tered with AIT (100 ng/min; Peptide Institute Inc., Osaka, Japan)
using Alzet osmotic pumps (DURECT Co., Cupertino, Calif., USA)
(A group, n = 11). In the fourth group, rats were administered with
both HV and AIl (H+A group, n = 22). Rats were sacrificed on day 1,
2, 3 or 4, and kidneys excised for histochemical analysis (fig. 1).

Measurement of Systolic Blood Pressure

Systolic blood pressurc (SBP) was measured by the tail-cuff meth-
od with an clectro-sphygmomanometer (BP-98A; Softron Co., To-
kyo, Japan). SBP was measured in conscious rats cvery day from day
I to 2. The SBP value for each rat was calculated as the average of 3
separate mecasurements at each session. SBP measurement was per-
formed between 9 and 12 a.m. by a single blinded investigator.

Measurements of Serum Urea Nitrogen and Creatinine

Before the sacrifice, blood samples were obtained via an axillary
vein for determination of serum urea nitrogen (UN) and creatinine
(Cr) levels. Serum UN and Cr levels were determined enzymatically
with automation-analysis equipment (Hitachi 7350; Hitachi Co.,
Ibaragi, Japan) in our laboratory center.

Histological Analysis

To evaluate the progression of GN in our animal model, histolog-
ical analyses were performed using the periodic acid-Schiff (PAS)
and periodic acid-methenamine silver (PAM) rcagents. After the
specimens were paraffin embedded, 4-um-sectioned samples were
stained with PAS and PAM reagents and counterstained with hema-
toxylin. For quantitative analysis, the ratio of damaged glomeruli to
all glomeruli in the sectioned sample was calculated and the percent-
age of GN in the section was evaluated. Moreover, semiquantitative
analysis was performed to evaluatc more precisely the morphological
changes of our GN model according to the protocol in previous stud-
ies [16, 17]. A minimum of 20 glomcruli (ranging from 20 to 60 glo-
meruli) in each specimen were examined and the severity of the
mesangiolysis lesion was graded from 0 to 4+ according to the per-
centage of glomerular involvement; a 1+ lesion represented an
involvement of 25% of the glomerulus while a 4+ lesion indicated
that 100% of the glomerulus was involved. Thus, the mesangiolysis
score (MES) was then obtained by multiplying the degree of damage
(0 to 4+) by the percentage of the glomeruli with the lesion. Tubular
injurics including tubular necrosis or occlusion of collecting ducts by
cast material were graded as mild (1+), modcrate (2+), or severe
(3+).

Western Blot Analysis

Nuclear protein from whole kidney was prepared using NE-PER
Nuclear and Cytoplasmic Extraction Reagents (Pierce Biotechnology
Inc., Rockford, I11., USA). Nuclcar protein was electrophoresed using
10% SDS-PAGE gels and transferred to polyvinylidene difluoride
membrane (Immobilon-P; Millipore Corp., Bedford, Mass., USA). A
monoclonal IgG HIF-1a antibody 067 (Novus Biological, Littleton,
Colo., USA) was used; a horseradish peroxidase-conjugated antibody
(Promcga Co., Madison, Wisc., USA) was used as a sccondary anti-
body. The ECL Western blotting systems (Amersham Bioscience,
Uppsala, Sweden) was used for detection.

Immunohistochemical Analysis

Paraffin sections including the samples were dewaxed in xylene
and rehydrated in a series of ethanol, and then washed in distilled
water before staining procedures. According to the instruction pro-
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vided by the manufacturer, HIF-1a was identified with rabbit poly-
clonal anti-HIF-1a antibody H-206 (Santa Cruz Biotechnology, Cal-
if., USA) utilizing the catalyzed signal amplification system (Dako,
Hamburg, Germany) based on the streptavidin-biotin-peroxidasc
reaction. Antigen retrieval was performed for 5 min in a prchceated
Dako target retrieval solution using a microwave. Incubation proce-
dures were performed in a humidified chamber. Following the incu-
bation, specimens were washed 3 times in TBST buffer. The specific-
ity of staining was confirmed by substitution of the primary antibody
for a normal rabbit IgG and additionally by an immunchistochemi-
cal reaction without a primary antibody but with the secondary anti-
body alone.

An Experiment Using Cobalt Chloride as a Pretreatment

Rats were twice subcutaneously administercd 30 mg/kg of cobalt
chioride (CoCly) at a 12-hour interval (CoCly group) (n = 11), fol-
lowed by unilateral nephrectomy. Then, the rats were administered
with HV and AIl. As a comparison, rats were injected with 0.9%
NaCl solution instead of CoCl,, followed by the same protocol as the
CoCl, group (n = 11). After CoCl; administration, however, before
injection of HV and All, a kidney was excised as a sample to examine
expression level of HIF-1a (CoCl, Pre). Likewise, 2 days after admin-
istration of HV and All, a kidney was also excised (CoCl, Day 2). To
compare the expression level of HIF-1a by CoCl; before GN and the
severity of pathology of GN, we investigated whether preinduction of
HIF-1a is involved in renal protection.

Statistical Analysis

Data are reported as mean + SEM. A paired t test was used for
paired samples and Studcnt’s t test was used to compare the 2 groups.
One-way layout analysis of variance or repeated mecasures of analysis
of variance were used to compare multiple groups. If the p value was
significant, Scheffé’s multiple comparison was performed. A p valuc
<0.05 was considered significant.

