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Influence of Immobilization Stress on the Expression
and Phosphatase Activity of Protein Phosphatase 2A in

the Rat Brain

Shigeru Morinobu, Koichiro Fujimaki, Ki-ichiro Kawano, Kazuhide Tanaka,
Jun Takahashi, Masako Ohkawa, Shigeto Yamawaki, and Nobumasa Kato

Background: Protein phosphatase 2A (PP2A) is a major
kinase phosphatase that plays an important role in regu-
lating the activities of protein kinase cascades. It has been
revealed that stress changes neuronal gene expression by
activating these cascades. We examined the expression of
the catalytic subunit C and serine and threonine phosphatase
activity of PP2A in the rat frontal cortex and hippocampus
following various immobilization stress paradigms.

Methods: Immunoblot and immunohistochemical analy-
ses were performed to examine the expression of PP2A.
The level of phosphatase activity of PP2A was determined
as the amount of free phosphate generated from a syn-
thetic phosphopeptide.

Results: Immunoblot analysis revealed no significant
change in the level of PP2A immunoreactivity in response
to either a single or repeated stress. Immunohistochemical
analysis revealed that neither a single nor repeated stress
changed PP2A immunoreactivity in the hippocampus;
however, the levels of serine and threonine phosphatase
activity in the frontal cortex and hippocampus were
significantly upregulated in response to a single or re-
peated stress.

Conclusions: These results demonstrated that both a
single and repeated immobilization stress upregulated the
activity of PP2A in the rat brain, suggesting that PP2A
may be involved, at least in part, in the downregulation of
protein kinase activation induced by stress. Biol Psychi-
atry 2003;54:1060-1066 © 2003 Society of Biological
Psychiatry

Key Words: Immobilization stress, protein phosphatase
2A, serine, threonine, protein kinase, long-term potentia-
tion, memory
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Introduction

arious neuropharmacology studies examining the in-

fluence of stress on intracellular signal transduction
pathways have been undertaken to elucidate the molecular
mechanisms responsible for the pathogenesis of stress-
related mental disorders, such as major depression and
posttraumatic stress disorder (PTSD). These studies
showed that extra cellular stimuli induce changes in the
phosphorylation of transcription factors through the acti-
vation of protein kinases, which subsequently affect the
expression of neuronal genes (Duman 1995; Sabban and
Kvetnansky 2001). For example, it is reported that aver-
sive stimuli, such as the forced swim test (Pliakas et al
2001) or restraint stress (Barrot et al 2002), induce the
activation of signal transduction in the nucleus accumbens
mediated by cyclic adenosine monophosphate (CAMP)—
responsive element binding protein (CREB), and the
overexpression of CREB reduces the behavioral responses
to stimuli. Thus, it is conceivable that an increase in the
activity of protein kinases such as protein kinase A (PKA)
and calcium/calmodulin-dependent  protein  kinase
(CaMK) may play an important role in the pathogenesis of
stress-related mental disorders.

In contrast, serine and threonine protein phosphatases
are responsible for the dephosphorylation of protein ki-
nases that are tightly associated with changes in gene
expression (Goldberg 1999; Millward et al 1999). One of
the protein phosphatases that is conserved from yeast to
mammalians is protein phosphatase 2A (PP2A). Two
types of PP2A have been identified: the PP2A core
enzyme is composed of a regulatory subunit A and a
catalytic subunit C, whereas the PP2A holoenzyme is
formed by the binding of a cellular regulatory B subunit to
the AC core enzyme. The subunit B affects the activity and
substrate selectivity of PP2A (Garcia et al 2000; Goldberg
1999; Millward et al 1999). Recent studies indicate that
PP2A also plays pivotal roles in the regulation of cell
growth, gene expression, and development (Goldberg
1999). For example, the application of okadaic acid or
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Stress and Phosphatase Activity of PP2A

calyculin A, inhibitors of PP1 and PP2A, influences the
synaptic strength, as determined by measuring the synaptic
efficacy in hippocampal long-term depression (LTD)
(Kang-Park et al 2003; Mulkey et al 1993; Schnabel et al
2001). It has been suggested that PP2A is associated with
gene transcription mediated by the signaling complex of
CaMK IV and CREB or of p70 S6 kinase (Westphal et al
1998, 1999). Taken together, it appears that PP2A may
play a fundamental role in stress-induced gene expression;
however, it is not known whether stress changes the
expression level or activity of PP2A.

