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Abstract

The dystroglycan (DG) complex, composed of two subunits aDG and BDG, interacts with
the sarcoglycan complex to form the dystrophin-glycoprotein complex. aDG is a cell
surface peripheral membrane protein which binds to the components of the extracellular
matrix, while BDG is a type I integral membrane protein which anchors aDG to the cell
membrane via the N-terminal extracellular domain. Although defects of the DG gene have
not been identified as the primary causes of hereditary diseases in humans, secondary but
significant abnormalities of the DG complex have been revealed in a number of muscular
dystrophies. In this article, we characterize the matrix metalloproteinase (MMP) activity
that disrupts the DG complex by cleaving the extracellular domain of BDG and discuss if
this MMP plays a role in the molecular pathogenesis of muscular dystrophies. We also
address the therapeutic potential of the drugs that inhibit this MMP activity to decelerate

muscle degeneration in these diseases.
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I. Introduction: Molecular organization of the
dystroglycan (DG) complex

The DG complex is a cell membrane-spanning
complex composed of two subunits DG and BDG [13].
In muscle, the DG complex interacts with the
sarcoglycan complex to form the dystrophin-
glycoprotein complex. aDG is a cell surface peripheral
membrane protein which binds to the components of the
basement membrane, laminin, agrin and perlecan, while
BDG is a type I integral membrane protein which
anchors aDG to the cell membrane via the N-terminus
of the extracellular domain and binds to the cytoskeletal
protein dystrophin via the C-terminal cytoplasmic
domain [8, 13, 20, 27, 29]. Thus, the DG complex
provides a tight link between the extracellular matrix
(ECM) and intracellular cytoskeleton via the cell
membrane. At present, the role of the DG complex in
the assembly and maintenance of the basement
membrane remains controversial [7, 11, 15, 30].

These recent findings indicate that the DG complex
needs to be disrupted efficiently when tissue remodeling
takes place in various conditions and suggest that a
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specific device may exist for this purpose [31]. As such
a device, we have recently identified a matrix
metalloproteinase (MMP) activity that cleaves the
extracellular domain of BDG [31]. In this paper, we
characterize this MMP activity and discuss its role in
the molecular pathogenesis of muscular dystrophies. We
also address the therapeutic potential of MMP inhibitors
to decelerate muscle degeneration in these diseases.

II. Characterization of the MMP activity that
disrupts the DG complex

In skeletal muscle, BDG is detected as a single 43-kDa
band (BDGsy) by immunoblot analysis using the
monoclonal antibody 43DAG/8D5 against the C-
terminal cytoplasmic tail of BDG [1, 31} (fig. 1).
43DAG/8DS also detects a 30-kDa fragment of BDG
(BDGsy) in several non-muscle tissues [31]. We clarified
the tissue distribution of BDGj by immunoblot analysis
of various bovine tissues using 43DAG/8D5. " BDGsg
was detected in peripheral nerve, smooth muscle, lung
and kidney, whereas it was obscure or undetectable in
cardiac muscle, skeletal muscle, cerebrum and
cerebellum [31].
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Fig. 1. Schematic model of the MMP activity (DG-
MMP) that disrupts the DG complex by cleaving
the extracellular domain of BDG.

To compare the biochemical properties of BDGs, with
BDGgy, we performed extraction analysis of the crude
membranes of bovine peripheral nerve and rat RT4
schwannoma cells, which express both BDGg,y and
BDG30 [31] Although BDGfull and BDG30 were both
extracted by 2% Triton X-100, they were not extracted
by pH 11 or by 10 mM EDTA [31]. Because DG is a
type I integral membrane protein having a single
transmembrane domain, these results indicate that
BDGsp retains this transmembrane domain. Also
because BDGy is recognized by 43DAG/8DS directed
against the C-terminus of the cytoplasmic domain of
BDG, these results indicate that the predicted cleavage
site exists in the extracellular domain of BDG and
BDGgy is its C-terminal fragment.

To test the hypothesis that MMP may be responsible
for the processing of PDGpy into BDGasg, we cultured
RT4 cells in the presence or absence of N-biphenyl-
sulfonyl-phenylalanine hydroxamic acid (BPHA),
which is a highly specific hydroxamate MMP inhibitor
[19], harvested the living cells and performed
immunoblot  analysis using 43DAG/8D5. BDG;,
decreased with increasing concentrations of BPHA (31}
We also tested the effects of 1,10-phenanthroline, which
is a transition metal ion chelator and well established as
a MMP inhibitor. Because RT4 cells did not grow well
in the presence of 1,10-phenanthroline, we instead
incubated the total homogenates of harvested RT4 cells
in the presence of 1,10-phenanthroline at 37°C for
varying time periods. 1,10-Phenanthroline inhibited the
proteolysis of BDG in a concentration-dependent
manner (Fig. 2). These results indicate that BDGag is the
processing fragment by MMP and that this MMP is
active for the living RT4 cells. We tentatively refer to
this MMP activity as DG-MMP in this article.

We next tested the effects of another newly developed
hydroxamate derivative, (2R)-3-(1H-Indol-3-y1)-2-[4-
(2-phenyl)-2H-tetrazol-5-yl] benzenesulfonylamino]
propionoc acid (MMI-166), which has a narrower range
of inhibitory activity than BPHA [18]. When RT4 cells
were cultured in the presence of BPHA or MMI-166,
BPHA, but not MMI-166, inhibited the proteolysis of
BDG in a concentration-dependent manner (Fig. 3). In
addition, BPHA, but not MMI-166, inhibited the
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Fig. 2. 1,10-Phenanthroline inhibits the processing of
BDG by DG-MMP. Afier 3 days of culture, RT4
cells were harvested, homogenized and then
incubated in the presence or absence of 1,10-
phenanthroline at 37°C for various time periods.
The  homogenates — were  analyzed by
immunoblotting  using  43DAG/8DS.  1,10-
Phenanthroline inhibited the proteolysis of DG
in a concentration-dependent manner.

proteolysis of BDG when added to the total
homogenates of harvested RT4 cells (not shown). Based
on the inhibitory profiles of these reagents [18, 19], we
presume that DG-MMP 1s distinct from MMP-1, MMP-
2/MMP-14 or MMP-9. To clarify if DG-MMP is
present in RT4 cells themselves or secreted into the
culture medium, RT4 cells were harvested,
homogenized and then incubated at 37°C for various
times. PBDGg, decreased and BDG;, increased with
time, indicating that DG-MMP was present in RT4 cells
themselves, not sccreted into the culture medium [31].
We are currently investigating the possibility that DG-
MMP might be a membrane-type MMP.

