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Fig. 4 (continued)

3.3. PI3K/Akt Pathway for HIF-1o induction by ACh

Wortmannin completely inhibited the ACh-induced Akt
phosphorylation (Fig. 4D), in clear contrast to the data in
Fig. 4A. Furthermore, it also attenuated the HIF-lo induction
by ACh (Fig. 4E). To elucidate the contribution of Akt phos-
phorylation to HIF-1a protein level in normoxia, dn Akt was
introduced into HEK?293 cells, and found to partially inhibit
the HIF-1a induction by ACh (Fig. 4F).

3.4. Effect of ACh on apoptosis during hypoxia

The DePsipher assay clearly showed that hypoxia (1% oxy-
gen concentration) for 12 h caused mitochondrial membrane
potential collapse leading to cell death, and that 1 mM ACh
inhibited this collapse in H9¢2 cells (Fig. 5A). ACh attenuated
the decrease in MTT activity caused by 12 h of hypoxia in
H9¢2 cells (Fig. 5B; 103.4%0.8% in ACh+ hypoxia vs.
56.6 + 0.7% in hypoxia, P <0.01, n=8) and HEK293 cells
(P<0.01 vs. hypoxia). The caspase-3 activity was increased
by hypoxia in H9¢c2 cells, and pretreatment with 1 mM ACh
inhibited this increase (Fig. 5C; 128 £2% in hypoxia vs.
90 + 2% in ACh + hypoxia, P < 0.01, n = 4). To elucidate the
dependency of the ACh-induced protective effect on HIF-la,
dn HIF-1a was transfected into HEK293 cells, followed by
ACh pretreatment and then hypoxia. It was found that dn
HIF-1o, inhibited the protective effect of ACh from hypoxia
(Fig. 5D; 115.1£1.2% in wt HIF-lo and 111.8+ 1.8% in
GFP vs. 59.0 + 3.4% in dn HIF-1a, P <0.05, n = 10), suggest-
ing that HIF-1a induction by ACh is partially responsible for
the protective effect.

3.5. Effect of vagal stimulation on HIF-lo. in myocardial
ischemia
To evaluate the significance of ACh for cardioprotection in
vivo, the vagal nerve was stimulated prior to the M1. Histolog-
ical analysis demonstrated a tendency for the infarcted area

from the vagal nerve-stimulated (MI-VS) hearts to be smaller
than that from non-stimulated (MI) hearts (31.5 £ 4.6% in
MI-VS vs. 40.9 + 2.5% in MI, n=3), even though the risk
areas (non-perfused areas) were comparable (Fig. 6A;
59.2 + 1.0% in MI-VS vs. 53.7 % 1.0% in MI, n=3). In the
MI-VS hearts, the HIF-1a protein level was further elevated
compared to that in the MI hearts (Fig. 6B; 244 * 24% in
MI-VS vs. 112 + 1% in MI, n = 3). These results suggest that
vagal nerve stimulation in the ischemic heart activates both
the hypoxic and non-hypoxic pathways of HIF-lo induction,
resulting in increased induction of HIF-1a.

3.6. Non-hypoxic induction of HIF-1a in other cells

The observed ACh-mediated HIF-1 induction was not lim-
ited to H9c2 or primary cultured cardiomyocytes, but also
found in several other types of cell lines, including HEK293,
and HeLa cells (Fig. 7). Since these cells did not beat sponta-
neously, the results suggest that the system of ACh-mediated
HIF-1a induction is not only independent of the beating rate
of cardiomyocytes, but also a generally conserved system in
celis.

4. Discussion

4.1. Cardioprotective action by ACh and vagal stimulation via
the muscarinic receptor

Using animal models, several studies have shown that accen-
tuated antagonism against the sympathetic nervous system is a
major mechanism for the beneficial effect of vagal tone on the
ischemic heart {13]. Although ACh was involved in triggering
preconditioning mechanisms in an ischemia-reperfusion model
[3], it remained unclear whether vagal nerve stimulation in
acute ischemia or hypoxia followed these mechanisms. In
the present study, we have disclosed that ACh possesses a
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protective effect on cardiomyocytes. In rat cardiomyocytes,
ACh triggered a sequence of survival signals through Akt that
eventually induced HIF-1o, inhibited the collapse of the mito-
chondrial membrane potential and decreased caspase-3 activ-
ity, thereby leading to the survival of cardiomyocytes under
hypoxia. Furthermore, our results suggest ACh exerts this ac-
tion through Akt in other cells. The current study therefore
provides another insight into the cellular mechanism for the
cardioprotective effects of ACh and vagal stimulation.
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4.2. Signaling pathway of ACh via PI3KI/Akt and antiapoptotic
effects of ACh

