spinal cord (high-
RA) types of neural progenitors or neurons, respectively.

RA controls dorso-ventral axis formation

To determine the effect of RA on dorso-ventral axis
specification of EB-derived cells, we investigated the
expression of class 1 genes (pax7, dbxl, dbx2, irx3,
pax6, whose expression is repressed by Shh in early CNS
development) and class II genes (nkx6.2, nkx6.1, olig2,
nkx2.2, whose expression is activated by Shh). These
genes are differentially expressed along the dorso-ventral
axis in the progenitor demains of developing hindbrain and
spinal cord (Jessell, 2000). As shown in Fig. 6, EBs
treated with low-RA expressed both class I and class 11
genes, indicating that they were composed of various
populations that had acquired their identities throughout
the dorsal to ventral neural tube. Interestingly, on the other
hand, treatment with high-RA raised the expression levels
of class I genes and significantly reduced those of class 11
genes except olig2 at day 4, in comparison to treatment
with low-RA. Thus, high-RA caused dorsalization of
neuvral progenitor cells in EBs. To investigate the mech-
anism underlying the action of RA in specifying dorso-
ventral identity, we investigated its effects on expression of
the N-terminus of Shh protein (Shh-N) and sonic hedge-
hog (shh)y mRNA. Mouse Shh is produced as a 49-kDa
sccreted protein that post-translationally cleaves to yield
two mature proteins: an approximately 19-kDa N-terminal
fragment that contains the signaling portion of the
molecule and an approximately 27-kDa C-terminal frag-
ment, which has auto-processing activity (Marti et al.,
1995; Porter ¢t al., 1995, 1996; Roclink et al., 1995). We
found that expression of both the Shh-N protein and shh
mRNA was significantly up-regulated by exposure to low-
RA in day 4-6 EBs (Figs. 7A-(C), but that further
increasing the RA concentration (>1077 M) induced their
down-regulation instead. More specifically, the RA-respon-
sive increase in Shh-N expression appeared to be concen-
tration-dependent up to 10°® M, but was completely
abrogated at 10”7 M and higher concentrations. On the
other hand, the peak level of full-length Shh protein
expressed in response to exposure to 107% M of RA was
maintsined even in EBs exposed to higher concentrations
of RA. These results suggested that the veniralization of
neural progenitors in EBs exposed to low-RA might be
caused by an enhanced expression of Shh-N. However, we
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could not rule out the possibility of the opposite causal
relationship; that is, that low-RA induced enhanced
expression of Shh-N protein and the expression of shh
mRNA resulted from the ventralization of EB-derived cells
that had been induced by low-RA ftreatment through an
unknown mechanism. To address this issue, we treated
EBs exposed to RA with recombinant Shh-N protein and
cyclopamine, an inhibitor of Shh signaling (Chen ¢t al.
2002a.b; Incardona et al., 1998). In the absence of
cyclopamine treatment, EBs exposed to low-RA expressed
both class 1 (pax7, dbxi, dbx2, irx3. and pax6) and class
I genes (rkx6.2, nkx6.1, olig2, and nkx2.2), thereby
indicating both dorsal and ventral phenotype. Treatment
with I uM cyclopamine strongly down-regulated the
veniral class 11 genes (nkx6.2, nkx6.1, olig2, and nkx2.2)
and some of the class 1 genes (dbx/ and dbx2), indicating
a dorsalized phenotype (Figs. 7D,E). In addition, exposure
to 50 nM of recombinant Shh-N protein enhanced
expression of class II genes (nkx6.2, nkx6.1. olig2, and
nkx2.2) but reduced pax7 expression. These effects were
abrogated by treatment with 1 pM cyclopamine (Figs.

7D,E). EBs treated with high-RA expressed higher levels
of class I genes (pax7, dbxl, and dbx2, irx3, pax6), but
lower levels of class I genes (rnkx6.2, nkx6.1, olig2, and
nkx2.2), thereby indicating a more dorsal phenotype than
after low-RA treatment. However, high-RA treated EBs
were ventralized by treatment with exogenous Shh-N, as
shown by the up-regulation of class Il genes (nkx6.2,
rkx6.1, olig2, and nkx2.2) and down-regulation of pax7,
and these changes were also abrogated by 1 uM cyclop-
amine treatment (Figs. 7D,E).