Results

AIl Combined with HV Developed GN

Morphological studies using PAS and PAM staining
revealed that there are no glomerular or tubular injuries in
N group (fig. 2a), HV group (fig. 2b), A group (fig. 2c),
however, GN was detected only in the H+A group
(fig. 2e). Although renal tubular casts were observed, glo-
merular changes were scarcely observed on day 1 after AIl
and HV administration (fig. 2d, 3). GN was initially de-
tected on day 2 (fig. 2e, f, 3), followed by further aggrava-
tion during the time course (data not shown). Renal tubu-
lar injury including tubular necrosis was not remarkable,
and extensive cellular infiltration was not found in the
interstitial regions (fig. 3). On the other hand, characteris-
tic focal and segmental mesangiolysis, explained as capil-
lary aneurysmal ballooning, was observed with dilatation
of glomerulus (fig. 2¢, f). The rate of occurrence of GN on
day 2 was 44.9 + 2.6%, and the MES score of the H+A
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group was 199 *+ 15 (fig. 3). On the other hand, in the HV
group, less than 2% had morphologic changes of mesan-
giolysis during 4 days, and the MES score was 10 + S
(fig. 2b, 3). Moreover, in the A group, there were no mor-
phologic changes during the time course (fig. 2¢).

Changes in Serum UN and Cr

Serum UN and Cr were 18.4 = 0.7 and 0.31 £
0.01 mg/dl, respectively, on day 2 in the N group. In the
H+A group, serum UN and Cr levels increased to 41 S+
4.0 and 0.57 £ 0.05 mg/dl, respectively, on day 2; signifi-
cantly higher than those in the N group (fig. 4a, b). In con-
trast, serum UN and Cr levels in the H+A group on day 1
(240 £ 1.8 and 0.42 £ 0.02 mg/dl, respectively) were
similar to the level of the N group. There were no signifi-
cant differences in serum UN and Cr level among the HV,
A and N groups.

SBP Response

SBP values of each group are shown in figure 4c.
There were no significant differences in SBP after ne-
phrectomy among the 4 groups. Administration of All
caused a significant increase of SBP on day 1 (186 *
4 mm Hg) and persisted to day 2 (192 £ 1 mm Hg). SBP
in the H+A group on day 2 (183 £ 3 mm Hg) was compa-
rable to that in the A group. Administration of HV had no
influence on SBP during the 2 days.

Expression Level of HIF-1a Protein

Western blot analysis revealed that the expression level
of HIF-1a protein increased in the H+A and A groups
(fig. 5a), compatible with the results of immunohisto-
chemical analysis. Expressions of HIF-1o protein were
observed in the A and H+A groups, but protein expres-

Fig. 2. Glomerulonephritis is developed with the combination of HY
and All, and HIF-10. is induced in the intact glomeruli. There are no
glomerular or tubular injuries in N group (a), HV group (b), A group
(¢) and H+A group on day 1 (d). Damaged glomeruli, characterized
by extensive mesangiolysis, are observed in H+A group on day 2.
PAS staining. Magnification, x 100 (e). Focal and segmental mesan-
giolysis with large capillary aneurysmal ballooning are observed in
the H+A group on day 2. PAM staining. Magnification, x400 (f).
The number of GN was significantly less in pretreatment with CoCly
than without. PAS staining. Magnification, x 100 (g). Immunoreac-
tive HIP-1g-positive signals are not detected in the N group (k).
Nuclear HIF-1a signals are observed in a glomerulus and tubules in
the A group. Magnification, x200 (i). A glomerulus in the H+A
group on day 2 possesses intact cells with HIF-1o0-positive signals; in
contrast, other parts have few HIF-la signals due to mesangiolysis.
Magnification, x200 (j).

HIF-10 in Glomerulonephritis
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Fig. 3. Semiquantitative analysis of morphologic changes in our glo-
merulonephritis model. The main lesion in the H+A group is initially
detected on day 2 as mesangiolysis in glomeruli; however, there are
no tubular lesions of necrosis except for tubular casts; in contrast,
there are no morphological changes in the N and A groups. MES =
Mesangiolysis score.

sion was not detected in the N and HV groups. These data
suggest that HIF-1a was induced mainly by All, and, at
least in part, was related to the pathogenesis of GN or to
the defense mechanism against the progression of GN.

Induction of HIF-1a in Glomeruli and Renal Tubules

Immunohistochemical study demonstrated positive
nuclear staining of HIF-1o in glomeruli, renal tubules
(fig. 2i, j), collecting ducts and epithelium of the papilla
(data not shown) in the A and H+A groups. In contrast, no
positive nuclear signals were detected in the N (fig. 2h)
and HV (data not shown) groups. HIF-lo-positive cells
were mainly detected in mesangial cells in glomeruli
(fig. 2i, j). As demonstrated, especially in the H+A group
(fig. 2j), HIF-1o. was expressed in the intact part of the
glomerulus, but not in the injured part of the same glo-
merulus. Furthermore, nuclear HIF-lo-positive signals
were observed in smooth muscle cells in peripheral renal
arteries (data not shown).

CoCl, Pretreatment Inhibits the Progression of GN

To further investigate whether HIF-1o. is involved in
the development of nephropathy or in the antiprogressive
action, we pretreated rats with CoCly. As demonstrated in
figure Sb, pretreatment with CoCl; increased HIF-1a ex-
pression before administration of HV and All (Pre-1),
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Fig. 4. Serum UN, Cr and SBP are increased with the combination of HV and AIl The serum UN (a) and Cr (b)
levels in the H+A group on day 2 are significantly higher than other groups. SBP increases significantly with adminis-

tration of AIl (A and H+A groups) (¢).

suggesting that HIF-1a was induced by CoCl, before
development of GN. Even on day 2, the expression level
of HIF-1a was increased in the CoCl; group (CoCl; Day
2-1). In the CoCl, group, focal mesangiolysis with glomer-
uli enlargement was still observed, but the number of GN
was much less than in those without CoCl, pretreatment
(fig. 2g).