To know if the processing of BDG by DG-MMP
affects the integrity of the DG complex, we performed
sucrose density gradient sedimentation analysis of RT4
cell membranes. BDGyy, but not BDGjp, co-sedimented
with aDG (Fig. 4). We isolated the DG complex from
the RT4 cell membranes by laminin affinity
chromatography. BDGy,; co-isolated with aDG, which
bound to laminin-Sepharose directly as a laminin-
binding protein [31]. However, BDGs did not co-isolate
with aDG [31]. We isolated the DG complex from the
RT4 cell membranes by wheat germ agglutinin (WGA)
affinity chromatography. oDG and BDGny were
completely absorbed by WGA-Sepharose and recovered
in the eluates [31]. However, BDG;o was not absorbed
and undetectable in the eluates [31]. All together, these
results indicate that BDGgy, but not BDGs, is
complexed with aDG and thus that the MMP cleavage
of BDG into BDG3, disintegrates the DG complex. This
is consistent with the report that the aDG-binding site
exists in the N-terminus of the extracellular domain of
PDG [27], since PDGy, is the C-terminal fragment of
the cleavage. Because aDG and BDG are responsible
for the binding to the ECM and cell membrane
respectively, DG-MMP disrupts the link between the
ECM and cell membrane via the DG complex.



Dystroglycan processing by MMP in muscular dystrophy

HI. Implications of DG-MMP in the pathogenesis
of diseases

1. Cancer invasion/metastasis and infectious diseases

The aforementioned findings will have important
implications in an array of pathological phenomena. For
instance, it has been shown recently that certain
carcinoma cell lines express B-DGjyp abundantly [17].
Taken together with our results, carcinoma cells are
presumed to employ DG-MMP to disrupt the
dystroglycan complex. This will enable carcinoma cells
to metastasize and invade other tissues. Interestingly in
this respect, BPHA has been developed as a drug to
inhibit cancer spread and metastasis [18, 19].

Processing of pDG by DG-MMP may also play a role
in the molecular pathogenesis of viral and bacterial
infections. It has been shown recently that pathogens
such as arena viruses (several strains of lymphocytic
choriomeningitis virus and Lassa fever virus) and
Mycobacterium leprae bind to the cell surface oDG as
an initial step of host cell infection [5, 23, 26].
Therefore, DG-MMP might be a natural defense
mechanism against these pathogens, in analogy to
matrilysin (MMP-7), which has been shown to play a
defensive role against microorganisms in mucosal
epithelial cells [16].

2. Muscular dystrophies

Another situation where DG-MMP is implicated is the
molecular pathogenesis of hereditary neuromuscular
diseases. Over the last 10 years, primary genetic defects
have been identified in a number of these diseases.
However, the precise molecular pathways by which the
primary defects lead to muscle cell degeneration
eventually in these diseases have not necessarily been
clarified. Studies to elucidate the biological functions
and dysfunctions of the proteins which work in close
concert with the causative proteins in vivo will be useful
in this context. As such, a research on DG processing by
DG-MMP could provide us precious clues concerning
the molecular pathogenesis of muscular dystrophies
caused by the primary defects of the components of the
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Fig. 3. BPHA, but not MMI-166, inhibits the processing
of DG by DG-MMP. Various concentrations of
BPHA or MMI-166 were added to the culture
medium of RT4 cells. After 3 days of culture,
cells were harvested, homogenized and analyzed
by immunoblotting using 43DAG/8DS5. While
BPHA inhibited the proteolysis of DG in a
concentration-dependent manner, MMI-166 did
not.
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proteins, because abnormalities of the DG complex are
well known in theses diseases.

For instance, defective glycosylation of oDG has been
demonstrated in several forms of congenital muscular
dystrophies, including Fukuyama-type congenital
muscular dystrophy, MDCIC/LGMD2I, muscle-eye-
brain disease, Walker-Warburg syndrome and Large™*
mice, which are the model animals of congenital
muscular dystrophy [2, 3, 9, 10, 14, 21, 32]. These
diseases are all caused by the primary defects of the
genes encoding glycosyltransferases, which are
presumed to disturb glycosylation of aDG. Because
glycosylation of aDG is crucial for the binding of
laminin [6, 20), its defect is expected to perturb this
binding and result in the disruption of the ECM-cell
membrane linkage via the DG complex. This scenario is
supported by the finding that the antibody against the
carbohydrate residues of aDG involved in the binding
of laminin induced a dystrophic phenotype in cultured
muscle cells [4].