This alteration of dorse-ventral identity by RA, Shh-N,
and cyclepamine was confirmed by the immunostaining of
dissociated EBs with antibodics against Pax7, Nkxé.1, and
Nkx2.2 (Fig. 8). Virtually all the marker-positive cells also
stained with the antibodies against Group Bl Sox or Nestin,
indicating they are neural progenitor cells. It was note-
worthy that Shh-N treatment could induce only Nkx6.1-
positive but not Nkx2.2-positive neural progenitors in EBs
treated with high-RA, indicating that the ventralmost neural
progenitors could not be efficiently derived under such
conditions, but that they were capable of increasing the
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Fig. 7. Shh-N mediates RA-dependent dorso-ventral specification of ES-cell-derived neural progenitoss. (A) Expression of Shh and its active N-terminal
truncated form, Skh-N, in EBs cultured for 6 days, was analyzed by Western blotting. EBs were exposed to various concentrations of RA. Quantitative analysis
was performed with Scion Image. The amounts of proteins were normalized to those of w-tubulin (B) (7 = 3, mean % SEM, *, P < 0 05 v, control 1, P <0.05
vs. RA 2 % 10 ® M), (C) RT-PCR analysis of shh and bmp4. Shh-N was more highly expressed in EBs treated with low-RA (10 * M~10 ® M). (D) RT-PCR
analysis of RA-exposed EBs treated with Shh-N and its inhibitor cyclopamine. Shh-N and eyclopamine were added together with RA on day 2. (F) Summary
of expression pattemns in vitro corresponding to in vivo. Cells from low-RA-treated EBs were a mixed population of dorsal-to-ventral neural progenitors and
were capable of being dorsalized by inhibiting Shh signaling with cyclopamine. By contrast, exogenous Shh-N induced ventral neural progenitors were capable
of being dorsalized by cyclopamine. Cells from high-RA-treated EBs showed dorsal positiona! identities. However, addition of Shh-N increased the number of
ventral neural progenitors, and they were also capable of being dorsalized by cyclopamine treatment.

Fig 8. Dorso-ventral specification of RA treated EBs is altered by Shh-N and cyclopamine. The alteration of dorso-ventral identity by RA, Shh-N, and
cyclopamine was confirmed by the immunostaining of dissuciated EBs with antibodies against Pax7 as a marker for dorsal neural progenitors, against Nkx6.1
as a marker for ventral neural progenitors, and against Nkx2.2 as & marker for ventralmost neural progenitors in combination with Group B Sox or Nestin as a
marker for neural progenitors. Immunoreactive cells as a percentage of the total number of cells counted on the basis of the nuclear staining with hoechst33342

are shown in B (# = 3, mean £ SEM). Scale bar: 50 um.
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number of Nkx6.1- or Nkx2.2-positive ventral neural
progenitors in EBs treated with low-RA. The observation
in EBs treated with high-RA is consistent with the previous
report (Wichterle et al., 2002).

One of the major dorsalizing molecules in the CNS, bmp4
(Caspary and Anderson, 2003; Jessell, 2000; Knecht and
Bronner-Fraser, 2002), was not very strongly affected by RA,
Shh-N, or cyclopamine, suggesting a lesser contribution of
the BMP signal to this RA-mediated dorso-ventral specifi-
cation (Fig. 7C, data not shown). These results indicate that
differentiating EBs were ventralized by low-RA through
induction of endogenous Shh-N protein, and that the effect
was abrogated by cyclopamine and enhanced by the addition
of exogenous Shh signal (Figs. 7D.E and 8).

Positional identity regulated by the RA concentration is
mainly determined during the first 2 days of exposure to RA

According to the RT-PCR analysis of EBs cultured
according to the 2—/4+ protocol, the expression patterns of
most of the regionally specific markers were determined by
day 4 and maintained unchanged thercafier. This observa-
tion raised two possibilities. One possibility is that the first 2
days of exposure to RA are critical to the determination of
positional identity, and the second is that the effect of the
RA concentration was altered during the later culture period
by degradation of RA. To dectermine which of these
possibilities was true, we performed & RT-PCR analysis of
EBs cultured according to other protocols in which the times
when RA is added or the duration of exposure to RA (2-/
22—, 2--/24/2+, and 4-/4+ protocols) is different from
the 2--/4+ protocol (Suppl. Fig. 1). Expression of oct3/4 had
been maintained before the addition of RA, but no
expression of other markers except otx2, whose mRNA
was expressed even in undifferentiated ES cells, had been
detected in any of the culture protocols, including the 4—/4+
protocol. The expression patterns of most of regionally
specific markers were determined by day 4 of the 2—/2+/2 -
and 2~/2+/2+ or by day 6 of the 4--/4+ protocol, and were
virtually the same in all protocols as observed in the 2--/4+
protocol, and they were maintained thercafter as well
(Suppl. Fig. 2). Overall, positional identity is determined
during the first 2 days of exposure to RA and is maintained
thereafter regardless of the presence or absence of RA in
later culture periods.