Thus, 7 of 11 rats (63.6%) with CoCl, pretreatment
were rescued from GN alone, while the other 4 (36.4%)
were not; showing a comparable severity level of GN with
the non-CoCl; group. As demonstrated in figure 5b, un-
like Pre-1, Pre-2 did not induce HIF-1¢0 with CoCl, and
showed no CoCl, suppression of GN. The ratio between
rats rescued or not rescued from GN was comparable with
that between preinduction and noninduction of HIF-1q
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by CoCl,, as demonstrated in figure 5c. In the CoCl,
group, the rate of GN from each rat decreased to 12.2 +
2.1%, which was in great contrast to 44.9 + 2.6% in the
non-CoCl, group. Furthermore, serum UN and Cr Ievels
on day 2 were significantly lower in the CoCl, than in the
non-CoCl, group (p < 0.05) (fig. 6a, b), despite compara-
ble SBP values between the 2 groups (fig. 6¢).

Discussion

In this study, we developed a new model of GN

" induced by both HV and All. This model has several dis-

tinct characteristics. First, GN developed rapidly, and
was detected on the second day after administration of
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Fig. 5. The protein level of HIF-1o is increased by administration of
HYV and AlL and pretreatment of CoCl, increases HIF-1a. expression
before development of GN. HIF-1a is not detected in the N and HV
groups (Day 2). However, HIF-1o is detected in A (Day 2) and H+A
(Days 1 and 2) groups (a). The CoCl, group, in accord with the level
of HIF-1¢ induction, was divided into 2 groups. HIF-la is greatly
induced before the development of GN (CoCl; group Pre-1), and is
followed by a high level (CoCl, group Day 2-1); in contrast, it is not

HIF-1o in Glomerulonephritis

efficiently induced (CoCl, group Pre-2), and also is scarcely detected
on day 2 (CoCl, group Day 2-2) (b). The rate of preinduction of HIF-
1a.by CoCl, is comparable with that of the inhibition of GN by CoCl,
(c).

Fig. 6. Pretreatment with CoCl; attenuates GN. Serum UN (a) and
Cr (b) levels in the CoCl; group on day 2 are significantly decreased
compared to those in the non-CoCl, group. There is no significant
difference in SBP between the CoCl, and non-CoCl; groups (e).
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HYV and All. Many models of GN have been reported
including 5/6 nephrectomized and Thy-1.1 nephritis
models [18, 19]. However, these models take a long time
to develop nephropathy. In contrast, our protocol induced
GN in 2 days, suggesting that one of the advantages our
model has over others is in terms of the time course. Fur-
ther, pathological findings were restricted to glomerular
regions without remarkable tubular or interstitial lesions.
Since our GN model developed within 2 days, it also has
advantages for disclosing the specifically critical time
point of the development of GN. Furthermore, the devel-
opment rate of GN was almost 100%, indicating the high
reproducibility of our model. This basis of the rat model
was initially developed by Barnes et al. [20] who reported
that the progression of All-induced renal injury was accel-
erated by pre-existing injury induced by HV; our model,
which now optimizes the reproducibility of GN, is a mod-
ification of theirs.

Habu-induced nephropathy was reported to develop
within 1 day by a dose of 2.0-4.0 mg/kg HV (in our model
3.5 mg/kg) and the main pathological change was ‘mesan-
giolysis’ [21, 22]. However, for reasons we have not as yet
ascertained, in our study no rats showed Habu-nephropa-
thy-specific pathological findings during the first week in
the HV group. On the other hand, All is one of the major
factors responsible for the pathogenesis of GN, because it
remarkably increases glomerular pressure causing hyper-
filtration, production of extracellular matrix and expres-
sion of lines of genes involving GN [23-25]. Further,
since AIl has some ischemic effects on the kidneys, there
is the possibility that an All-induced ischemic effect
causes the GN depicted in our model. However, as dem-
onstrated in this study, glomerular injury was predomi-
nantly observed, and was not associated with renal tubu-
lar lesions, i.e. tubular necrosis suggesting renal ischemia.
Therefore, in accordance with the pathological character-
istic of this GN, All-induced renal ischemia may not be
responsible for its development in our model. Additional-
ly, in this study, SBP increased in the A and H+A groups,
but GN was not induced in the A group. Therefore, GN in
our model was induced not by HV or All alone, but by the
combination of HV and All, independent of any increase
in systemic blood pressure.

HIF-1a is a master transcriptional factor, transactivat-
ing the expression of many genes important for cell sur-
vival under hypoxic conditions [11-13, 26]. These genes
are responsible for glycolysis, angiogenesis, proliferation
and iron metabolism, all of which are induced by hypoxic
stress; thus, the induction of HIF-1¢ is a marker of hypox-
ia. HIF-1a is regulated at the post-translational level by
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the proteasome system through ubiquitination with von
Hippel-Lindau (VHL) protein [27, 28]. As previously
reported, this regulation of HIF-10 protein level is depen-
dent on the concentration of oxygen. Hypoxia induces
enhancement of HIF-1o protein stability leading to the
elevation of the protein level due to inhibition of degrada-
tion by VHL. Therefore, hypoxia induces adaptation in
cells including induction of HIF-1a; the hypoxic pathway.
On the other hand, a line of evidence recently accumu-
lated suggests that HIF-10, is also regulated independently
of oxygen concentration through the nonhypoxic pathway
[14, 15]. All is reported to regulate HIF-1q both at tran-
scriptional and post-translational levels in vascular
smooth muscle cells cultured under normoxic condition
through the All type 1 receptor [14, 15]. Moreover, HIF-
fo is also post-translationally regulated in several cell
lines in the presence of tumor necrosis factor-o. or nitric
oxide independent of oxygen contents {29, 30].