Another intriguing example is sarcoglycanopathy.
Having the mutation of the 3-sarcoglycan gene, a
genomic  deletion including the first  exon,
cardiomyopathic hamsters are the model animals of
sarcoglycanopathy LGMD2F [22, 25]. It is noteworthy
that DG has been shown to be dissociated from BDG
and not recovered in the membrane fraction in the
muscle of these animals [24, 28]. It has also been shown
that aDG is reconstituted into the DG complex when
dystrophic changes are corrected by the adenovirus
transfer of the 8-sarcoglycan gene [12]. Furthermore,
similar observations have been reported in other types
of sarcoglycanopathies and their model animals. Based
on these observations, we are currently analyzing the
activity of DG-MMP in cardiomyopathic hamsters.
Preliminary results indicate that DG-MMP is activated
in the muscle of these animals (manuscript in
preparation). We presume that activation of DG-MMP
causes the disruption of the link between the ECM and

Fracd 26 2020 29 30 3132 33 34 8 W

B - DG

w0y
67 ==

B a0t o e o 0 it f— DGl
- DGao

g = ""'mn-k-a—m-"ﬂ*“‘
19 ==

kDa

Fig. 4. DGy, but not DGy, co-sediments with aDG.
Sucrose density gradient sedimentation of RT4
cell membranes was performed and analyzed by
immunoblotting using 43DAG/8DS5. DGy, but
not BDGsy, co-sedimented with aDG.
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Fig. 5. Hypothetical scheme of the role of DG-MMP in

the molecular  pathogenesis of muscular
dystrophies.
DG-MMP is hypothesized to be activated by the
initial muscle cell damage in certain muscular
dystrophies. This results in the disruption of the
ECM-cell membrane - linkage via the DG
complex, which, in turn, destabilizes the
sarcolemma and further augments muscle cell
damage in a vicious cycle.

cell membrane via the DG complex in the muscle of
cardiomyopathic hamsters and this may play an
important role in the pathogenesis of muscle
degeneration.

IV. Therapeutic implications of DG-MMP: do
inhibitors of DG-MMP decelerate muscle
degeneration in muscular dystrophies?

If DG-MMP tums out to be activated in certain
muscular  dystrophies, this will have significant
implications for the molecular pathogenesis of muscle
degeneration in these diseases, because the resulting
disruption of the ECM-cell membrane linkage via the
DG complex is expected to further augment muscle cell
damage in a vicious cycle (Fig. 5). Moreover, it will
raise  the intriguing possibility of a novel
pharmacological therapy for these diseases. The MMP
inhibitors effective against DG-MMP have been
developed as anti-cancer reagents and demonstrated to
be not only effective but also safe without serious side
effects when administered orally [19]. We are currently
planning the oral administration of DG-MMP inhibitors
to cardiomyopathic hamsters to see their effects on the
progression of muscle degeneration.
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Muscle—eye—brain disease (MEB), an autosomal recessive disorder prevalent in Finland, is characterized
by congenital muscular dystrophy, brain malformation and ocular abnormalities. Since the MEB
phenotype overlaps substantially with those of Fukuyama-type congenital muscular dystrophy (FCMD)
and Walker—Warburg syndrome (WWS), these three diseases are thought to result from a similar
pathomechanism. Recently, we showed that MEB is caused by mutations in the protein O-linked
mannose p1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) gene. We describe here the identification of
seven novel disease-causing mutations in six of not only non-Finnish Caucasian but also Japanese
and Korean patients with suspected MEB, severe FCMD or WWS. Including six previously reported
mutations, the 13 disease-causing mutations we have found thus far are dispersed throughout the
entire POMGnT1 gene. We also observed a slight correlation between the location of the mutation
and clinical severity in the brain: patients with mutations near the 5 terminus of the POMGnT1 coding
region show relatively severe brain symptoms such as hydrocephalus, while patients with mutations near
the 3’ terminus have milder phenotypes. Our resulis indicate that MEB may exist in population
groups outside of Finland, with a worldwide distribution beyond our expectations, and that the clinical
spectrum of MEB is broader than recognized previously. These findings emphasize the importance
of considering MEB and searching for POMGnT1 mutations in WWS or other congenital muscular
dystrophy patients worldwide.

*To whom correspondence should be addressed at: Division of Functional Genomics, Department of Post-Genomics and Diseases, Osaka
University Graduate School of Medicine, 2-2-B9 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel: +81 668793380; Fax: +81 668793389;
Email: toda@clgene.med.osaka-u.ac.jp
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INTRODUCTION

Muscle-eye—brain disease (MEB: MIM 253280) is an autosomal
recessive disorder characterized by congenital muscular
dystrophy (CMD), ocular abnormalities and brain malforma-
tion (type II lissencephaly) (1). Patients with MEB show
congenital muscular dystrophy, severe congenital myopia,
congenital glaucoma, pallor of the optic discs, retinal
hypoplasia, mental retardation, hydrocephalus, abnormal
electroencephalograms and myoclonic jerks. From birth,
infants with MEB are floppy with generalized muscle
weakness, including facial and neck muscles. Muscle biopsies
show dystrophic changes, and brain MRIs reveal pachygyria-
type cortical neuronal migration disorder, flat brainstem and
cerebellar hypoplasia. Walker—Warburg syndrome (WWS:
MIM 236670) is another extreme of CMD, which shows the
most severe brain malformation, characterized by type II
lissencephaly and eye involvement. WWS is usually lethal
within the first year of life (2). Fukuyama-type congenital
muscular dystrophy (FCMD: MIM 253800) is a recessively
inherited CMD with type 1l lissencephaly that occurs
exclusively in Japan (3). In some cases, the clinical
resemblance makes it difficult to differentiate between MEB,
FCMD and WWS. These three diseases are thought to be
caused by a similar pathomechanism.

Molecular genetic studies have been helpful in defining
subgroups of CMD. The genes responsible for both MEB and
FCMD have been identified and characterized. Through linkage
analysis, the gene responsible for MEB was localized to
chromosome 1p32-34 (4), and we recently showed that MEB
is caused by loss of function mutations in the gene encoding
protein O-linked mannose B1,2-N-acetylglucosaminyltransfer-
ase 1 (POMGnT1) (5). O-mamnosylation is a rare type of
glycosylation in mammals, occurring in a limited number of
brain, nerve and skeletal muscle glycoproteins (6). Sialyl
O-mannosyl glycan is known to be a laminin-binding ligand
of o-dystroglycan (7), and POMGnT! catalyzes the transfer of
N-acetylglucosamine to O-mannose of glycoproteins.