Since previous studies demonstrated that a PI3K inhibitor
greatly reduced HIF-lo induction in heart and renal cells
[14,15] and a few studies have reported that MAP kinase is
activated through ACh, we focused on the PI3K/Akt pathway,
one of the important cell survival signaling pathways [16], and
found that ACh directly activated Akt phosphorylation via
PI3K. PI3K/Akt signaling has been reported to have an
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Fig. 5. Collapse of the mitochondrial membrane potential in rat cardiomyocytes under hypoxia is attenuated by ACh pretreatment. (A) Hypoxia
decreases the mitochondrial membrane potential in H9¢c2 cells within 12 h. Red spots are decreased by hypoxia, whereas pretreatment with 1 mM
ACh for 12 h inhibits this effect. (B) Pretreatment with 1 mM ACh inhibits the decrease in MTT reduction activity induced by 12 h of hypoxia not
only in H9¢2 cells (*P < 0.01 vs. hypoxia, # = 8) but also in HEK293 cells (*P < 0.01 vs. hypoxia, n = 8). (C) Hypoxia increases caspase-3 activity,
whereas pretreatment with 1 mM ACh inhibits this effect (*P < 0.01 vs. hypoxia, n = 3). (D) In contrast to wt HIF-1o or GFP, dn HIF-1a alone
decreases the MTT activity under hypoxia after ACh treatment (*P < 0.01 vs. wt and GFP, *P < 0.05 vs. non-transfection, n = 10).
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Fig. 6. Vagal nerve stimulation decreases infarcted area with increased
HIF-1a expression. (A) A quantitative analysis reveals comparable
non-perfused areas in both vagal-stimulated (MI-VS) and non-
stimulated (MI) hearts, whereas the infarcted area identified by TTC
staining is smaller in the MI-VS heart than in the MI heart. (B) HIF-1a
induction in the ischemic heart is increased by vagal stimulation (MI-
VS) compared with that in ischemia alone (MI) (*P <0.01 vs. MI)
(n=13).

antiapoptotic activity through various features, such as inhibi-
tion of Bad-binding to Bcl-2, caspase 9, Fas and glycogen syn-
thetase kinase-3 [17,18]. These facts imply a definite
involvement of Akt activation in cell survival. As shown using
dn HIF-1a, ACh inhibited hypoxia-induced cell death through
HIF-1u induction via Akt phosphorylation. These results indi-
cate that ACh actually protects cardiomyocytes from hypoxia
at the cellular level.

control 1 mM ACh
HEK293 HIF-1a
HelLa HiIF-1a

Fig. 7. HIF-1a is induced by ACh under normoxia in other cells. ACh
(1 mM) increases HIF-la protein level in HEK293 and HeLa cells
(n = 3 each) under normoxia.
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4.3. Additional induction of HIF-1u by ACh and vagal
stimulation

HIF-la regulates the transcriptional activities of very di-
verse genes involved in cell survival and is itself regulated
at the posttranslational level by VHL [4,6,7]. Recent studies
have shown that HIF-lo is also regulated through a non-
hypoxic pathway involving angiotensin II, TNF-a and NO
[8.9,19,20]. Therefore, it is speculated that cardiomyocytes
possess a similar system for regulating HIF-loo through
ACh, independent of the oxygen concentration. Induction
of HIF-1a is a powerful cellular response against hypoxia,
and further increases in its expression by other pathways
may be beneficial. The present results indicate that the sig-
nificance of ACh or vagal nerve stimulation in hypoxic
stress can be attributed to additional HIF-la induction
through dual induction pathways, i.e., hypoxic and non-hyp-
oxic pathways.

The present study has revealed that ACh-mediated HIF-la
induction is widely conserved in other cells. Consistent with
a previous report [10], the current results suggest that NO is
produced by ACh. According to a report that NO attenu-
ates the interaction between pVHL and HIF-la through
inhibiting PHD activity [21], it is possible that ACh may in-
crease the HIF-1a protein level through NO. Recent studies
conducted by Krieg et al. [3] and Xi et al. [22], have pro-
vided supportive data compatible with our results, while an-
other study by Hirota et al. [23] also revealed a non-hypoxic
pathway for HIF-1a induction by ACh in a human kidney-
derived cell line.