Although it is clear that stress induces various dysfunc-
tions in neural circuits, including the frontal cortex,
hypothalamus, hippocampus, amygdala, and nucleus ac-
cumbens, increasing evidence from recent neuroimaging
and histologic studies of stress-related mental disorders
indicates that anatomic abnormalities of the frontal cortex,
such as reductions in neuronal and glial density, and
atrophy of the hippocampus were induced by stress
(Bremner et al 1995; Rajkowska et al 2001; Uno et al
1989). In addition, we recently reported that a single
immobilization stress upregulated the serine and threonine
phosphatase activity of protein phosphatase 2B (cal-
cineurin) in the rat frontal cortex and hippocampus (Ta-
kahashi et al 2001). In this context, we were interested in
studying whether stress similarly affects the expression of
PP2A or the level of serine and threonine phosphatase
activity of PP2A in these brain regions. Because the
subunit C was reported to have a catalytic function in
PP2A activity (Goldberg 1999; Milward et al 1999), we
examined the influence of a single as well as repeated
immobilization stress on the expression of the subunit C
and the activity of PP2A in the rat frontal cortex and
hippocampus.

Methods and Materials

Animals and Treatment Paradigms

Male Sprague-Dawley rats weighing 200 g (Japan Charles-
River, Yokohama, Japan) were group housed and maintained on
a 12-hour light—dark cycle with food and water freely available.
In the acute stress study, rats were subjected to a single session
of immobilization stress for 5, 15, 45, or 90 min and then
immediately sacrificed. In the chronic stress study, rats were
subjected to repeated immobilization stress for a period of 45
min on 7 consecutive days and sacrificed immediately after the
last stress. To investigate the influence of repeated stress on basal
PP2A expression, rats were subjected to repeated stress on 6
consecutive days and sacrificed 24 hours after the last stress. In
addition, some rats were sacrificed 30 min after a single, 45-min
session of immobilization stress. Other rats were sacrificed 30
min after the last immobilization stress of repeated stress for 7
days. Rats were handled daily for 7 days before experiments.
Rats were immobilized by placing each rat in a clear polyfilm
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disposable bag (Restraint Cones; Harvard Apparatus, South
Natick, Massachusetts). All immobilization experiments were
performed between 9 and 11 aM. All animal experiments were
performed using procedures approved by the Shiga University
Medical Science Animal Care Committee and Research Facili-
ties for Laboratory Animal Science at Hiroshima University
School of Medicine.

Immunoblotting

Immunoblot analysis for catalytic subunit C of PP2A was
performed using the methods of Sim et al (1994) and Strack et al
(1997) with minor modifications. In brief, the rat hippocampus
was washed and homogenized by sonication in protein extraction
buffer containing 1 X phosphate buffered saline (PBS), 1
mmol/L ethylenediamine tetraacetate (EDTA), 1% Nonidet P-40
(NP-40), .5% sodium deoxycholate, .1% sodium dodecy! sulfate,
1 mmol/L. phenylmethylsulfonyl fluoride, 1 mmol/L Na,VO,,
and 10 pg/mL aprotinin. The homogenates were centrifuged at
15,000 g at 4°C for 10 min.