FCMD is caused by mutations in the fukutin' gene on
chromosome 9q31, which we positionally cloned previously
(8-11). The function of fukutin is not yet clear; however,
sequence analysis predicts it to be an enzyme that modifies
cell-surface glycoproteins or glycolipids (12). Immunoreactivity
to the glycans of a-dystroglycan has been undetectable in
skeletal muscle from both MEB and FCMD patients (13—15),
and the core o-dystroglycan protein shows an electropho-
retic mobility shift (15). These findings have suggested a
common pathomechanism for MEB and FCMD, in which
defects in O-mannosylation compromise laminin binding.
Identification of the genes responsible for MEB and FCMD
now enables the definition of these complicated diseases at the
molecular level, since their symptoms are often similar and
complicated. In particular genetic analysis of FCMD is being
performed frequently and has been highly informative (16).

WWS has been observed in many population groups with a
worldwide distribution. In contrast, both MEB and FCMD
show striking founder effects. MEB was first described in
Finland, where it is most prevalent, owing to a strong founder
effect followed by genetic drift (17). Consequently, most MEB
patients have come from a small, geographically isolated

population in Finland, with few Caucasian exceptions. Most
FCMD mutations can be traced to a single ancestral founder,
who carried a 3kb retrotransposal insertion in the 3’ non-
coding region of the fikutin gene (11,18). Thus far, FCMD
patients have been identified exclusively in Japan.

We describe here the identification of different MEB-causing
mutations in Japanese and Korean patients as well as Caucasian
patients initially diagnosed as FCMD, MEB, or WWS. Our
resulis show that MEB is present in diverse population groups
with a worldwide distribution and has a broader clinical
spectrum than previously expected. Furthermore, we have
shown a slight genotype—phenotype correlation in the brain
among the patients.

RESULTS

. Patients and mutation analysis

In a previous study, we showed that mutations in the
POMGnT! gene are the primary genetic defect in MEB.,
Mutation analysis and characterization of the gene product has
demonstrated that MEB is inherited in a loss-of-function
manner (5). In this stady, we extended our analysis to screen
the entire coding region and exon/intron flanking sequences of
the POMGnT! gene for mutations in 30 patients who were
clinically diagnosed for WWS, severe FCMD, or MEB. To
determine whether MEB patients exist in Asia, we included
Japanese and Korean patients in this study.

Our analysis identified seven novel mutations and one
recurrent mutation in six patients (Fig. 1, Table 1). None of
these individuals harbored mutations in the fikutin gene.
Combined with our previous results, we have now identified a
total of 13 different mutations in the POMGnTI gene.

Patient EV carried a homozygous C281T transition in exon 3,
which resuits in an Arg63Stop nonsense mutation (Fig. 1A).
EV is a 12-year-old Italian female who was hospitalized at one
year of age for a ventriculo-peritoneal shunt operation for
hydrocephalus. She is unable to speak or walk (Table 2).

Patient HS is a 12-year-old Japanese male. He is a compound
heterozygote who carried a 1 bp deletion at base 541 in exon 6
(frameshift and premature termination at codon 167) and a
G761A transition in exon 8 (Glu223Lys) (Fig. 1B). Severe
hydrocephalus was observed prenatally by an ultrasonograph,
and an MR image at 6 years of age showed extreme veniricular
dilatation and agenesis of the septum peltucidum (Fig. 3A). Of
all the patients examined, HS showed one of the more severe
phenotypes (Table 2).

SI, a 7-year-old female Japanese patient, was identified as a
compound heterozygote with a GY900A transition in exon 9
(Cys269Tyr) and a 1bp insertion at base 1077 in exon 11
(frameshift and premature termination at codon 338; Fig. 1C).
Dilated ventricles were observed prenatally by an ultrasono-
graph, and, at one year of age, hydrocephalus required a
ventriculo-peritoneal shunt. SI also shows a more severe
phenotype (Table 2).

Patient DC, an 8-year-old Belgian female, is compound
heterozygous for a G761A transition in exon § (Glu223Lys)
and a G-to-A substitution in intron 17, which alters the
conserved GT splicing donor sequence to AT (Fig. 1D). In our
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Patients Mutation Location Effect Status

EV 281C>T Exon3 Arg63Stop Nonsense Homozygote

HS 541 del T Exon6 Phe149 frameshift 167Stop Compound heterozygote
761G>A Exon8 Glu223Lys Missense

St 900G>A Exon9 Cys269Tyr Missense Compound heterozygote
1077 ins G Exonll Val328 frameshift 338Stop

DC 761G>A Exon8 Glu223Lys Missense Compound heterozygote
IVS17+1G>A” Intron17 Glu514read-through 526Stop/Leud72-His513del

SMI 1106 ins T Exonll Asp338 frameshift 338Stop Compound heterozygote
? Noncoding region? ?

MS IVS17+1G>A" Intronl7 Glu514read-through 526Stop/Leud72-His513del Compound heterozygote
1926 del T Exon2l Leu611 frameshift 6335top

*Mutation was reported in the previous study (5).
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previous study, we found that the intron 17 mutation caused
both read-through of intronic sequences, resulting in introduc-
tion of a premature termination codon, and skipping of the
upstream exon 17, resulting in the deletion of 42 amino acids
(5). In DC, severe myopia was found upon opthalmological
examination in the first months of life, although retinal
dysplasia was not observed. Although she was able to sit with
support and her speech was limited to three single words at
2 years of age, by 7 years of age she was severely hypotonic
and mentally retarded. DC shows a relatively mild phenotype
compared with the other patients examined (Table 2).

A 6-year-old female Korean patient, SMJ is a putative
compound heterozygote who carried a 1bp insertion at
base 1106 in exon 11, causing a frameshift and premature
termination at codon 338 (Fig. 1E). We were unable to detect a
mutation in the other POMGnTI allele. 1t is possible that the
second mutation may lie outside the coding sequence, perhaps
in the promoter or a regulatory region of an intron.