The signaling pathway of the muscarinic receptor has been
studied extensively, and many pathways are involved in its spe-
cific biological effects. Therefore, possible involvement of other
pathways in the non-hypoxic induction of HIF-la cannot be
excluded. However, it was demonstrated that dn Akt and dn
HIF-1a decreased the effect of ACh. Consistent with a recent
study [24], we have revealed that ACh or vagal stimulation
protects cardiomyocytes in the acute phase. This observation
suggests that the protective effect in the acute phase may result
in inhibition of cardiac remodeling in the chronic phase, since
vagal stimulation produces additional HIF-lo induction
through a non-hypoxic pathway, which increases cell survival.
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Abstract

Background/Aim: Among various kidney disease mod-
els, there are few rat glomerulonephritis {GN) models
that develop in a short time, and with mainly glomerular
lesions. Hypoxia-inducible factor (HIF)-1a is a transcrip-
tional factor that induces genes supporting cell survival,
but the involvement of HIF-1a.in attenuating the progres-
sion of GN remains to be elucidated. We developed a
new model of rat GN by coadministration of angioten-
sin Il {All) with Habu snake venom (HV) and investigated
whether HIF-1a is involved in renal protection. Methods:
Male Wistar rats were unilaterally nephrectomized on
day 1, and divided into 4 groups on day 0; N group (no
treatment), HV group, A group (All), and H+A group (HV
and All). To preinduce HIF-10, cobalt chloride (CoCly) was
injected twice before injections of HV and All in 11 rats.
Results: GN was detected only in the H+A group; ob-
served first on day 2 and aggravated thereafter. HIF-1a
was expressed in the glomeruli and renal tubules in the
A and H+A groups. In the H+A group, GN was remark-
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ably reduced by CoCl; pretreatment (44.9 10 12.2%, p <
0.01). Conclusion: Both HV and All were critical for the
development of GN, and HiF-1a remarkably attenuated
the progression of GN.

Copyright © 2005 S. Karger AG, Basel

Introduction

Many animal studies have been performed in attempts
to overcome the poor prognosis of chronic renal failure
due to ‘diabetic nephropathy and glomerulonephritis
(GN) [1-5]. Although factors involved in the pathogenesis
of GN have been intensively investigated, the develop-
ment of a proper animal GN model with high reproduc-
ibility and simplicity as well as a model without time-con-
suming process is required. Experimental rat models of
GN are classified into several groups in terms of the
pathophysiological mechanisms of renal diseases. Anti-
glomerular basement membrane nephritis was developed
with depositions of immune complex using anti-glomeru-
iar basement membrane antibody [3, 6], tubulointerstitial
injury was caused by cyclosporine A [4] and injury of
renal tubules by ischemia [5]. However, there are few rat
GN models with mainly pathological features in the glo-
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Fig. 1. Study Protocol. All rats are unilaterally nephrectomized on day 1 and divided info 4 groups on day 0. N group:
no injection of reagents. HV group: injection of 3.5 mg/kg of Habu snake venom (HV). A group: continuous adminis-
tration of 100 ng/min of angiotensin II (AII). H+A group: administration of HV and AIlL

meruli that are developed in a short time [7]. Angiotensin
II (AIl) is known to increase blood pressure through vas-
cular contraction, and to be profoundly involved in car-
diovascular hypertrophy and the contraction of intrarenal
arteries. All is also directly involved in the progression of
glomerulosclerosis via the effect of hyperfiltration with or
without hypertension [8, 9]. Many studies have revealed
important factors involved in the pathogenesis of GN or
factors aggravating GN, but evaluating further factors
that suppress the occurrence of GN is also crucial. To
investigate the features of renal protection, we focused on
hypoxia-inducible factor (HIF)-1a. HIF-1a, a transcrip-
tional factor with formation of a heterodimer with HIF-
1B [10], is post-transcriptionally regulated and its protein
level is elevated by hypoxia through inhibition of ubiqui-
tin-mediated degradation. HIF-1a is known to be a sur-
vival factor responsible for inducing lines of genes sup-
porting cell survival such as glucose metabolism (glucose
transporters and glycolytic enzymes), vasomotor regula-
tion (heme oxygenase-1 and endothelin-1), angiogenic
growth (vascular endothelial growth factor), and anemia
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control (erythropoietin and transferrin) [11-13]. Recent
studies have demonstrated that non-hypoxic stimuli like
All can also activate HIF-10 [14, 15], but the role of HIF-
lo induction in attenuating the progression of GN re-
mains to be elucidated. Accordingly, we developed a new
rat GN model by coadministration of AIl with Habu
snake venom (HYV) and investigated whether preinduc-
tion of HIF-1ua leads to renal protection.

Materials and Methods

Development of Rat GN Model

All experiments were approved by the institutional review board
for the care of animal subjects and were performed in accordance
with guidelines of Kochi Medical School. Nine-week-old male Wistar
rats (180-220 g) were purchased from Japan SLC (Shizuoka, Japan).
Rats were unilaterally nephrectomized on day 1. On day 0, the rats
were divided into 4 groups. In the first group, no treatment was per-
formed with any reagents or surgical procedure (N group, n = 6). In
the second group, rats were injected with 3.5 mg/kg of HV (Sigma-
Aldrich Co., Steinheim, Germany) through the femoral vein (HV
group, n = 11). In the third group, rats were continuously adminis-
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tered with AII (100 ng/min; Peptide Institute Inc., Osaka, Japan)
using Alzet osmotic pumps (DURECT Co., Cupertino, Calif., USA)
(A group, n = 11). In the fourth group, rats were administered with
both HV and AIl (H+A group, n = 22). Rats were sacrificed on day 1,
2, 3 or 4, and kidneys excised for histochemical analysis (fig. 1).