As demonstrated in this study, immunoreactivity of
HIF-10. was not detected in the N group (no treatment
group), but HIF-1a was detected in the nuclei of glomeru-
lar, tubular and epithelial cells of the papilla by adminis-
tration of AII alone or AIl and HYV together. This is the
first evidence showing that HIF-1o was detected in the
kidney by All, independent of systemic hypoxic stress. As
indicated here, HIF-1a was found to be expressed only in
intact, not damaged glomeruli. Even within a glomerulus,
only the intact part of glomerular cells expressed HIF-1gq.
Considering the fact that induction of HIF-1a is one of the
defense mechanisms for cell survival [31-33], our data
indicate that induction of HIF-10. is a marker of glomeruti
survival; indeed, it could be a marker of renal protection.

To further investigate whether HIF-1a is involved in
the progression or protection of GN, preinduction of HIF-
1o was performed with CoCl, before administration of
HV and AII. Surprisingly, the induction of HIF-1a by
CoCl, pretreatment attenuated the progression of GN; the
level of GN was reduced from 44.9 to 12.2% and the inci-
dence of GN was reduced from 100 to 36.4%. Further-
more, as indicated, the preinduction of HIF-1a actually
affects the inhibition of GN, because the rate of HIF-1g,
induction was parallel with that of the attenuation of GN,
Therefore, our data suggest that HIF-1o is involved, at
least in part, in the defense mechanism against the pro-
gression of GN, and hence could be a marker for renal
protection.

All is reported to induce HIF-1qa [14, 15] and plays a
partial role in the renal protective effect; however, the oth-
er effects of All, such as increasing glomerular pressure
and modulating gene expression involving in the renal
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failure, may overcome any protective effect of All-

induced HIF-1a, and so as a result it may lead to the pro-
gression of GN.

In conclusion, we developed a highly reproducible GN
model by combining HV and AIL Preinduction of HIF-1a
remarkably attenuated the progression of GN, indicating
that HIF-1a was involved in the defense mechanism of

the kidney.
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Artificial Baroreflex
Clinical Application of a Bionic Baroreflex System

Fumiyasu Yamasaki, MD; Takahiro Ushida, MD; Takeshi Yokoyama, DDS; Motonori Ando, PhD;
Koichi Yamashita, MD; Takayuki Sato, MD

Background—We proposed a novel therapeutic strategy against central baroreflex failure: implementation of an artificial
baroreflex system to automatically regulate sympathetic vasomotor tone, ie, a bionic baroreflex system (BBS), and we
tested its efficacy in a model of sudden hypotension during surgery.

Methods and Results—The BBS consisted of a computer-controlled negative-feedback circuit that sensed arterial pressure
(AP) and automatically computed the frequency (STM) of a pulse train required to stimulate sympathetic nerves via an
epidural catheter placed at the level of the lower thoracic spinal cord. An operation rule was subsequently designed for
the BBS using a feedback correction with proportional and integral gain factors. The transfer function from STM to AP
was identified by a white noise system identification method in 12 sevoflurane-anesthetized patients undergoing
orthopedic surgery involving the cervical vertebrae, and the feedback correction factors were determined with a
numerical simulation to enable the BBS to quickly and stably attenuate an external disturbance on AP. The performance
of the designed BBS was then examined in a model of orthostatic hypotension during knee joint surgery (n=21).
Without the implementation of the BBS, a sudden deflation of a thigh tourniquet resulted in a 1723 mm Hg decrease
in AP within 10 seconds and a 25+2 mm Hg decrease in AP within 50 seconds. By contrast, during real-time execution
of the BBS, the decrease in AP was 92 mm Hg at 10 seconds and 1+2 mm Hg at 50 seconds after the deflation.

Conclusions—These results suggest the feasibility of a BBS approach for central baroreflex failure. (Circulation. 2006;

113:634-639.)

Key Words: baroreceptors @ blood pressure @ computers @ electrical stimulation ® nervous system, sympathetic

he arterial baroreflex acts to maintain cerebral perfusion

by quickly attenuating the effect of an external distur-
bance, such as the assumption of an upright position, on
arterial pressure (AP).!-# Therefore, functional restoration of
dynamic properties of the arterial baroreflex is essential for
the treatment of patients with various syndromes of barore-
flex failure,’ including Shy-Drager syndrome,®-° barorecep-
tor deafferentation,'®-'! and traumatic spinal cord injuries.!*'?
However, most commonly used interventions, including salt
loading,!*+15 cardiac pacing,'®'7 and adrenergic agonists,'s'?
can neither restore nor reproduce the functioning of the native
vasomotor center, and most affected patients remain
bedridden.

Clinical Perspective p 639

We recently developed a framework for identifying an
operational rule of the vasomotor center and a prototype of a
bionic baroreflex system (BBS) in rats.?0-22 The BBS con-
sisted of a negative-feedback system controlled by a com-
puter (ie, the artificial vasomotor center) that sensed AP and
automatically computed the frequency of a pulse train re-

quired to stimulate sympathetic efferent nerves through a pair
of wire electrodes placed in the celiac ganglion. Previous
experimental work demonstrated that the BBS restored native
baroreflex function in rats with central baroreflex failure;
however, an applicable neural interface with quick and
effective controllability of AP is required for application of
this technology in the clinical setting. The goal of the present
study was to determine the efficacy of a novel bionic
technology for the intraoperative restoration of AP in the
context of central baroreflex failure and to validate this
technology in a clinical model of orthostatic hypotension.