Patient MS is the 25-year-old female child of a Japanese
mother and an American father of Scandinavian origin (19).
The POMGnT! allele inherited from her father harbors a
G-to-A substitution in intron 17, which alters the GT splicing
sequence. From her mother, MS inherited a 1bp deletion at
base 1926 in exon 21, which results in a frameshift and
premature termination at codon 633 (Fig. 1F). MS was
previously diagnosed with a milder form of WWS because
her symptoms included relatively severe eye abnormalities and
specific features such as severe hypoplasia of the cerebellar
vermis and cataracts, which are common in WWS. However
her mental retardation is relatively mild for MEB and she can
indicate ‘yes’ or ‘no’ with gestures (Table 2).

In each case, mutations cosegregated within the pedigree
(families HS, 81, SMJ, and MS). We screened at least 92
normal individuals for two missense changes (Cys269Tyr and
Glu223Lys), excluding the possibility of polymorphism.

In addition, patient MK is one of the subjects examined in
our previous report (5). MK is a 5-year-old Turkish male who
does not show MEB-specific eye symptoms such as myopia.
MK carried a homozygous G1743A transition in the final base
of exon 19, which was previously reported as a missense
mutation (Ser550Asn) (5). However, subsequent RT-PCR
analysis of skeletal muscle from this patient has shown that
this mutation causes skipping of exon 19, resulting in the
deletion of 15 amino acids (data not shown).

Genotype—phenotype correlation

We found that patients with MEB showed a broad range of
severity of symptoms. In addition, we found that these
patients possessed mutations that were scattered throughout
the POMGnTI gene. To assess whether there is a genotype—
phenotype correlation, we investigated the clinical features of
the patients with regard to brain, eye and muscle, relative to the
distribution of mutations throughout the POMGnTI gene
(Table 2, Fig. 2). This analysis revealed a wider clinical
spectrum of MEB than recognized previously. Taking into
account each patient’s clinical features, correlations between
the location of the mutation and clinical severity seemed
difficult to assess. However, a slight correlation of clinical
severity in the brain was observed. Patients with mutations near
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the 5 terminus of the POMGnTIl coding region showed
relatively severe brain symptoms, while patients with mutations
near the 3’ terminus had milder phenotypes. (Table 2).
Hydrocephalus showed a particular correlation with mutations
near the 5’ terminus (Table 2, Fig. 3). For example, patient HS,
who carried a 1 bp deletion in exon 6 and a missense mutation
in exon 8, near the 5’ terminus, was diagnosed as WWS or
MEB and showed relatively severe phenotypes such as
hydrocephalus (Table 2, Fig. 3A). On the other hand, patient
CC carried a homozygous 1bp deletion in exon 20, near the
3’ terminus of the POMGnTI coding region. CC had a
relatively mild phenotype without hydrocephalus (Table 2,
Fig. 3B). These analyses suggest that the location of 2 mutation
influences the severity of the MEB phenotype.

In addition, we examined the skeletal muscle tissue from both
patient SI who carried mutations near the 5’ terminus (Fig. 3C-E)
and patient TLG who carried mutations near the 3" terminus
(Fig. 3F-H) and found normal immunoreactivity for B-
dystroglycan and laminino2 chain but greatly reduced staining
for a-dystroglycan. No obvious differences could be observed
in the skeletal muscle of the two patients.

DISCUSSION

The six POMGnTI mutations identified in the previous study
were all simple point mutations (5), while most FCMD patients
carry a quite rare insertion mutation in the fikutin gene and
are found exclusively in Japan. These findings led us to
hypothesize that MEB mutations might have a broader
distribution outside Finland. A recent linkage study reported
the occurrence of MEB in some Caucasians and classified MEB
and WWS as distinct disorders (20). To test our hypothesis, we
examined 30 patients from various countries, including Japan
and Korea, who were diagnosed as WWS, severe FCMD or
MEB. In addition to the six previously described mutations, we
identified seven new mutations in this study. Therefore, MEB
patients may exist with a broader distribution and more varied
phenotypes than previously expected.

The 13 known mutations in the POMGnT! gene are dispersed
throughout the entire coding region (Fig. 2), with no accumula-
tion in any particular domain. The clinical features of MEB vary
among patients, and evaluation of clinical severity in each
individual patient is difficult. However, we observed a slight
correlation between genotype and brain phenotype: patients with
mutations in the vicinity of the 5’ terminus of the POMGnTI
gene show relatively severe WWS-like symptoms. All of the
patients with POMGnTI mutations are still alive; hence, lifespan
may be one of the differences between MEB and typical WWS, in
which almost patients die before one year of age.

The amino acid sequence of POMGnT1 is homologous to o~
3-D-mannoside B-1,2-N-acetylglucosaminyltransferase I (GnT-1),
which is a Golgi-resident enzyme involved in the N-linked
oligosaccharide biosynthetic pathway. While the crystal
structure of GnTI has been determined (21), the structure of
POMGnT1 itself has not been analyzed in detail. Computer
analysis predicts that the 660-amino-acid POMGnT1 protein is
divided into four domains: a cytoplasmic tail (Metl-Arg37), a
transmembrane domain (Phe38-11e58), a stem domain (Leu59-
Leu300), the catalytic domain consisting of the UDP-GIcNAc
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Figure 2. Schematic representation of the POMGnT! gene and the corresponding protein, showing the location of mutations found in MEB. Exons are represented
by boxes, and introns are represented by lines. POMGnTI protein is divided into four domains, Mutations detected in this study and in the previous study are
shown below the protein. The asterisk represents mutations reported in the previous study (5).

and Mn™" binding regions (around Asn301-Leu530), and the
substrate-specific region  (around Arg531-Thr660)  (5).
Nonsense or frameshift mutations near the 5’ terminus shorten
the POMGnT1 protein significantly, probably resulting in loss
of function. Missense mutations in the stem domain may
diminish retention of POMGnTTI in the Golgi apparatus (22).
Mutations in the 3’ region of the gene may retain some ability
to transfer sugars, since the catalytic domain of the protein is
preserved to some extent. Measurement of the enzymatic
activity of mutant POMGnT]1 proteins will be necessary to
explain possible mechanisms for the genotype-phenotype
correlation seen in this study.