Measurement of Systolic Blood Pressure

Systolic blood pressure (SBP) was measured by the tail-cuff meth-
od with an electro-sphygmomanometer (BP-98A; Softron Co., To-
kyo, Japan). SBP was measured in conscious rats every day from day
1 to 2. The SBP value for each rat was calculated as the average of 3
separate measurements at each session. SBP measurement was per-
formed between 9 and 12 a.m. by a single blinded investigator.

Measurements of Serum Urea Nitrogen and Creatinine

Before the sacrifice, blood samples were obtained via an axillary
vein for determination of serum urea nitrogen (UN) and creatinine
(Cr) levels. Serum UN and Cr levels were determined enzymatically
with automation-analysis equipment (Hitachi 7350; Hitachi Co.,
Ibaragi, Japan) in our laboratory center.

Histological Analysis

To evaluate the progression of GN in our animal model, histolog-
ical analyses were performed using the periodic acid-Schift (PAS)
and periodic acid-methenamine silver (PAM) reagents. After the
specimens were paraffin embedded, 4-um-sectioned samples were
stained with PAS and PAM reagents and counterstained with hema-
toxylin. For quantitative analysis, the ratio of damaged glomeruli to
all glomeruli in the sectioned sample was calculated and the percent-
age of GN in the section was evaluated. Moreover, semiquantitative
analysis was performed to evaluate more precisely the morphological
changes of our GN model according to the protocol in previous stud-
ies [16, 17]. A minimum of 20 glomeruli (ranging from 20 to 60 glo-
meruli) in each specimen were examined and the scverity of the
mesangiolysis lesion was graded from 0 to 4+ according to the per-
centage of glomerular involvement; a 1+ lesion represented an
involvement of 25% of the glomerulus while a 4+ lesion indicated
that 100% of the glomerulus was involved. Thus, the mesangiolysis
score (MES) was then obtained by multiplying the degree of damage
(0 to 4+) by the percentage of the glomeruli with the lesion. Tubular
injuries including tubular necrosis or occlusion of collecting ducts by
cast material were graded as mild (1+), moderate (2+), or severe
(3+).

Western Blot Analysis

Nuclear protein from whole kidney was prepared using NE-PER
Nuclear and Cytoplasmic Extraction Reagents (Pierce Biotechnology
Inc., Rockford, I11., USA). Nuclcar protcin was clectrophoresed using
10% SDS-PAGE gels and transferred to polyvinylidene difluoride
membrane {(Immobilon-P; Millipore Corp., Bedford, Mass., USA). A
monoclonal IgG HIF-1a antibody 067 (Novus Biological, Littleton,
Colo., USA) was used; a horseradish peroxidase-conjugated antibody
(Promega Co., Madison, Wisc., USA) was used as a secondary anti-
body. The ECL Western blotting systems (Amersham Bioscience,
Uppsala, Sweden) was used for detection.

Immunohistochemical Analysis

Paraffin sections including the samples were dewaxed in xylene
and rehydrated in a series of ethanol, and then washed in distilled
water before staining procedures. According to the instruction pro-

HIF-10 in Glomerulonephritis

vided by the manufacturer, HIF-1a was identified with rabbit poly-
clonal anti-HIF-1a antibody H-206 (Santa Cruz Biotechnology, Cal-
if., USA) utilizing the catalyzed signal amplification system (Dako,
Hamburg, Germany) based on the streptavidin-biotin-peroxidase
rcaction. Antigen retrieval was performed for 5 min in a preheated
Dako target retrieval solution using a microwave. Incubation proce-
dures were performed in a humidified chamber. Following the incu-
bation, specimens were washed 3 times in TBST buffer. The specific-
ity of staining was confirmed by substitution of the primary antibody
for a normal rabbit IgG and additionally by an immunohistochcmi-
cal reaction without a primary antibody but with the secondary anti-
body alone.

An Experiment Using Cobalt Chloride as a Pretreatment

Rats were twice subcutaneously administered 30 mg/kg of cobalt
chloride (CoCl,) at a 12-hour interval (CoCl; group) (n = 11), fol-
lowed by unilateral nephrectomy. Then, the rats were administered
with HV and All. As a comparison, rats were injected with 0.9%
NaCl solution instead of CoCl,, followed by the same protocol as the
CoCl; group (n = 11). After CoCl, administration, however, before
injection of HV and All, a kidney was excised as a sample to examine
expression level of HIF-1a (CoCl, Pre). Likewise, 2 days after admin-
istration of HV and All, a kidney was also excised (CoCl; Day 2). To
compare the expression level of HIF-1a by CoCl, before GN and the
severity of pathology of GN, we investigated whether preinduction of
HIF-1a is involved in renal protection.