Discussion

The pluripotent embryonic stem cell is a valuable in vitro
model for studying the effects of various factors on cell
lincage decisions in very early embryonic stages of
mammalian development, and the effect of RA signaling
on the differentiation of ES cells and neural induction, in
particular, has been extensively studied. In addition to
previous reports showing that RA promotes neural differ-

entiation of ES cells and caudalization of the positional
identity of their progeny (Bain et al., 1995, 1996; Fraichard
et al., 1995; Gajovic et al., 1997; Renoncourt et al., 1998;
Strubing et al., 1995; Wichterle et al., 2002), the results of
the present study demonstrate the novel and precise actions
of RA on neural differentiation and acquisition of positional
identity by ES-cell-derived neural cells.

Effect of the concentration of RA on ES cell differentiation

It is well known that exposure of growing EBs to high-
RA markedly increases the rate of neural differentiation,
whereas low-RA induces more mesodermal cells (Rohwedel
et al, 1999). Higher concentrations of RA also promote
faster differentiation of ES cells, as indicated by the pattern
of oct3/4 expression, which was down-regulated more
rapidly in EBs exposed to higher concentrations of RA,
and down-regulated more at day 6 than at day 4 (Fig. 2).
The result of this study showed that RA also concentration-
dependently facilitates terminal differentiation of neural
cells derived from ES cells. The expression levels of
markers of differentiated neurons and glia, ie., of BII-
tubulin and GFAP, respectively, was higher in EBs treated
with higher concentrations of RA, whereas the expression
levels of markers of undifferentiated neural cells, i.e., of
Nestin, Group Bl Sox, Olig2, and sox/ mRNA, was
inversely correlated with the concentration of RA (Figs. 2
and 3). The findings are consistent with a high-RA
enhancing differentiation of neural progenitor cells, as
described previously (Bain et al., 1995, 1996; Fraichard et
al.,, 1995; Ggjovic et al., 1997; Renoncourt et al.,, 1998;
Strubing et al., 1995; Wichterle et al., 2002).

Down-regulation of Wnt signaling has been shown to be
one of the mechanisms involved in RA-induced neural
differentiation of mouse ES cells (Aubert et al., 2002).
Interestingly, -catenin, which is a key molecule in Wnt
signaling, has been shown fo interact directly with retinoid
receptor RAR, but not with RXR, in a retinoid-dependent
manner, and as a result retinoids decrease 3-catenin-Lef/Tcf-
mediated transactivation in cultured cells in a dose-depend-
ent manner (Easwaran et al, 1999). Wnt3a signaling
through Lef/Tcfl has also been implicated in suppression
of neural differentiation and induction of mesodermal
differentiation in the mouse embryo (Galceran et al.,
1999; Yamaguchi et al., 1999; Yoshikawa et al., 1997).
These findings raise the possibility that the one of the effects
of RA in EBs is to inhibit the Wnt-p-catenin anti-neural
pathway by up-regulation of Secreted frizzled-related
protein 2 (Sfip2) (Aubert et al., 2002) and/or sequestration
of {-catenin in a concentration-dependent manner, thercby
resulting in the promotion of neural differentistion, and
inversely in the suppression of mesodermal differentiation.

FGFs are another molecules that may be involved in the
neurogenesis related to RA signaling. RA has been shown to
promote neuronal differentiation by repressing FGF signal-
ings from the posterior neural plate. Caudal FGF signalings
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have the opposite effects and repress Raidh2 (RA synthesis)
in the presomatic mesoderm and generic neurcna! differ-
entiation in chick carly neural tube (Diez del Comral et al.
2003; Noviteh et al., 2003). These observations raise the
possibility that RA inhibits the action of endogenously
generated FGFs in a concentration-dependent manner during
the culture of EBs. Further study of the associations between
these signals is required to clarify the mechanism underlying
the RA-promoted neural differentiation of ES cells.