MEB, FCMD and WWS are clinically similar, and the
nosological classification of these disorders has been con-
troversial. In MEB and FCMD patients, the lack of full
O-mannosylation of a-dystroglycan significantly disrupts the
interactions of a-dystroglycan with extracellular matrix ligands
(15). This result suggests that post-translational disruption of
dystroglycan—ligand interactions may be a common mechanism
for muscular dystrophy with brain abnormalities. The structure
of laminin-binding O-mannosyl glycan in dystroglycan is
Siao2-3GalB1-4GlcNAcB1-2Man-Ser/Thr (7), where POMGnT1
catalyzes the GIcNAcPB1-2Man linkage (5). Since the clinical
presentations of MEB and WWS significantly overlap, and the
most severe brain malformation and shortest life span are
striking features of WWS, we postulated that the gene product
responsible for WWS may be a glycosyltransferase that

catalyzes the Man-Ser/Thr linkage in O-mannosy! glycans.
Quite recently 20% of WWS patients have been found to
have mutations in POMT1I, a putative human counterpart of a
yeast O-mannosyltransferase (23). In FCMD, compound
heterozygotes for the FCMD founder mutation in the
Jukutin gene show severe phenotypes like WWS, and no
patients have been identified with non-founder ( point) muta-
tions on both alleles, suggesting that such patients are
embryonic lethal (16,24). Unlike FCMD, MEB patients with
point mutations on both alleles can survive. We suppose that
fukutin may perform a more essential role in early development
than POMGnT]1.

Further molecular genetic study will open new avenues for
understanding the pathophysiological mechanisms underlying
these complex disorders. It may be necessary and possible to
re-classify muscular dystrophies based on genetic rather than
clinical criteria. This study emphasizes the importance of
considering MEB and searching for POMGnT] mutations in
WWS or other CMD patients worldwide.

MATERIALS AND METHODS

Patients

We analyzed genomic DNA from 30 patients with CMD, brain
malformation and ocular abnormalities. Information about the
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Figure 3. Comparison of cranial MR images and immunohistochemical analysis in MEB patients. (A) An axial 7,-weighted image of patient HS (at 6 years of age)
shows extreme ventricular dilatation with a slightly smooth cortical surface. (B) An axial T; ,-weighted image of patient CC (at 13 months of age) shows pachygyria,
slightly enlarged ventricles, and white matter abnormality. The mutation in patient CC has been reported previously (5). Consecutive frozen sections of skeletal
muscle from patient SI (C-E) and patient TLG (F-H) immunostained with anti-laminina2 chain (C, F), a-dystroglycan (D, G), and B-dystroglycan antibodies

(E, H).

six patients whose mutations were identified in this study (EV,
HS, SI, DC, SMJ and MS) is briefly described in the Results
section. All parents of these patients are not consanguincous.
The six patients KO, YA, SA, MK, CC and TLG were
described in the previous study (5). All phenotypes are
summarized in Table 2.

Mutation analysis

Primers used for mutation analysis have been described
previously (5). PCR products from patient genomic DNA were
excised from gels, and direct sequencing was performed using
Bigdye terminators (Applied Biosystems). Fragments were
electrophoresed on an ABI Prism 3100 sequencer (Applied
Biosystems).

Immunohistochemistry

Immunodetection was performed using a mouse monoclonal
anti-a-dystroglycan antibody for patient SI (clone VIA4-1,
Upstate Biotechnology), affinity-purified sheep antiserum
directed against a 20-amino-acid C-terminal sequence of chick
o-dystroglycan (25) for patient TLG, a monoclonal anti-B-
dystroglycan (clone 8D5, Novocastra), a polyclonal anti--
dystroglycan (26) and a monoclonal anti-laminin o2 chain
antibody (clone 5H2, GibcoBRL, Chemicon). Skeletal muscle
staining was performed as described previously (13).
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Fukuyama-type congenital muscular dystrophy (FCMD),
Walker—Warburg syndrome, and muscle-eye-brain disease
are clinically similar autosomal recessive disorders char-
acterized by congenital muscular dystrophy, cobblestone
lissencephaly, and eye anomalies. FCMD is frequent in
Japan, but no FCMD patient with confirmed fukutin
gene mutations has been identified in a non-Japanese
population. Here, we describe a Turkish CMD patient
with severe brain and eye anomalies. Sequence analysis of
the patient’s DNA identified a homozygous 1bp insertion
mutation in exon 5 of the fukutin gene. To our knowl-
edge, this is the first case worldwide in which a fukutin
mutation has been found outside the Japanese popula-
tion. This report emphasizes the importance of consider-
ing fukutin mutations for diagnostic purposes outside of

Japan.
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Fukuyama-type  congenital — muscular  dystrophy
(FCMD)," Walker—Warburg syndrome (WWS),* and
muscle-eye-brain (MEB) disease® are clinically similar
autosomal recessive disorders characterized by congen-
ital muscular dystrophy, lissencephaly, and eye anoma-
lies. FCMD patients survive beyond infancy, and ocu-
lar manifestations are rare and usually mild. Patients
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with WWS are severely affected from birth, and few
live beyond infancy. In MEB, the cerebral and ocular
anomalies are severe, but some patients reach adult-
hood. Although FCMD is frequent only in Japan,
WWS has been found in many different nationalities,
and MEB has been observed mainly in Finland.