Statistical Analysis

Data are reported as mean + SEM. A paired t test was used for
paired samples and Student’s t test was used to compare the 2 groups.
One-way layout analysis of variance or repeated measures of analysis
of variance were used to compare multiple groups. If the p value was
significant, Scheffé’s multiple comparison was performed. A p value
<0.05 was considered significant.

Resuits

AII Combined with HV Developed GN

Morphological studies using PAS and PAM staining
revealed that there are no glomerular or tubular injuries in
N group (fig. 2a), HV group (fig. 2b), A group (fig. 2¢),
however, GN was detected only in the H+A group
(fig. 2e). Although renal tubular casts were observed, glo-
merular changes were scarcely observed on day 1 after All
and HV administration (fig. 2d, 3). GN was initially de-
tected on day 2 (fig. 2e, f, 3), followed by further aggrava-
tion during the time course (data not shown). Renal tubu-
lar injury including tubular necrosis was not remarkable,
and extensive cellular infiltration was not found in the
interstitial regions (fig. 3). On the other hand, characteris-
tic focal and segmental mesangiolysis, explained as capil-
lary aneurysmal ballooning, was observed with dilatation
of glomerulus (fig. 2e, f). The rate of occurrence of GN on
day 2 was 44.9 + 2.6%, and the MES score of the H+A
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group was 199 % 15 (fig. 3). On the other hand, in the HV
group, less than 2% had morphologic changes of mesan-
giolysis during 4 days, and the MES score was 10 = 5
(fig. 2b, 3). Moreover, in the A group, there were no mor-
phologic changes during the time course (fig. 2¢).

Changes in Serum UN and Cr

Serum UN and Cr were 18.4 = 0.7 and 031 %
0.01 mg/dl, respectively, on day 2 in the N group. In the
H+A group, serum UN and Cr levels increased to 41.5 ®
4.0 and 0.57 + 0.05 mg/dl, respectively, on day 2; signifi-
cantly higher than those in the N group (fig. 4a, b). In con-
trast, serum UN and Cr levels in the H+A group on day 1
(240 + 1.8 and 0.42 = 0.02 mg/dl, respectively) were
similar to the level of the N group. There were no signifi-
cant differences in serum UN and Cr level among the HVY,
A and N groups.

SBP Response

SBP values of each group are shown in figure 4c.
There were no significant differences in SBP after ne-
phrectomy among the 4 groups. Administration of All
caused a significant increase of SBP on day 1 (186 £
4 mm Hg) and persisted to day 2 (192 1 mm Hg). SBP
in the H+A group on day 2 (183 £ 3 mm Hg) was compa-
rable to that in the A group. Administration of HY had no
influence on SBP during the 2 days.

Expression Level of HIF-1a Protein

Western blot analysis revealed that the expression level
of HIF-1a protein increased in the H+A and A groups
(fig. 5a), compatible with the results of immunohisto-
chemical analysis. Expressions of HIF-la protein were
observed in the A and H+A groups, but protein expres-

Fig. 2. Glomerulonephritis is developed with the combination of HV
and AIl, and HIF-1o is induced in the intact glomeruli. There are no
glomerular or tubular injuries in N group (a), HV group (b), A group
(¢) and H+A group on day 1 (d). Damaged glomeruli, characterized
by extensive mesangiolysis, are observed in H+A group on day 2.
PAS staining. Magnification, x 100 (e). Focal and segmental mesan-
giolysis with large capillary aneurysmal ballooning are observed in
the H+A group on day 2. PAM staining. Magnification, x400 ).
The number of GN was significantly less in pretreatment with CoCly
than without. PAS staining. Magnification, x 100 (g). Immunoreac-
tive HIF-1a-positive signals are not detected in the N group (h).
Nuclear HIF-1a signals are observed in a glomerulus and tubules in
the A group. Magnification, x200 (D). A glomerulus in the H+A
group on day 2 possesses intact cells with HIF-1o-positive signals; in
contrast, other parts have few HIF-1a signals due to mesangiolysis.
Magnification, %200 ().

HIF-10 in Glomerulonephritis
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Fig. 3. Semiquantitative analysis of morphologic changes in our glo-
merulonephritis model. The main lesion in the H+A group is initially
detected on day 2 as mesangiolysis in glomeruli; however, there are
no tubular lesions of necrosis except for tubular casts; in contrast,
there are no morphological changes in the N and A groups. MES =
Mesangiolysis score.

sion was not detected in the N and HV groups. These data
suggest that HIF-1a was induced mainly by All, and, at
least in part, was related to the pathogenesis of GN or to
the defense mechanism against the progression of GN.