Methods

All studies were approved by the institutional review committee, and
all subjects gave informed consent.

Theoretical Considerations

As previously described,20->? the principle of the BBS is based on a
negative-feedback mechanism (Figure 1). The instantaneous AP is
measured by a pressure transducer connected to a computer that
functions as a controller or artificial vasomotor center. Instead of the
disabled native vasomotor center, the controller automatically exe-
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Figure 1. Schematic illustration (A) and block diagram (B) of a
BBS. In the context of central baroreflex failure, the BBS auto-
matically computes the frequency (STM) of a pulse train to stim-
ulate sympathetic nerves through an epidural catheter placed at
the level of lower thoracic spinal cord, while simultaneously
sensing the change in AP. Hap_.stu denotes a transfer function
for the controller functioning as an artificial vasomotor center.
Hstv-.ap is a transfer function showing the dynamic response of
AP to STM. The overall transfer function of the BBS is given by
Hap_stmXHstm—ap. Therefore, the effect of an external distur-
bance (Pg) on AP is attenuated to 1/(1+Hap_.stu X Hstm—ap)-

cutes real-time operations that determine the frequency of electrical
stimulation (STM) required to minimize the effect of an external
disturbance (P,) on AP and then commands an electrical stimulator
to deliver a stimulus of the same frequency to the vasomotor
sympathetic nerves via epidural-catheter electrodes placed at the
lower thoracic level of the spinal cord. The lower thoracic level was
selected as the site for the neural interface of the BBS because the
abdominal splanchnic vascular bed is a major effector mechanism for
the arterial baroreflex.?3-23

According to a classic feedback-control theory, ie, feedback
correction with proportional and integral gain factors,26.7 the fol-
lowing algorithm was used to program the controller for the
calculation of STM in the frequency domain:

K;
) Haposu =K, + E;fj

where Hyp,srm is @ transfer function from AP to STM., K, is the
proportional correction factor, K; is the integral correction factor, and
J is the imaginary unit. The proportional factor determines the
feedback amplification based on the absolute value of the instanta-
neous control error due to Py, and the integral factor adjusts the
feedback amplification based on the cumulative value of the instan-
taneous control error. Therefore, STM is computed as follows:

(2) STM=—AP Hap_s1m
and AP is also expressed as follows:
)] AP=STM - Hyry—apt Py

where Hgyyo 4 denotes the frequency response of AP to STM. From
Equations 2 and 3, the effect of P, on AP is estimated as follows:

|

— P
= Py
1 +HA!’AS'I'.\( ) HS‘I'M~/\P

@) AP
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Thus, if Hapsp - Hermo.ap is far larger than unity, the BBS
can nullify the effect of P, on AP.

Subjects and Experimental Protocols
A total of 33 patients (46 to 84 years old, 19 males) who underwent
orthopedic operations werc enrolled in the present study. Ten
patients had hypertension, and 4 had diabetes mellitus. None of the
subjects had frequent ectopic beats or atrial fibrillation. After
induction anesthesia with propofol, an endotracheal tube was intro-
duced orally. The patients were mechanically ventilated with 67%
nitrous oxide and 1.5% to 2% end-tidal sevoflurane in oxygen during
experimental protocols, while end-tidal carbon dioxide was main-
tained at 35 to 38 min Hg. An arterial catheter was placed in the
radial artery for AP measurement. To record central venous pressure
(CVP), a central venous catheter was placed in the femoral vein, and
the tip of the catheter was advanced into the inferior vena cava just
above the diaphragmatic level. Furthermore, an epidural catheter was
placed percutaneously, and the tip, which contained a pair of
electrodes (Unique Medical, Tokyo; interelectrode distance 15 mm),
was placed at the level of Th, _;,. Placement of the central venous
catheter and the epidural catheter was verified by chest radiograph.?s
Before making an incision of affected areas, we performed 2
different protocols in separate groups of patients. In the first group of
patients (n=12, 46 to 76 years old, 7 males) undergoing operations
was estimated and the Hyp_.gry was designed parametrically with
Equation 1 to minimize the effect of P, on AP. After we programmed
the designed H,p_gun into the computer, the efficacy of the BBS was
tested against the rapid progressive hypotension induced by use of a
thigh tourniquet®-3! in the second group of patients (n=21, 64 to 84
years old, 12 males) undergoing operation for knee joint osteoarthri-
tis. During each protocol, the muscle twitches induced by spinal cord
stimulation were prevented by the intravenous administration of
vecuronium bromide. Analgesia for the pain provoked by spinal cord
stimulation and tourniquet inflation was provided by intravenous
injection of fentany] citrate. In a preliminary study, the validity of the
analgesic preparation was confirmed for the experimental protocols,
and the safety of spinal cord stimulation for 20 minutes was verified.

Estimation of Transfer Function From STM to AP
To characterize the dynamic nature of the AP response to STM, ie,
Hsrm-ars the lower thoracic sympathetic nerves were randomly
stimulated for 15 minutes while we recorded AP. According to a
white noise method for system identification, the STM was altered
between 0 and 20 Hz every 4 seconds. The pulse width of electrical
stimuli was fixed at 0.1 ms. The stimulation current was adjusted for
each patient so as to produce a pressor response of ~10 mm Hg at 20
Hz. This resulted in an average current of 15+4 (mean=SD) mA.
The electrical signals of STM and AP were digitized at 100 Hz. As
described previously,?°~22 the transfer function from STM to AP,
Hgpy—ap, Was estimated with a fast Fourier transform algorithm.
Finally. the average of Hgpy,4p among 12 patients was calculated.