Aliquots of the cellular extracts (containing 40 ug of protein)
were then applied to 12% polyacrylamide gels and transferred to
nitrocellulose membranes. The membranes were incubated three
times for a duration of 20 min each with blocking buffer,
consisting of 5% nonfat dry milk in Tris-Tween buffered saline
{TTBS; 10 mmol/L Tris(hydroxymethyl)aminomethane, pH 7.5,
100 mmol/L. NaCl, .1% Tween 20}, at room temperature,
followed by incubation for 1 hour at room temperature with the
primary antibody (i.e., antigoat PP2A antibody; 1:1000 dilution;
Santa Cruz Biotechnology, Santa Cruz, California). This anti-
body recognizes an epitope that maps at the carboxy terminus of
the protein phosphatase 2A catalytic subunit. The membranes
were washed in TTBS once for 15 min and twice at room
temperature for 10 min and then incubated with horseradish
peroxidase—conjugated antigoat immunoglobulin-G antibody (1:
1000 dilution; Cell Signaling, Beverly, Massachusetts) as the
secondary antibody. The blots were developed using the en-
hanced chemiluminescence (ECL) Western Blotting Detection
System (Amersham Pharmacia Biotech, Buckinghamshire, UK).
The density of the immunoreactive bands was quantified using a
Macintosh-based ATTO Image analysis program (version 4.0;
ATTO, Tokyo, Japan). The protein concentrations in the samples
were determined using a BCA Protein Assay Kit (Pierce,
Rockford, Illinois) and were verified to be in the linear range for
the assay. An aliquot of pooled “standard” rat hippocampus was
electrophoresed on one lane of each gel. Data were normalized
against the rat hippocampus standard to minimize the between-
blot variability.

Immunohistochemistry

Coronal sections of frozen rat brains (20 pwm) were cut on a
cryostat. Tissue sections were mounted on RNase-free Probon
slides (Fischer, Pittsburgh, Pennsylvania) and were postfixed in
PBS containing 4% paraformaldehyde for 5 min. The coronal
sections were incubated with a polyclonal antigoat catalytic
subunit of PP2A antibody (dilution 1:500; Santa Cruz Biotech-
nology). Staining was detected using the avidin—biotin—peroxi-
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dase system (DAKO Liquid DAB+ Substrate-ChromogenSolu-
tion; Dako Corporation, Carpinteria, California). The
immunohistochemical signal was detected using a digital video
image analyzer (Nikon ACT-1 Ver 2.00, Tokyo, Japan).

Serine and Threonine Phosphatase Assay

The level of serine and threonine phosphatase activity of protein
phosphatase 2A was quantitated as the amount of free phosphate
derived from the synthetic phosphopeptide RRA(pT)VA (Pro-
mega, Madison, Wisconsin) by measuring the absorbance of
molybdate-malachite green-phosphate complex as previously
described (Cieslik et al 1998; Sidhu and Omiecinski 1997; Tian
et al 1998), with a minor modification. Briefly, within 1 min after
decapitation, the removed sections of frontal cortex and hip-
pocampus were homogenized on ice using I mL of storage buffer
containing 50 mmol/L Tris-HCl, pH 7.5, 1 mmol/L. ethylene
glycol bis-tetraacetic acid (EDTA), .1% B-mercaptoethanol, .1
mmol/L leupeptin, and 75 pmol/L pepstatin A. After centrifu-
gation (100,000 g at 4°C for 1 hour), the supernatant solution was
applied to a Sephadex G-25 resin column and was centrifuged at
600 g at 4°C for 5 min, yielding the sample lysate in storage
buffer.

The sample lysate (5 pL) was added to the reaction premix
containing 100 pmol/L RRA(PT)VA in 5 pL of phosphate-free
water, 10 wL PPTase-2A 5 X buffer (250 mmol/L imidazole, pH
7.2, 1 mmoV/L EGTA, .1% [-mercaptoethanol, 500 wg/mL
bovine serum albumin) and 30 pL of storage buffer in the well
of a 96-well plate. After incubation for 30 min, 50 pL of
Molybdate Dye/Additive mixture was added to stop the reaction.
The optical densities of the samples were obtained 30 min later
using a micro plate reader with a 630-nm filter. The level of
serine and threonine phosphatase activity in each sample was
calculated using a standard curve plotting free phosphate that had
been generated by a phosphate standard solution. After the
calculation, the level of phosphatase activity was divided by the
protein content in each sample as measured by a Micro BCA
assay (Pierce). All experiments were performed in duplicate.