We previously identified the gene responsible for
FCMD, fukutin, on chromosome 9¢31.47¢ Most
FCMD patients carry an ancestral founder mutation,”
which arose from the integration of a 3kb retrotrans-
poson element into the 3’ untranslated region of the
fukutin gene.® A small fraction of FCMD patients are
compound heterozygous, carrying one founder inser-
tion and one point mutation. No FCMD patients have
been identified with nonfounder (point) mutations on
both alleles, suggesting that such patients are embry-
onic lethal and that fukutin is essential for normal em-
bryonic development.® Targeted homozygous mutation
of this gene in mice leads to lethality at embryonic day
6.5 to 7.5, before development of gkeletal muscle, car-
diac muscle, or mature neurons/(H. Kurahashi, S.
Takeda, C. Meno, M. Horie, M. Taniguchi, H. Otani,
H. Hamada, T. Toda, unpublished data).

Until now, no CMD patient has been identified
with confirmed fukutin gene mutations in a non-
Japanese population. Here, we describe a Turkish pa-
tient with a severe phenotype carrying a homozygous
point mutation in the fukutin gene.

Case Report and Results

A full-term male infant was referred to our hospital with
macrocephaly, hypotonia, and dyspnea. His parents were
first cousins, and their first son is unaffected. In Turkey,
there are many origins (Cherkez, Gurcu, Laz, Kurdish, and
Turkish) because of immigration. His family was of Turkish
origin (Oguz Turks from Central Asia), not Kurdish or oth-
ers. The mother had not seen a physician before the onser of
labor. Ultrasonographic examination during the intrapartum
period showed polyhydramnios, macrocephaly, and cephalo-
pelvic disproportion. The infant was born by cesarean sec-
rion and weighed 2,700gm (25th percentile); his height was
50cm (50th percentile), and head circumference was 47cm
(>97¢h percentile). Physical examination showed respiratory
difficulries, central cyanosis, generalized hypotonia, hydro-
cephaly, bilateral buphthalmus, and cataracts (Fig 1). The
suction, Moro, and tendon reflexes were absent, and he had
no eye movement.

Upon ocular examination, both eyes were proprotic. The
left eye had buphthalmus, with a horizontal corneal diameter
of 13mm. There was a central corneal ulcer due to exposure
keratopathy on the left eye. Both eyes contained central polar
cataracts. We noticed iris atrophy with visible iris vessels, and
there were peripheral corneal adhesions, suggesting Rieger’s
anomaly. We removed the cataract on the right eye by a
lensectomy, posterior capsulotomy, and anterior vitrectomy
procedure. Ocular examination after cataract extraction
showed that the optic disc and the retina were hypoplastic.

Computed tomography showed hydrocephalus and gener-



Fig 1. Patient has macrocephaly, cataract, and buphthalmus,

alized brain atrophy (Fig 2A). Muscle enzymes were elevated:
serum  total creatine kinase levels were 4,214U/ml
(76-600U/ml is normal for that age), and myocardial-
binding creatine kinase (CK-3) levels were 4,032U/ml (nor-
mal for age, 72-576U/ml). Other biochemical analyses were
within normal limits. The infant was supported by mechan-
ical ventilation for 10 days.

The patient died on the 10th day, and an autopsy was
performed. Neuropathological examination showed severe
malformations of the central nervous system. Principal
anomalies included agyric hemispheres with polymicrogyria
in several cortical segments and severe cortical disorganiza-
tion in other segments (data not shown). The ventricles re-
leased 600ml of cerebrospinal fluid.

Congenital muscular dystrophy was also seen, with varia-
tion in fiber size, fibrosis, and fat replacement (see Fig 2B).
Immunohistochemical analysis showed greatly reduced stain-

Fig 2. (a) Brain computed tomography shows hydrocephalus
and cortical atrophy. (b) Hematoxylin and eosin staining of
skeletal muscle shows dystrophic changes with variation in f-
ber size, fibrosis, and fat replacement. Consecutive sections of
skeletal muscle immunostained with anti-a-dystroglycan (c)
and B-dystroglycan (d) antibodies.
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ing for a-dystroglycan (ITHG; Upstate Biotech, Lake Placid,
NY; see Fig 2C) but immunoreactivity for
B-dystroglycan (8D5; Novocastra, Newcastle upon Tyne,
UK; see Fig 2D) in the skeletal muscle membrane.

Genomic DNA was extracted from peripheral blood leu-
kocytes of the patient, his brother, and the parents. After
digestion of genomic DNA with Puull, Southern hybridiza-
tion was performed using fEco8-1 as a probe.® As expected,
the result indicated that the patient had no Japanese founder
insertion. We then screened all exons and flanking introns of
the fikutin gene in the padent by polymerase chain reaction
direct sequencing. We detected a homozygous 1bp insertion
mutation, nt504(insT), in exon 5 of the fikutin gene. This
mutation causes a frameshift, resulting in a premature termi-
nation at codon 157. Both parents and the brother were het-
erozygous for this mutation (Fig 3).

normal

Discussion
The syndrome of congenital muscular dystrophy with
central nervous system dysplasia and ocular anomaly

has been categorized into FCMD, WWS, and MEB.

However, the relationship of these syndromes remains
uncertain. The clinical manifestations of WWS are
much more severe than those in FCMD. Patients with
WWS die earlier and have severe retinal and cerebellar
malformations, hydrocephalus, and occasionally occip-
ital encephalocele.” Although these findings are un-
common in FCMD patients, several known cases have
shown retinal detachment, hydrocephalus, and/or en-
cephalocele.”