Design of Artificial Vasomotor Center

With substitution of the averaged Hgp.,ap for Equation 4, the
instantaneous AP response to P, was simulated numerically, and a
stepwise decline with an amplitude of 20 mm Hg was imposed on the
BBS. While the feedback parameters of H,p_.spy, i€, K, and K, were
altered, the effect of the parameters on the AP response was
investigated. Finally, the parameters that enabled the BBS to quickly
and stably minimize the effect of P, on AP were determined.

Efficacy of BBS in a Clinical Model of

Transient Hypotension

The performance of the BBS was evaluated in a clinical model of
rapid transient hypotension (n=21). Rapid hypotension was evoked
by the sudden deflation of a thigh tourniquet, which is widely used
to achieve bloodless dissection during total knee arthroplasty.29-3!
Acute hypotension immediately after tourniquet release is a well-
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Figure 2. A, Representative example of
time series data of the response of AP to
random stimulation of the lower thoracic
spinal cord. According to quasi-white
noise, the STM was randomly altered
between 0 and 20 Hz. The AP seems to

slowly respond to STM with a delay. B,

Transfer function of the AP response to
the STM change. Data are expressed as
mean=SD for 12 patients. rad indicates
radians. See text for explanation.
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known phenomenon that results from a rapid decrease in peripheral
vascular resistance and an increase in venous pooling in the affected
limb.2? The degree of hypotension can be potentiated by the use of
volatile anesthetic agents such as sevoflurane, which are central
depressants of arterial baroreflex function.32-3* Therefore, tourniquet-
related hypotension during sevoflurane anesthesia can be used as a
model of orthostatic hypotension in central baroreflex failure.
Briefly, a tourniquet was applied to the upper femur and inflated
at 300 mm Hg for 60 minutes and then quickly deflated for 10
minutes. The procedure was then repeated. The BBS was activated
during 1 of the 2 trials of tourniquet-related hypotension, and the
electrical signals of STM, CVP, and AP were digitized at 100 Hz.

Statistical Analysis

The hemodynamic responses to tourniquet release were measured for
each subject while the BBS was being activated and inactivated. The
effects of the BBS execution on the hemodynamic changes at 10, 50,
and 100 seconds after tourniquet release were analyzed by paired ¢
tests with Bonferroni adjustment. Differences were considered sig-
nificant at overall P<<0.05.

Results
A representative example of original tracings of STM and AP
during random stimulation of the spinal cord is shown in
Figure 2A. Random on-off change in STM produced a
delayed and slow change in AP. The relationship between
STM and AP was quantitatively characterized by the fre-
quency domain analysis (Figure 2B). The averaged transfer

Frequercy (Hz)

function from STM to AP, Hgry . ap, had low-pass character-
istics with a corner frequency of 0.06 Hz. The gain factor was
0.43%£0.13 mm Hg - Hz™" at the steady state (lowest fre-
quency) and gradually decreased with input frequency. The
phase spectrum showed that the input-output relationship was
in phase and that the phase delay increased toward higher
frequencies. The squared coherence, a measure of linear
dependence between STM and AP, was >0.9 in the fre-
quency range of interest (data not shown).

The results of simulation for the design of the artificial
vasomotor center, Hyp_, gy, are presented in Figure 3. The AP
responses to the external disturbance P, were simulated under
12 different combinations with feedback correction factors.
Without feedback compensation, ie, when both feedback
correction factors were zero, there was no attenuation of the
effect of the external disturbance on AP. Therefore, AP fell
by 20 mm Hg immediately after the imposition of P, (Figure
3A, black line). By contrast, if either or both of the correction
factors were too large, the underdamped oscillatory response
of AP appeared, and the BBS became unstable. On the basis
of these results, K, was set at 1, and K; was set at 0.1, so that
the BBS could quickly and effectively attenuate the effect of
the external disturbance (Figure 3B, red line).

A representative example of the results of the perfor-
mance tests of the BBS is shown in Figure 4A. A sudden

K=0
K=0.05
K01
=) o N R K=0.2 =]
: :
£ 07 S £
%
% 0 &
w20 ~
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0 60 120 180 240 (1] 60 120 180 240 0 60 120 180 240
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Figure 3. Numerical simulations of a feedback controller of the BBS. A stepwise pressure decline with an amplitude of 20 mm Hg is
assumed to be imposed. Results are shown for 12 combinations of proportional (K} and integral (K} correction factors. See text for
explanation.
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Figure 4. A, Representative example of
original tracings of STM, AP, CVP, and
heart rate (HR) during 2 episodes of