Induction of HIF-1a in Glomeruli and Renal Tubules

Immunohistochemical study demonstrated positive
nuclear staining of HIF-1o in glomeruli, renal tubules
(fig. 2i, j), collecting ducts and epithelium of the papilla
(data not shown) in the A and H+A groups. In contrast, no
positive nuclear signals were detected in the N (fig. 2h)
and HV (data not shown) groups. HIF-10-positive cells
were mainly detected in mesangial cells in glomeruli
(fig. 21, j). As demonstrated, especially in the H+A group
(fig. 2j), HIF-1a. was expressed in the intact part of the
glomerulus, but not in the injured part of the same glo-
merulus. Furthermore, nuclear HIF-lo-positive signals
were observed in smooth muscle cells in peripheral renal
arteries (data not shown).

CoCl, Pretreatment Inhibits the Progression of GN

To further investigate whether HIF-1a is involved in
the development of nephropathy or in the antiprogressive
action, we pretreated rats with CoCl,. As demonstrated in
figure Sb, pretreatment with CoCl, increased HIF-10 ex-
pression before administration of HY and AIl (Pre-1),

Nephron Exp Nephrol 2005;100:¢95-¢103 €99




p<0.05
p <0.01
50 4 7 0.7 I |
0.6 NS
40 4
0.5 I
T 307 1 3 0.4
o o
E £
T 0.3
Z 20 G
0.2 -
10
0.1
[ 0
N HV A Day 1 Day 2 N HV A Day 1 Day 2
a H+ A b H+A
200 ~ "
——
0.01
-o- HV p<
1804 | ——A === -9 p<0.01
—o-H+A
£ 160 -
£
E
@ 140
w
120 =3NS
100 T T T |
-1 0 1
c Day

Fig. 4. Serum UN, Cr and SBP are increased with the combination of HV and AIl. The serum UN (a) and Cr (b)
levels in the H+A group on day 2 are significantly higher than other groups. SBP increases significantly with adminis-

tration of AIl (A and H+A groups) (c).

suggesting that HIF-1o. was induced by CoCl, before
development of GN. Even on day 2, the expression level
of HIF-1u, was increased in the CoCl; group (CoCl, Day
2-1). In the CoCl, group, focal mesangiolysis with glomer-
uli enlargement was still observed, but the number of GN
was much less than in those without CoCl, pretreatment
(fig. 2g).

Thus, 7 of 11 rats (63.6%) with CoCl, pretreatment
were rescued from GN alone, while the other 4 (36.4%)
were not; showing a comparable severity level of GN with
the non-CoCl, group. As demonstrated in figure Sb, un-
like Pre-1, Pre-2 did not induce HIF-1a with CoCl; and
showed no CoCl; suppression of GN. The ratio between
rats rescued or not rescued from GN was comparable with
that between preinduction and noninduction of HIF-1a

el00 Nephron Exp Nephrol 2005;100:¢95-¢103

by CoCl, as demonstrated in figure 5¢. In the CoCl,
group, the rate of GN from each rat decreased to 12.2 =+
2.1%, which was in great contrast to 44.9 + 2.6% in the
non-CoCl, group. Furthermore, serum UN and Cr levels
on day 2 were significantly lower in the CoCl, than in the
non-CoCl; group (p < 0.05) (fig. 6a, b), despite compara-
ble SBP values between the 2 groups (fig. 6¢).

Discussion

In this study, we developed a new model of GN

" induced by both HV and AIl This model has several dis-

tinct characteristics. First, GN developed rapidly, and
was detected on the second day after administration of
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Fig. 5. The protein level of HIF-1a is increased by administration of
HYV and AlL and pretreatment of CoCly increases HIF-10 expression
before development of GN. HIF-1u is not detected in the N and HY
groups (Day 2). However, HIF-1u is detected in A (Day 2) and H+A
(Days 1 and 2) groups (a). The CoCl, group, in accord with the level
of HIF-1¢ induction, was divided into 2 groups. HIF-1a is greatly
induced before the development of GN (CoCl, group Pre-1), and is
followed by a high level (CoCl; group Day 2-1); in contrast, it is not

HIF- 10 in Glomerulonephritis

efficiently induced (CoCl, group Pre-2), and also is scarcely detected
on day 2 (CoCl, group Day 2-2) {b). The rate of preinduction of HIF-
1o, by CoClpis comparable with that of the inhibition of GN by CoCl,
(c).