Acquisition of rostro-caudal identity dependy on the
concentration of RA

A previous study on chick embryos showed that the
default identity of carly neural tissue is a rostral location and
that neural cells can be caudalized by exogenous factors, such
as the caudalizing activity of paraxial mesoderm, FGFs, and
retinoid from the mesoderm, which induce midbrain, hind-
brain, and spinal cord characters, when applied during the
appropriate period of development (Mulir et al., 1999).

RA is one of the factors, that has been shown to be
involved in hindbrain patterning and the caudalization of
neural tissues in the early embryonic CNS in vivo (Maden,
2002). The distribution of endogenous RA has been
examined in mouse and chick embryos, by various
method, including HPLC (high-performance liquid chro-
matography) (Horton and Maden, 1995, Maden et al,
1998), the use of LacZ reporter cells (Maden et al., 1998;
Wagner et al., 1992), and the use of RARP.-LacZ
transgenic mice (Reynolds et al., 1991: Zimmer, 1992).
This distribution of endogenous RA is correlated with the
opposing action of the two main enzymes involved in RA-
metabolism, RA-synthesizing enzyme, Raldh2, which is
most strongly expressed in the paraxial mesoderm adjacent
to the rostral spinal cord with the rostral boundary of the
presumptive first somite (Bergeren et al., 1999), and the
catabolizing enzyme, Cyp26al, which is expressed in
anterior neuroepithelium. These spatially distributed
‘enzymes create a rostro-caudal RA concentration gradient
in vivo (Abu-Abed et al., 2001; Fujii et al.. 1997; Maden
et al., 1998; Sakai et al.. 2001 Swindell et al., 1999), with
the peak RA concentration occurring at the hindbrain/
spinal cord boundary, with levels gradually decreasing
anterior and posterior to it. Furthermore, it has been
suggested that the patterning of the rhombomere is
influenced over time by the constant supply of RA from

the paraxial mesoderm, where the neuroepithelium grows -

and moves away form this source of RA. These findings
imply that the more posterior rhombomeres that develop
later than the more anterior rhombomeres may have been
exposed to higher concentration of RA, leading to the
expression of more posterior genes (such as posterior hox
genes), which require a higher concentration of RA for
activation in vivo (Maden, 2002). Qur findings are
consistent with the above-described putative regulatory
mechanism of hindbrain/rostral spinal cord positional

specification correlated with the RA concentration gradient
in vive in the following manner. The default positional
identity of ES-cell-derived neural cells is specified as
anteriormost forebrain, which was acguired in the control
and Noggin-cxposed EBs. EBs treated with fow-RA were
specified as midbrain fo hindbrain, which is generated
carlier and require lower concentrations of RA in vivo,
whereas EBs treated with high-RA were specified as
posterior hindbrain to rostral spinal cord, which is
generated later and requires higher concentrations of RA
in vivo. In addition, the fact that even the EBs treated with
high-RA expressed genes specific to rostral (hoxcd to
hoxc6), but not to caudal spinal cord (hoxc8 to hoxcl0) is
consistent with the putative gradient of endogenous RA in
vivo with a higher concentration in the rosiral spinal cord,
and the proposed role of RA in rostral spinal cord
determination (Liu ¢t al., 2001). Moreover, other factors
may be involved in the activation of RA-responsive genes
and the specification of positional identity, such as RA
binding proteins, including cellular retinoic acid binding
protein (CRABP) 1, which limits the access of RA to the
nuclear retinoid receptors. The spatiotemporal pattern of
expression of CRABP1 suggests that the fine regional
control of availability of RA to the nuclear receptors may
also play an important role in the organization of the
central nervous system and the differentiation of its
progenitors in vivo (Leonard et al., 1995; Maden, 2001:
Maden et al., 1992; Ruberte et al., 1993). The role of these
RA binding proteins in the regulation of in vitro differ-
entiation of ES-cell-derived neural cells should be inves-
tigated further in the future,