rapid progressive hypotension induced

by sudden deflation of a thigh tourniquet

R e i in a patient. When the BBS was inactive

(blue line), AP decreased immediately
after tourniguet release and did not
return to baseline level. By contrast,
when the BBS was activated (red line),
the artificial vasomotor center automati-
cally computed STM and drove an elec-
trical stimulator to restore AP. B, Plots
showing averaged changes in STM, AP,
and CVP after toumniquet release among
21 patients. Data are expressed as mean
(solid line)=SD (dotted line). See text for
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deflation of the thigh tourniquet produced a rapid progres-
sive fall in AP of =20 mm Hg within 10 seconds, while
lowering CVP by 2 mm Hg. By contrast, when the BBS
was activated, STM was computed automatically, and the
spinal cord was stimulated appropriately to quickly and
effectively attenuate the drop in AP and CVP. Figure 4B
summarizes the results obtained from 21 patients, demon-
strating effectiveness of the BBS performance in buffering
the AP fall in response to the sudden release of the
tourniquet. As demonstrated in Figure 5, tourniquet release
resulted in an AP decrease of 173 mm Hg at 10 seconds,
252 mm Hg at 50 seconds, and 24*3 mm Hg at100
seconds. By contrast, during real-time execution of the
BBS, the decrease in AP was 9+2 mm Hg at 10 seconds,
122 mm Hg at 50 seconds, and 0X1 mm Hg at 100
seconds after the deflation. These data indicated that the
BBS significantly attenuated the decrease in AP at these 3
time points and nullified the hypotensive effect of tourni-
quet release within 50 seconds. Similarly, the BBS signif-
icantly suppressed the decrease in CVP within 50 seconds
after the release of the tourniquet.

Discussion

Design of BBS

On the basis of knowledge and technology of bionics, we
previously developed an artificial feedback control system
for automatic regulation of sympathetic vasomotor tone in
animal models of central baroreflex failure.°-22 As a
crucial first step to clinical application, we tested its
feasibility and efficacy in a clinical model of orthostatic
hypotension. A percutaneous epidural catheter approach

A Time afier tourniquel release (sec) B
10

10

ACVP {mmHg)
o
i3

¥ T T ¥ 1

60 80 100 explanation.

Time afier fouriquet release {sac)

was established for the monitoring of spinal function
during surgery and for pain management,?® and the lower
thoracic level was selected for spinal cord stimulation
based on earlier reports that the abdominal splanchnic
vascular bed is a major effector mechanism for arterial
baroreflex in animals®>?* and humans.?s Although the
percutaneous epidural approach is less invasive than im-
plantation surgery, spinal cord stimulation excites motor
and sensory nerves!222.28 in addition to sympathetic vaso-
motor efferents. Therefore, administration of sufficient
doses of muscle relaxants and analgesics was required
during experimental protocols. Under these conditions, the
dynamic response of AP to STM was easily characterized
by the white noise system identification method. Fuarther-
more, the quantitatively estimated results of transfer func-
tion analysis (Figure 2B) enabled simulation of the effects
of feedback correction factors?” on performance of the
BBS. As demonstrated in Figure 3, the simulation results
suggested that the specific combination of feedback cor-
rection factors could optimize the performance of the BBS.
On the basis of these results, the feedback correction
factors were determined to allow the BBS to quickly
stabilize AP against the external disturbances.

Efficacy of BBS

The present study utilized a tourniquet-related model of
hypotension?®-3! during general anesthesia®?3? to approx-
imate orthostatic hypotension due to central baroreflex
failure. Except for the change in peripheral vascular
resistance, the hemodynamic changes after tourniquet
deflation are similar to those achieved after upright tilt-

Time sfier tournique! release (sec)
100

Figure 5. Bar graphs showing changes
in AP (A) and CVP (B) at 10, 50, and 100
seconds after tourniquet release. Imple-
mentation of the BBS (red column) sig-
nificantly attenuated tourniguet-related
falls (blue column) in AP and CVP. Data
are expressed as mean*SD for 21
patients. *Overall P<0.05.
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ing.2»3 For example, tourniquet release results in a rapid
increase in venous pooling in the affected limb with a
subsequent decrease in venous return and cardiac output.
Under general anesthesia with volatile gases such as
sevoflurane,323* arterial baroreflex function is inhibited,
and the hemodynamic disturbance produced by the tourni-
quet inevitably results in abrupt hypotension. In rarve
instances, tourniquet deflation can also trigger fatal circu-
latory collapse.”

Despite the fact that the BBS was implemented with fixed
values of feedback correction factors for all patients, the BBS
successfully stabilized AP against the hemodynamic chal-
lenge induced by sudden tourniquet release (Figure 4). These
data indicate that the BBS may compensate for some indi-
vidual differences in the dynamic response of AP to STM.

Finally, the CVP response to STM (Figure 4) in the present
study suggests that the BBS attenuated 4 decrease in venous
return. Previous studies have demonstrated that the
baroreflex-mediated vasoconstriction in the splanchnic vas-
cular bed is a major mechanism for recruitment of venous
retarn during head-up tilting.3> Therefore, the BBS may
functionally mimic the baroreflex control of venous return
and control of AP.

Study Limitations

This study possessed several limitations. First, based on
the previous results?°-22 obtained from animal studies, the
stimulation electrodes were placed in the epidural space at
the level of the lower thoracic cord; however, further study
to determine the optimal site of electrode placement would
be of benefit. Second, it is unclear whether or not the
feedback controller designed in the present study is uni-
versally applicable to other cases. Although preset param-
eters for feedback correction were used in the present
study, other approaches based on a robust control theory
could yield a better result. Finally, the epidural catheter
method for sympathetic nerve stimulation is associated
with significant pain and discomfort. Thus, practical use of
the BBS requires an appropriate method for stimulating
only efferent sympathetic nerves.