Data Analyses

Immunoreactive bands were quantified with a Macintosh-based
ATTO Image analysis program. The results were subjected to
statistical analysis. The results of experiments containing groups
of three or more rats were subjected to one-way analysis of
variance (Fisher’s protected least significant difference [PLSD]
test for post hoc comparison) with a significance level of p <.05.
The results of experiments containing groups of two rats were
subjected to the Mann-Whitney U-test, with a significance level
of p < .05.

Results

The influence of a single immobilization stress on the
level of the C subunit of PP2A in the frontal cortex and
hippocampus was examined by Western blot analysis. The
level of PP2A immunoreactivity was measured at various
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Figure 1. Influence of a single immobilization stress on the
expression level of the catalytic subunit C of protein phosphatase
2A (PP2A) in rat brain regions. Representative immunoblots of
the catalytic subunit C of PP2A in the rat frontal cortex and
hippocampus after a single immobilization stress for 15, 45, or
90 min, are shown. Each bar represents the mean * SEM for six
rats.

times following the initiation of the immobilization stress.
Each of the single immobilization stress paradigms used in
this study (15, 45, or 90 min) did not result in a change in
the level of PP2A immunoreactivity in either the rat
frontal cortex or hippocampus (Figure 1). Similarly, the
level of PP2A immunoreactivity in the rat frontal cortex
and hippocampus did not change immediately after the
rats were subjected to repeated immobilization stress for 7
days (Figure 2). The basal level of PP2A immunoreactiv-
ity in the rat frontal cortex and hippocampus also did not
change after the rats were subjected to repeated stress for
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Figure 2. Influence of repeated immobilization stress on the
expression level of the catalytic subunit C of protein phosphatase
2A (PP2A) in rat brain regions. Representative immunoblots of
the catalytic subunit C of PP2A in the rat frontal cortex and
hippocampus are shown. RIS-6 + 24 hours, 24 hours after the
last stress of repeated stress (45 min/day) for 6 days; RIS-7,
immediately after the last immobilization stress of repeated stress
(45 min/day) for 7 days. Each bar represents the mean = SEM
for six rats. RIS, repeated immobilization stress.
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6 days and sacrificed 24 hours after the last stress (Figure
2).

To identify the hippocampal cell layers where PP2A
was expressed and regulated, we examined the influence
of a single or repeated immobilization stress on the subunit
C of PP2A expression in the hippocampus by immunohis-
tochemical analysis. Our results show high PP2A expres-
sion in the CA1 and CA3 pyramidal cell layers and in the
dentate gyrus granule cell layer in a sham-treated rat
(Figure 3). Neither the single nor repeated immobilization
stress changed the level of PP2A immunoreactivity in
these hippocampal regions (Figure 3).

Because the activated form of PP2A dephosphorylates
various substrate proteins and consequently regulates in-
tracellular signal transduction, it is also important to
determine whether immobilization stress influénces the
activity of PP2A in the brain. Therefore, we examined the
level of PP2A activity using a chemically synthesized
phosphopeptide that is compatible with serine and threo-
nine phosphatase. In response to a single immobilization
stress, time course analysis indicated that whereas an
immobilization stress of 45 min or longer significantly
increased PP2A activity in the frontal cortex, an immobi-
lization stress of 15 min or longer significantly increased
PP2A activity in the hippocampus (Figure 4). In contrast,
no significant increase in PP2A activity was found 30 min
after a single 45-min immobilization stress in, either the
frontal cortex or hippocampus (Figure 5). In rats that were
subjected to repeated immobilization stress of 45 min per
day for 7 days and sacrificed immediately after the last
immobilization stress, there were significant increases in
PP2A activity in the frontal cortex and hippocampus in
comparison with the respective values in the sham-treated
rats (Figure 6); however, in rats that were subjected to
repeated immobilization stress and sacrificed 30 min after
the last immobilization stress, there were no significant
differences in the level of PP2A activity in these brain
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Figure 3. Immunohistochemical anal-
ysis of the influence of a single or
repeated immobilization stress on pro-
tein phosphatase 2A (PP2A) expres-
sion in the rat hippocampus. (A) Sche-
matic illustration of hippocampal
slice. (B) Sham treatment. (C) Imme-
diately after single immobilization
stress for 45 min. (D) Immediately
after the last immobilization of re-
peated immobilization stress (45 min/
day) for 7 days. DG, dentate gyrus;
CA, cornu anmonis.