Fig. 6. Pretreatment with CoCl, attenuates GN. Serum UN (a) and
Cr (b) levels in the CoCl, group on day 2 are significantly decreased
compared to those in the non-CoCl; group. There is no significant
difference in SBP between the CoCl; and non-CoCl; groups (¢).
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HV and AIl. Many models of GN have been reported
including 5/6 nephrectomized and Thy-1.1 nephritis
models {18, 19]. However, these models take a long time
to develop nephropathy. In contrast, our protocol induced
GN in 2 days, suggesting that one of the advantages our
model has over others is in terms of the time course. Fur-
ther, pathological findings were restricted to glomerular
regions without remarkable tubular or interstitial lesions.
Since our GN model developed within 2 days, it also has
advantages for disclosing the specifically critical time
point of the development of GN. Furthermore, the devel-
opment rate of GN was almost 100%, indicating the high
reproducibility of our model. This basis of the rat model
was initially developed by Bamnes et al. [20] who reported
that the progression of All-induced renal injury was accel-
erated by pre-existing injury induced by HV; our model,
which now optimizes the reproducibility of GN, is a mod-
ification of theirs.

Habu-induced nephropathy was reported to develop
within 1 day by a dose of 2.0-4.0 mg/kg HV (in our model
3.5 mg/kg) and the main pathological change was ‘mesan-
giolysis’ {21, 22]. However, for reasons we have not as yet
ascertained, in our study no rats showed Habu-nephropa-
thy-specific pathological findings during the first week in
the HV group. On the other hand, All is one of the major
factors responsible for the pathogenesis of GN, because it
remarkably increases glomerular pressure causing hyper-
filtration, production of extracellular matrix and expres-
sion of lines of genes involving GN [23-25]. Further,
since AIl has some ischemic effects on the kidneys, there
is the possibility that an All-induced ischemic effect
causes the GN depicted in our model. However, as dem-
onstrated in this study, glomerular injury was predomi-
nantly observed, and was not associated with renal tubu-
lar lesions, i.e. tubular necrosis suggesting renal ischemia.
Therefore, in accordance with the pathological character-
istic of this GN, All-induced renal ischemia may not be
responsible for its development in our model. Additional-
ly, in this study, SBP increased in the A and H+A groups,
but GN was not induced in the A group. Therefore, GN in
our model was induced not by HV or All alone, but by the
combination of HV and All, independent of any increase
in systemic blood pressure.

HIF-1a is a master transcriptional factor, transactivat-
ing the expression of many genes important for cell sur-
vival under hypoxic conditions [11-13, 26]. These genes
are responsible for glycolysis, angiogenesis, proliferation
and iron metabolism, all of which are induced by hypoxic
stress; thus, the induction of HIF-1a is a marker of hypox-
ia. HIF-1a is regulated at the post-translational level by
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the proteasome system through ubiquitination with von
Hippel-Lindau (VHL) protein [27, 28]. As previously
reported, this regulation of HIF-1a protein level is depen-
dent on the concentration of oxygen. Hypoxia induces
enhancement of HIF-1o protein stability leading to the
elevation of the protein level due to inhibition of degrada-
tion by VHL. Therefore, hypoxia induces adaptation in
cells including induction of HIF-1¢; the hypoxic pathway.
On the other hand, a line of evidence recently accumu-
lated suggests that HIF-1a is also regulated independently
of oxygen concentration through the nonhypoxic pathway
[14, 15]. AII is reported to regulate HIF-1¢, both at tran-
scriptional and post-translational levels in vascular
smooth muscle cells cultured under normoxic condition
through the AIl type 1 receptor [14, 15]. Moreover, HIF-
Lo is also post-translationally regulated in several cell
lines in the presence of tumor necrosis factor-a or nitric
oxide independent of oxygen contents [29, 30].

As demonstrated in this study, immunoreactivity of
HIF-1a was not detected in the N group (no treatment

- group), but HIF-1a was detected in the nuclei of glomeru-

lar, tubular and epithelial cells of the papilla by adminis-
tration of AIl alone or AIl and HYV together. This is the
first evidence showing that HIF-1o was detected in the
kidney by AIl, independent of systemic hypoxic stress. As
indicated here, HIF-1a was found to be expressed only in
intact, not damaged glomeruli. Even within a glomerulus,
only the intact part of glomerular cells expressed HIF-1aq.
Considering the fact that induction of HIF-1a is one of the
defense mechanisms for cell survival [31-33], our data
indicate that induction of HIF-10. is a marker of glomeruli
survival; indeed, it could be a marker of renal protection.

To further investigate whether HIF-1a is involved in
the progression or protection of GN, preinduction of HIF-
la was performed with CoCl, before administration of
HYV and AIl. Surprisingly, the induction of HIF-1¢ by
CoCl, pretreatment attenuated the progression of GN; the
level of GN was reduced from 44.9 to 12.2% and the inci-
dence of GN was reduced from 100 to 36.4%. Further-
more, as indicated, the preinduction of HIF-1a actually
affects the inhibition of GN, because the rate of HIF-1g,
induction was parallel with that of the attenuation of GN.
Therefore, our data suggest that HIF-1a is involved, at
least in part, in the defense mechanism against the pro-
gression of GN, and hence could be a marker for renal
protection.