Clinical Implications

The present study confirmed the efficacy of the BBS in a
clinical setting and suggests that the BBS has tremendous
potential as a new therapeutic modality for treatment of
severe orthostatic intolerance in patients with various syn-
dromes of central baroreflex failure, including Shy-Drager
syndrome, baroreceptor deafferentation, and traumatic spinal
cord injuries.
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CLINICAL PERSPECTIVE

Central baroreflex failure due to Shy-Drager syndrome, baroreceptor deafferentation, and traumatic spinal cord injuries
results in severe orthostatic hypotension. However, most commonly used interventions, such as salt loading, cardiac pacing,
and pharmacological approaches, can neither restore nor reproduce the functioning of a native vasomotor center. Here, we
proposed a novel therapeutic strategy against central baroreflex failure and developed a bionic baroreflex system (BBS).
The BBS consisted of a pressure sensor, computer, electrical stimulator, and epidural catheter with sympathetic nerve
stimulation electrodes. While automatically calculating the frequency of a pulse train in response to a change in arterial
pressure, the computer drove the stimulator at the appropriate frequency to stabilize arterial pressure against an external
disturbance. According to a parametric negative-feedback control theory, we designed an algorithm of the computer
functioning as an artificial vasomotor center. The efficacy of the BBS was tested in a clinical model of orthostatic
hypotension during knee joint surgery. Without the implementation of the BBS, a sudden deflation of a thigh tourniquet
resulted in rapid progressive hypotension. By contrast, during real-time execution of the BBS, arterial pressure was quickly
restored to the baseline level before tourniquet release. These results suggest the technical feasibility of functional
restoration of arterial baroreflex with the BBS.
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Nitric Oxide Stimulates Vascular Endothelial Growth Factor Production
in Cardiomyocytes Involved in Angiogenesis
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Abstract: Background: Hypoxia-inducible factor (HIF)-1aL regu-
lates the transcription of lines of genes, including vascular en-
dothelial growth factor (VEGF), a major gene responsible for an-
giogenesis. Several recent studies have demonstrated that a
nonhypoxic pathway via nitric oxide (NO) is involved in the acti-
vation of HIF-1c.. However, there is no direct evidence demon-
strating the release of angiogenic factors by cardiomyocytes
through the nonhypoxic induction pathway of HIF-1a. in the
heart. Therefore we assessed the effects of an NO donor, S-Ni-
troso-N-acetylpenicillamine (SNAP) on the induction of VEGF
via HIF-1o. under normoxia, using primary cultured rat cardi-
omyocytes (PRCMs). Methods and Results: PRCMs treated
with acetylcholine (ACh) or SNAP exhibited a significant produc-
tion of NO. SNAP activated the induction of HIF-1a. protein ex-

pression in PRCMs during normoxia. Phosphatidylinositol 3-ki-
nase (PI3K)-dependent Akt phosphorylation was induced by
SNAP and was completely blocked by wortmannin, a PI3K inhib-
itor, and NG-nitro-L-arginine methyl ester (L-NAME), a NO syn-
thase inhibitor. The SNAP treatment also increased VEGF pro-
tein expression in PRCMs. Furthermore, conditioned medium
derived from SNAP-treated cardiomyocytes phosphorylated the
VEGF type-2 receptor (Flk-1) of human umbilical vein endothe-
lial cells (a fourfold increase compared to the control group, p <
0.001, n=5) and accelerated angiogenesis. Conclusion: Our re-
sults suggest that cardiomyocytes produce VEGF through a
nonhypoxic HIF-1a induction pathway activated by NO, result-
ing in angiogenesis.

Key words: vascular endothelial growth factor, angiogenesis, cardiomyocyte, Flk-1, nitric oxide.

[

The prognosis of patients with chronic heart failure re-
mains poor because of progressive remodeling of the heart
and lethal arrhythmia [1]. It has recently been reported
that vagal nerve stimulation therapy markedly improved
long-term survival in an animal model of chronic heart
failure after myocardial infarction [2] and that acetylcho-
line (ACh) has a direct cardioprotective effect through the
PI3K-Aki-hypoxia-inducible factor (HIF)-1a. pathway [3,
4]. Nitric oxide (NO) is supposed to be one of the signal-
ing molecules induced by ACh; however, it remains to be
clarified whether NO is involved in angiogenesis through
the nonhypoxic induction pathway of HIF-1o and vascu-
{ar endothelial growth factor (VEGF), and is thereby relat-
ed to the cardioprotective effects of ACh or vagal nerve
stimulation.

VEGF is a key angiogenic factor and major target of
HIF-1a, which is produced by ischemic tissue and grow-
ing tumors [5-7]. Factors including VEGF secreted by
noncardiomyocytes are known to possess significant
paracrine effects on cardiomyocytes; however, the impor-
tance of such cardiomyocyte-derived factors as paracrine
or autocrine effectors on angiogenesis in the heart remains

to be elucidated. The HIF-1a protein level is usually regu-
lated by the oxygen concentration. During hypoxia, HIF-
1o, protein is stabilized by escaping from degradation
through von Hippel-Lindau tumor-suppressor protein
(VHL) [8, 9]. Furthermore, the PI3K-Akt signaling path-
way, which is known for the antiapoptotic functions [10,
11], is demonstrated to be involved in HIF-1a induction
[12]. Recently it has been revealed that besides hypoxia,
certain cytokines, growth factors, and NO increase the
HIF-1o protein level even under the normoxic conditions
in some specific cells [13-15]. To our knowledge, howev-
er, the involvement of NO in this signaling pathway in
cardiomyocytes under normoxic conditions remains to be
elucidated. Moreover, it is also unclear whether NO is in-~
volved in angiogenesis in the heart, though NO is associ-
ated with many aspects of cellular biology involved in cell
signaling, vasodilatory tone, and cell growth [16].

With this background, we speculated the nonhypoxic
induction of HIF-1a in the cardiomyocytes through NO-
mediated pathway and that NO plays another role in pro-
ducing an angiogenic factor through the pathway. To
prove this hypothesis, we assessed the effect of a NO do-
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