RA also affects dorso-ventral positional identity

In contrast to the acquisition of rostro-caudal identity,
dorso-ventral identity was analyzed in terms of expression of
the transcriptional control of the homeodomain (HD) and
basic helix-loop-helix (bHLH) proteins. Previous studies
have emphasized the role of Shh signaling in establishing the
patiern of expression of ventral spinal cord patterning genes
(Jessell, 2000). RA has also been reported to contribute to the
ventral pattemning of the spinal cord; that is, fo the induction
of ventral interneurons (VO and V1) by inducing class I
genes, including Dbx1, Dbx2, Evx1, Evx2, and En (Pierani et
al., 1999), and to the specification of limb level motor neuron
subtypes by the expression of Raldh2 in LMC (Seckanathan
and Jessell, 1998). Furthermore, recent studies have revealed
involvement of RA from the paraxial mesoderm in the timing
of neurogenesis and the patterning of the ventral spinal cord
regulating the expression of class 1 and class II genes via
inhibition of FGF signals and in combination with Shh
signals (Diez del Corral et al., 2003; Novitch et al., 2003).
However, the results of our study showed that the concen-
tration of RA to which EBs were exposed was critical for
acquisition of dorso-ventral identity by differentiating ES
cells, and the concentration dependency showed a bell-
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shaped pattern. This was shown by the pattern of the
expression of class I and class 1 genes (Figs. 6A,B), which
determines the dorso-ventral progenitor domains of devel-
oping hindbrain and spinal cord. EBs exposed to high-RA
exhibit mainly dorsal phenotypes, whereas EBs exposed to
low-RA exhibit more ventral phenotypes (Figs. 6-8). The
expression pattern of olig2, higher at day 4 in EBs treated
with high-RA and at day 6 in those treated with low-RA,
seems to conflict with this finding; however, there are several
possible explanations. One is that this alteration of the
expression pattern of olig2 mimics that in vive according to
the stage of development, with expression in most of the
undifferentiated neural/glial progenitor cells in the ventral
half of the spinal cord occurring around the period of neural
tube closure and later being restricted to the motor neuron
domain (pMN domain) of the ventral ventricular region,
where the progenitors of motor neurons and oligodendrocytes
arise sequentially (Lu ¢t al., 2000; Takebayashi et al., 2000;
Zhou et al., 2001). Thus, both the cells collected at day 4 from
EBs exposed to high-RA and those collected at day 6 from
EBs exposed to low-RA may consist of multipotent neural
progenitors expressing Olig2. Furthermore, the role of RA in
motor neuron development, such as its effect on the
expression of bHLH and HD transcription factors, including
Olig2, varies with the stage of development, according to a
previous study that analyzed chick spinal cord development
(Novitch et al., 2003). Similar alteration of the effects of RA
may occur in our culture system and be another possible
explanation for the sequential expression pattern of ofig2 in
EBs exposed to high-RA.

The ventralization of EBs treated with low-RA can be
explained by the finding that the active form of Shh-N,
which is secreted by the notochord and floor plate of the
developing CNS and veniralizes gene expression of ncural
progenitors in a concentration-dependent manner in vivo
(Jessell, 2000), is more highly expressed on day 6 in EBs
treated with low-RA (Figs. 7A~C). The hypothesis that the
concentration-dependent activity of RA that defines dorso-
ventral identity is mediated by Shh-N was confirmed by
the resuit of treatment with the inhibitor of Shh signaling,
cyclopamine (Figs. 7D,E and 8) (Chen et al., 2002ab;
Incardona et al., 1998). Cyclopamine abrogated the
ventralization activity of low-RA treatment, and addition
of exogenous Shh-N more efficiently ventralized differ-
entiating EB-derived cells that had been exposed to both
low-RA and high-RA, in a cyclopamine-sensitive manner.
The expression level of bmp4, which dorsalizes neural
progenitor cells (Caspary and Anderson, 2003; Jessell,
2000; Knecht and Bronner-Fraser, 2002), was not very
strongly affected by Shh-N or cyclopamine in EBs
exposed to either low-RA or high-RA (Fig 7C, data not
shown), indicating that BMP signaling is not the major
confributor to RA-mediated dorso-ventral specification.
Taken together, these findings suggest that Shh-N
expressed in EBs exposed to low-RA may be one of the
major signals that ventralize neural progenitors and induce

expression of class II genes in addition to class I genes,
and that the lack of the shh signal in EBs exposed to high-
RA may result in expression of only class I genes and a
more dorsalized phenotype, which can be ventralized by
exogenous Shh-N protein. The results of this study are
consistent with a previous report that RA enhances
expression of class I genes, but not of class I genes, in
developing chick spinal cord (Diez del Corral et al., 2003;
Novitch et al., 2003), and that exogenous Shh-N is
required in addition to high-RA for efficient generation
of motor neurons during EB formation in vitro (Renon-
court ¢t al,, 1998, Wichterle et al., 2002). Because EBs
exposed to low-RA are mixed populations and contain
many mesodermal cells (Fig. 2) (Rohwedel et al., 1999),
they may secrete larger amounts of Shh-N than EBs treated
with high-RA, which contain smaller proportions of
mesodermal cells.