regions in comparison with those in the sham-treated rats
(Figure 7).

Discussion

The results of this study demonstrate that both a single and
repeated immobilization stress increase the serine and
threonine phosphatase activity of PP2A in the rat frontal
cortex and hippocampus in the absence of a change in the
level of the subunit C of PP2A. Although the precise
mechanism of the upregulation of PP2A activity in re-
sponse to stress is unknown, several possibilities exist.
One possible means of upregulation is through the activa-
tion of the sphingomyelin signaling pathway. Tumor
necrosis factor (TNF) and interleukin-1 (IL-1) have been
reported to increase sphingomyelin hydrolysis and to
upregulate the level of ceramide, the latter of which has
been shown to regulate the activity of PP2A (Dobrowsky
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Figure 4. Influence of a single immobilization stress for 5, 15,
45, or 90 min on the level of serine and threonine phosphatase
activity of protein phosphatase 2A (PP2A) in the rat frontal
cortex and hippocampus. Data are expressed as the percentage of
the sham level. Each bar represents the mean = SEM of 10 rats.
*p < .05 compared with sham group (one-way analysis of
variance with Fisher’s PLSD test). PLSD, protected least signif-
icant difference.
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Figure 5. Levels of serine and threonine phosphatase activity of
protein phosphatase 2A (PP2A) in the rat frontal cortex and
hippocampus 30 min after a single restraint stress of 45 min. Data
are expressed as the percentage of the sham level. Each bar
represents the mean = SEM of six rats.

et al 1993; Law and Rossie 1995; Wolff et al 1994).
Because a single immobilization stress increases the
TNF-a level by activating glutamate receptors in the rat
brain (Madrigal et al 2002), it is conceivable that the
increase in the ceramide level mediated by TNF may
upregulate the activity of PP2A. In addition, a single
immobilization stress has also been reported to upregulate
IL-1 activity in the rat hypothalamus (Shintani et al 1995).
Therefore, it is also plausible that the enhanced activity of
IL-1 in response to stress is associated with the upregula-
tion of PP2A activity in the rat brain. In contrast, stimu-
lation of N-methyl-D-aspartate (NMDA) receptors was
reported to lead to the dissociation of PP2A from the
NR3A (subunit of NMDA receptor) and the reduction of
PP2A activity in the cerebrocortical neurons from mice at
embryonic day 16 (Chan and Sucher 2001). It is conceiv-
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Figure 6. Influence of repeated immobilization stress on the
level of serine and threonine phosphatase activity of protein
phosphatase 2A (PP2A) in the rat frontal cortex and hippocam-
pus immediately after the last immobilization stress of repeated
immobilization stress (45 min/day) for 7 days. Data are ex-
pressed as the percentage of the sham level. Each bar represents
the mean = SEM of 11 rats. *p < .05 compared with sham group
(Mann—-Whitney U-test).
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Figure 7. Levels of serine and threonine phosphatase activity of
protein phosphatase 2A (PP2A) in the rat frontal cortex and
hippocampus 30 min after the last immobilization stress of
repeated stress (45 min/day) for 7 days. Data are expressed as the
percentage of the sham levels. Each bar represents the mean *
SEM of six rats. RIS, repeated immobilization stress.

able that an immobilization stress increases the synaptic
level of glutamate and subsequently stimulates NMDA re-
ceptors; however, because the levels of NR3R expression in
the brain was lower in the adult rats compared with those in
the neonatal rats (Chan and Sucher 2001), it is unlikely that
the stress-induced activation of NMDA receptors domi-
nantly regulates PP2A activity in the adult rat brain.