FCMD is relatively common only in the Japanese. It
is the second most common form of childhood mus-
cular dystrophy and one of the most common autoso-
mal recessive disorders in Japan: the incidence of
FCMD is 5.6 to 11.9 per 100,000 or nearly half that
of Duchenne muscular dystrophy in the Japanese pop-
ulation." In ethnic groups other than the Japanese pop-
ulation, FCMD appears almost nonexistent; only a few
white families showing an “FCMD-like phenotype”
have been reported, although their phenotypes are not

Fig 3. Point mutation in the fukutin gene. Our patient was homozygous for a 1bp insertion at base 504 in exon 5 of the fukutin
gene, which causes a frameshifi and a premature termination ar codon 157.
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necessarily typical, and mutational analyses of these
cases have not yet been performed.'®™'? Two Taiwan-
ese patients were diagnosed by Japanese expert clini-
cians with clinically typical FCMD, but they carried
no fukutin murations.*>

The strikingly high prevalence of FCMD among the
Japanese appears to result from the initial founder ef-
fect, whose expansion occurred in relative isolation.
Most FCMD-bearing chromosomes in Japan are de-
rived from a single ancestral founder who lived a few
thousands years ago.” The majority of FCMD patients
carry two founder insertions, and fewer are compound
heterozygous. Kondo-lida and colleagues® demon-
strated a higher frequency of severe phenotypes, includ-
ing WWS-like manifestations such as hydrocephalus
and microphthalmia, among probands who were com-
pound heterozygotes than among those who were ho-
mozygous for the founder insertion.

The observed lack of Japanese FCMD patients with
two nonfounder mutations suggests that such cases
might be embryonic lethal. This may explain why few
FCMD cases are reported in non-Japanese popula-
tions® in which the founder mutation does not occur.,
Chromosomes carrying the founder insertion in the
noncoding region may produce a lower level of mature
fukutin than normal and generate a relatively mild
FCMD phenotype. Nonfounder mutations, which in-
clude nonsense and frameshift mutations within the
coding region, cause major structural changes in fuku-
tin protein and thus are likely to produce more severe
effects.® :

The patient described here was affected with a very
severe CMD phenotype that resembled WWS. Accord-
ing to the genetic classification, this case may be in-
cluded in FCMD; however, the mutation is different
from that present in most FCMD, and the clinical
phenotype is also different. It may not be appropriate
to classify this case at this time in existing categories.
Although it is postulated that individuals carrying two
point mutations will be embryonic lethal, this patient
was born alive. Therefore, homozygous disruption
within the first third of the fukutin protein (157/461
amino acids) generated a very severe but not embryonic
lethal phenotype.

Currently, the function of fukutin remains un-
known. However, sequence analysis predicts fukutin to
be an enzyme that modifies cell surface glycoproteins
or glycolipids."* This is supported by recent reports of
selective deficiency of highly glycosylated a-dystro-
glycan in FCMD,"” as well as defective glycosylation of
a-dystroglycan in muscular dystrophies caused by ge-
netic defects in the putative glycosyltransferases,
fukutin-related  protein,”®  and  mouse like-
acetylglucosaminyltransferase (large).'” In addition, we
have observed a selective deficiency of a-dystroglycan
in MEB, which is caused by loss-of-function mutations

in the gene encoding O-linked mannose B1, 2-N-
acetylglucosaminyltransferase  (POMGnT1).18 Quite
recently, 20% of WWS patients has been found to
have mutations in POMTTI, a putative human coun-
terpart of yeast O-mannosyltransferase.’® Moreover,
Michele and colleagues showed, in MEB, FCMD, and
myodystrophy mouse, that a-dystroglycan is expressed
at the muscle membrane, but similar hypoglycosylation
in the diseases directly abolishes binding activity of
dystroglycan for the ligands laminin, neurexin, and
agrin.” These findings suggest thar defective glycosyl-
ation of a-dystroglycan due to genetic defects in gly-
cosyltransferases may be the common denominator
causing muscle cell degeneration in these diseases.

This report emphasizes the importance of consider-
ing fukutin murtations for diagnostic purposes outside
of Japan. The possibility exists that non-Japanese pa-
tients carrying two fikutin point mutations may be
misdiagnosed with WWS. As the phenotype observed
here was severe, there may be a high probability of
carly death without a proper diagnosis. Examination of
WWS patients and their parents for fikutin point mu-
tations may improve the accuracy of diagnosis as well
as genetic counseling.

This study was supported by a grant “Research on Brain Science”
(H12-Brain-017) from the Ministry of Health, Labor, and Welfare
of Japan.
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Fukuyama-type congenital muscular dystrophy (FCMD), one of the most common autosomal-recessive
disorders in Japan, is characterized by congenital muscular dystrophy associated with brain malformation
due to a defect during neuronal migration. Through positional cloning, we previously identified the gene for
FCMD, which encodes the fukutin protein. Here we report that chimeric mice generated using embryonic
stem cells targeted for both fukutin alleles develop severe muscular dystrophy, with the selective deficiency
of a-dystroglycan and its laminin-binding activity. In addition, these mice showed laminar disorganization of
the cortical structures in the brain with impaired laminin assembly, focal interhemispheric fusion, and
hippocampal and cerebellar dysgenesis. Further, chimeric mice showed anomaly of the lens, loss of laminar
structure in the retina, and retinal detachment. These results indicate that fukutin is necessary for the
maintenance of muscle integrity, cortical histiogenesis, and normal ocular development and suggest the
functional linkage between fukutin and o-dystroglycan.

INTRODUCTION

Since the discovery of the Duchenne muscular dystrophy
(DMD) gene product dystrophin (1), many studies have
focused on understanding the pathophysiology of muscular
dystrophies and on developing therapeutic approaches.
Structural defects in the dystrophin—glycoprotein complex
(DGC) can result in a loss of linkage between laminin-2
(merosin) in the extracellular matrix and actin in the
subsarcolemmal cytoskeleton, and this can lead to various
muscular dystrophies (2). Of these, a-dystroglycan is a heavily

glycosylated mucin-type glycoprotein on the surface of muscle
cells (3-5). It is the key component of the DGC, providing a
tight linkage between the cell and basement membranes by
binding laminin via its carbohydrate residues (3-5).
a-Dystroglycan plays an active role in the basement membrane
assembly itself (6).

Fukuyama-type congenital muscular dystroply (F CMD), one
of the most common autosomal-recessive disorders in Japan, is
characterized by congenital muscular dystrophy associated
with brain malformation (polymicrogyria) due to a defect
during neuronal migration (7). Patients with FCMD manifest
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