The discrepancy in response to RA between full-length
Shh expression and Shh-N expressions detected by West-
em blotting (Figs. 7A,B) may be another important finding
in this study. In contrast to the expression of full-length
Shh being observed in EBs treated with RA at concen-
tration 10°% M and above, generation of Shh-N was
detected only in EBs exposed to lower concentrations of
RA (Figs. 7A,B), indicating the possible existence of RA-
dependent machinery controlling Shh-N production by
modulating an auto-processing mechanism by the C-
terminus of Shh, which processes full-length Shh into
the N-terminus active form, or by altering degradation
activity of Shh-N.

Use of mutant ES cells for indian hedgehog (ihh) and
smoothened (smo) has shown that hedgehog signaling is
also required for neural differentiation of mouse ES cells
by RA (Maye et al, 2004). In our study, however,
expression of Group Bl Sox and sox/ mRNA in EBs
treated with low- or high-RA and their dissociates were
not down-regulated by cyclopamine (Fig. 8, data not
shown), indicating that neural differentiation was not
inhibited under our culture conditions even in the presence
of cyclopamine. There are two possible explanations for
this discrepancy. In our experiments, cyclopamine was
added on day 2 afler the start of ES cells differentiation,
whereas in the mutant ES cells in which hedgehog
signaling was disrupted it was disrupted at the start of
differentiation, raising the possibility that hedgehog signal-
ing may be one of the factors that is required for the
initial commitment of neuroectedermal differentiation. The
other possibility is that the concentration of cyclopamine
used in our study may not have been adequate to
completely block hedgehog signaling, and the residual
signaling activity may have been sufficient for the
transition of ES-cell-derived ectoderm into neuroectoderm,
but not for the ventralization of neural cells.

The mechanism underlying these roles of hedgehog
signals in differentiation and specification of ES-cell-
derived neural cells needs to be elucidated in the future.
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Fig 9. Schematic presentation of the concentration-dependent effects of RA
on neural differentiation by mouse ES cells. RA simultancously promotes
both neural differentiation and caudalization in concentration-dependent
manner. Low-RA induces a higher level of Shh-N, which endows ES-cell-
derived neural progenitors with ventral identity, whereas high-RA poorly
induces Shh-N, and they acquire dorsal neural identity instead.

RA is one of the most important inductive signals in
vertebrate ontogeny and can be used to induce neural
differentiation of mouse ES cells in vitro. However, its
actions are complicated and difficult to deal with at will,
because RA has the ability to induce various types of cells
depending on its concentration, and it simultancously
affects both the timing of differentiation and the acquis-
ition of positional identity, including rostro-caudal and
dorso-ventral identity during neural differentiation (Fig. 9).
Separation of these two phenomena is desirable to
investigate the underlying mechanisms, and separation
may have been accomplished, in part, by using SDIA,
which is & culture protocol that induces neural cells
without RA treatment. Thus, previous studies have shown
involvement of RA at a single concentration in the
caudalization of ES-cell-derived neural cells (Mizuseki et
al.. 2003; Wichterle et al., 2002). However, it is still not
easy to separate these two phenomena completely during
the neural induction of ES cells, because they are
simultaneously affected by RA in vivo in combination
with other signals, such as FGF and Shh signals, as shown
by previous studies (Appel and Eisen. 2003: Diez del
Cormal et al., 2003; Novitch et al,, 2003).