All is reported to induce HIF-10 [14, 15] and plays a
partial role in the renal protective effect; however, the oth-
er effects of All, such as increasing glomerular pressure
and modulating gene expression involving in the renal
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failure, may overcome any protective effect of All-

induced HIF-1a, and so as a result it may lead to the pro-
gression of GN.

In conclusion, we developed a highly reproducible GN
model by combining HV and AIL Preinduction of HIF-1a
remarkably attenuated the progression of GN, indicating
that HIF-1a was involved in the defense mechanism of

the kidney.
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Artificial Baroreflex
Clinical Application of a Bionic Baroreflex System

Fumiyasu Yamasaki, MD; Takahiro Ushida, MD; Takeshi Yokoyama, DDS; Motonori Ando, PhD;
Koichi Yamashita, MD; Takayuki Sato, MD

Background—We proposed a novel therapeutic strategy against central baroreflex failure: implementation of an artificial
baroreflex system to automatically regulate sympathetic vasomotor tone, ie, a bionic baroreflex system (BBS), and we
tested its efficacy in a model of sudden hypotension during surgery.

Methods and Results—The BBS consisted of a computer-controlled negative-feedback circuit that sensed arterial pressure
(AP) and automatically computed the frequency (STM) of a pulse train required to stimulate sympathetic nerves via an
epidural catheter placed at the level of the lower thoracic spinal cord. An operation rule was subsequently designed for
the BBS using a feedback correction with proportional and integral gain factors. The transfer function from STM to AP
was identified by a white noise system identification method in 12 sevoflurane-anesthetized patients undergoing
orthopedic surgery involving the cervical vertebrae, and the feedback correction factors were determined with a
numerical simulation to enable the BBS to quickly and stably attenuate an external disturbance on AP. The performance
of the designed BBS was then examined in a model of orthostatic hypotension during knee joint surgery (n=21).
Without the implementation of the BBS, a sudden deflation of a thigh tourniquet resulted in a 17+3 mm Hg decrease
in AP within 10 seconds and a 252 mm Hg decrease in AP within 50 seconds. By contrast, during real-time execution
of the BBS, the decrease in AP was 922 mm Hg at 10 seconds and 1:£2 mm Hg at 50 seconds after the deflation.

Conclusions—These results suggest the feasibility of a BBS approach for central baroreflex failure. (Circulation. 2006

113:634-639.)

Key Words: baroreceptors @ blood pressure @ computers B electrical stimulation ® nervous system, sympathetic

he arterial baroreflex acts to maintain cerebral perfusion

by quickly attenuating the effect of an external distur-
bance, such as the assumption of an upright position, on
arterial pressure (AP).!-* Therefore, functional restoration of
dynamic properties of the arterial baroreflex is essential for
the treatment of patients with various syndromes of barore-
flex failure,’ including Shy-Drager syndrome,®-° barorecep-
tor deafferentation,®-!! and traumatic spinal cord injuries.'>'?
However, most commonly used interventions, including salt
loading,'+15 cardiac pacing,'¢'7 and adrenergic agonists,'8-1?
can neither restore nor reproduce the functioning of the native
vasomotor center, and most affected patients remain
bedridden.

Clinical Perspective p 639

We recently developed a framework for identifying an
operational rule of the vasomotor center and a prototype of a
bionic baroreflex system (BBS) in rats.20-22 The BBS con-
sisted of a negative-feedback system controlled by a com-
puter (ie, the artificial vasomotor center) that sensed AP and
automatically computed the frequency of a pulse train re-

quired to stimulate sympathetic efferent nerves through a pair
of wire electrodes placed in the celiac ganglion. Previous
experimental work demonstrated that the BBS restored native
baroreflex function in rats with central baroreflex failure;
however, an applicable neural interface with quick and
effective controllability of AP is required for application of
this technology in the clinical setting. The goal of the present
study was to determine the efficacy of a novel bionic
technology for the intraoperative restoration of AP in the
context of central baroreflex failure and to validate this
technology in a clinical model of orthostatic hypotension.

Methods

All studies were approved by the institutional review committee, and
all subjects gave informed consent.

Theoretical Considerations

As previously described,20-2? the principle of the BBS is based on a
negative-feedback mechanism (Figure 1). The instantancous AP is
measured by a pressure transducer connected to a compuier that
functions as a controller or artificial vasomotor center. Instead of the
disabled native vasomotor center, the controller automatically exe-
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