Furthermore, it is well known that the increase in the
synaptic level of noradrenaline during immobilization
stress in turn increases the level of cAMP and subse-
quently activates PKA via the stimulation of B-adrenocep-
tors (Duman 1995). Nagase et al (1997) reported that PKA
phosphorylated a 72-kDa delta/B’’ subunit of PP2A and
stimulated the activity of PP2A in the rat brain. Interest-
ingly, it was recently reported in NRK cells that cAMP-
mediated PP2A activation could occur without the activa-
tion of PKA (Feschenko et al 2002). Thus, it is likely that
enhancement of cAMP-dependent signal transduction is
also involved in the upregulation of PP2A activity in
response o stress.

It has béen reported that PP2A plays an important role
in the dephosphorylation of various phosphoproteins such
as autophosphorylated CaM kinases (CaMK; Barnes et al
1995; Ishida et al 1998; Park and Soderling 1995; Strack
et al 1997; Westphal et al 1998). In addition, Fukunaga et
al (2000) demonstrated that the reduced activity of PP2A
induced by the activation of CaMK II autophosphorylation
was important for maintenance of stable phosphorylation
of synaptic proteins involved in the induction of long-term
potentiation (LTP). Furthermore, recent studies examining
the molecular mechanism of memory indicated that CREB
phosphorylation mediated by CaMK IV phosphorylation
was required for fear memory and for the consolidation of
long-term memory (Kang et al 2001; Wei et al 2002). In
this context, it is postulated that the upregulation of PP2A
activity in response to stress may enhance the dephosphor-
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ylation of autophosphorylated CaM kinases, which may
subsequently impair the induction of LTP. Based on
clinical studies of stress-related mental disorders, it s well
known that disturbances in memory function, such as
psychogenic amnesia, are often seen in patients with
PTSD and major depression (Friedman and Yehuda 1995).
Taken together, our results suggest that the upregulation of
PP2A activity during stress may, at least in part, play a
role in the impairment of memory in patients with PTSD
and major depression.

On the other hand, the elevated intracellular Ca®* level
that results from the stimulation of glutamate receptors,
L-type Ca®" channels, and inositol 1,4,5-trisphosphate
receptors in response to stress, leads to the autophosphor-
ylation of CaM kinases and to subsequent changes in
neuronal gene expression through CREB phosphorylation.
Moreover, extracellular stimuli result in the phosphoryla-
tion of extracellular signal-regulated kinase (ERK)
through the activation of mitogen-activated protein (MAP)
kinase and ERK kinase (Anderson et al 1990; Gomez and
Cohen 1991), which induces changes in neuronal gene
expression via the activation of ribosomal S6 kinase
(Westphal et al 1999). In addition, PP2A is involved in the
regulation of gene expression because PP2A dephospho-
rylates and inactivates CaM kinases and MAP-Kinase.
Thus, it is conceivable that the upregulation of PP2A activity
observed in this study inhibits stress-induced neuronal gene
expression; however, it has yet to be determined whether the
upregulation of PP2A activity in response to stress is asso-
ciated with adaptive or maladaptive responses. Thus, the
effect of pretreatment with a PP2A inhibitor, such as okadaic
acid, on the reaction to stress in rats should be studied using
behavioral and histochemical analyses.

The results of this study indicate that a single as well as
repeated immobilization stress upregulates PP2A activity
in the rat frontal cortex and hippocampus. Although the
detailed pathway of PP2A-mediated signal transduction in
viruses and parasites has been determined (Garcia et al
2000), the detailed pathway in neurons has not been
elucidated. Therefore, if the actions of PP2A in neurons
are found to be the same as those in nonneuronal cells,
such as regulation of the MAP kinase pathway, PP2A
might be involved, at least in part, in the regulation of the
neuronal response to stress in the rat brain.
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