The present study identified detailed gene expression
profiles and clarified the effects of the concentration of
RA on ES cell differentiation, neuralization., and posi-
tional specification, though it may be impossible to map
the patterns of expressions of the regional specific
markers observed in ES-cell-derived ncural cells directly
to parallel expression of the markers in vivo. In
combination with the RA-independent neural induction
method using Noggin, this information will enable us to
establish a strategy that will allow control of both the
differentiation and the positional identity of neural cells

derived from mouse ES cells through EB formation in
vitro, and it may be applicable to human ES cells, raising
the possibility of application to the treatment of neuro-
logical diseases.
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Dorfin, a RING-IBR type ubiquitin ligase (E3), can
ubiquitylate mutant superoxide dismutase 1, the causa-
tive gene of familial amyotrophic lateral sclerosis (ALS).
Dorfin is located in ubiquitylated inclusions (UBIs) in
various neurcdegenerative disorders, such as ALS and
Parkinson’s disease (PD). Here we report that Valosin-
containing protein (VCP) directly binds to Dorfin and
that VCP ATPase activity profoundly contributes to the
E8 activity of Dorfin. High through-put analysis using
mass spectrometry identified VCP as a candidate of Dox-
fin-associated protein. Glycerol gradient centrifugation
analysis showed that endogenous Dorfin consisted of a
400-600-kDa complex and was co-immunoprecipitated
with endogenous VCP. In vitro experiments showed that
Dorfin interacted directly with VCP through its C-ter-
minal region. These two proteins were colocalized in
aggresomes in HERK293 celle and UBIs in the affected
neurons of ALS and PD. VCPE5244, g dominant negative
form of VCP, reduced the E3 activity of Dorfin against
mutant superoxide dismutase 1, whereas it had no effect
on the autoubiquitylation of Parkin, OQur results indi-
cate that VCPs functionally regulate Dorfin through di-
rect interaction and that their functional interplay may
be related to the process of UBI formation in neurcde-
generative disorders, such as ALS or PD.

Amyotrophic lateral sclerosis (ALS)* is one of the most com-
mon neurodegenerative disorders, characterized by selective
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motor neuron degeneration in the spinal cord, brain stem, and
cortex. Two genes, CuZn-superoxide dismutase (SOD1) and
amyotrophic lateral sclerosis 2 have been identified as respon-
sible genes for familial forms of ALS. Using mutant SOD1
transgenic mice, the pathogenesis of ALS has been partially
uncovered. The proposed mechanisms of the motor neuron de-
generation in ALS include oxidative toxicity, glutamate recep-
tor abnormality, ubiquitin proteasome dysfunction, inflamma-
tory and cytokine activation, dysfunction of neurotrophic
factors, damage to mitochondria, cytoskeletal abnormalities,
and activation of the apoptosis pathway (1, 2).

In a previous study (3), we identified several ALS-associated
genes using molecular indexing. Dorfin was identified as one of
the up-regulated genes in ALS, which contains a RING-IBR (in
between ring finger) domain at its N terminus and mediated
ubiquitin ligase (E3) activity (3, 4). Dorfin colocalized with
Vimentin at the centrosome after treatment with a proteasome
inhibitor in cultured cells (4). Dorfin physically bound and
ubiquitylated various SOD1 mutants derived from familial
ALS patients and enhanced their degradation, but it had no
effect on the stability of wild-type SOD1 (5). Overexpression of
Dorfin protected neural cells against the toxic effects of mutant
SO0D1 and reduced SOD1 inclusions (5).

Recent findings indicate that the ubiquitin-proteasome sys-
tem is widely involved in the pathogenesis of Parkinson’s dis-
ease (PD), Alzheimer's disease, polyglutamine disease, and
Prion diseases as well as ALS (6). From this point of view, we
previously analyzed the pathological features of Dorfin in var-
ious neurodegenerative diseases and found that Dorfin was
predominantly localized not only in Lewy body (LB)-like inclu-
sions in ALS but also in LBs in PD, dementia with Lewy bodies,
and glial cell inclusions in multiple system atrophy (7). These
characteristic intracellular inclusions composed of aggregated,
ubiquitylated proteins surrounded by disorganized filaments
are the histopathological hallmark of aging-related neurode-
generative diseases (8).

A structure called aggresome by Johnston et al. (9) is formed
when the cell capacity to degrade misfolded proteins is ex-
ceeded. The aggresome has been defined as a pericentriolar,
membrane-free, cytoplasmic inclusion containing misfolded
ubiquitylated protein ensheathed in a cage of intermediate
filaments, such ag Vimentin (9). The formation of the aggre-
some mimics that of ubiquitylated inclusions (UBIs) in the
affected neurons of various neurodegenerative diseases (10).
Combined with the fact that Dorfin was localized in aggre-
somes in cultured cells and UBIs in ALS and other neurode-
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