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Abstract

In this study, we hypothesized that hyaluronic acid could provide superior biological effects on the chondrocytes in a three-
dimensional culture system. To test this hypothesis, we investigated the in vitro behavior of rabbit chondrocytes on a novel chitosan-
based hyaluronic acid hybrid polymer fiber. The goal of the current study was to show the superiority of this novel fiber as a scaffold
biomaterial for cartilage tissue engineering. Chitosan polymer fibers (chitosan group) and chitosan-based hyaluronic acid hybrid
polymer fibers (HA 0.04% and HA 0.07% groups, chitosan coated with hyaluronic acid 0.04% and 0.07%, respectively) were
originally developed by the wetspinning method. Articular chondrocytes were isolated from Japanese white rabbits and cultured in
the sheets consisting of each polymer fiber. The effects of each polymer fiber on cell adhesivity, proliferation, morphological
changes, and synthesis of the extracellular matrix were analyzed by quantitative a cell attachment test, DNA quantification, light
and scanning electron microscopy, semi-quantitative RT-PCR, and immunohistochemical analysis. Cell adhesivity, proliferation
and the synthesis of aggrecan were significantly higher in the hybrid fiber (HA 0.04% and 0.07%) groups than in the chitosan group.
On the cultured hybrid polymer materials, scanning electron microscopic observation showed that chondrocytes proliferated while
maintaining their morphological phenotype and with a rich extracellular matrix synthesis around the cells. Immunohistochemical
staining with an anti-type II collagen antibody demonstrated rich production of the type II collagen in the pericellular matrix from
the chondrocytes. The chitosan-based hyaluronic acid hybrid polymer fibers show great potential as a desirable biomaterial for
cartilaginous tissue scaffolds.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In Living organisms, the authentic substrate for most
cells is the extracellular matrix (ECM). The ECM
adheres to cells via integrins, which are membrane-
spanning heterodimeric receptors [1]. Through the cell-
matrix adhesions, the ECM transduces physiological
signals regulating cell growth, cell proliferation, cell
differentiation, and matrix remodeling to the cells [1].
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Therefore, the ECM plays an important role in living
tissue development and regeneration.

In a tissue engineering technique, tissue regeneration
is achieved by culturing isolated cells on biocompatible
and biodegradable materials as scafollds onto which
cells are seeded. A large number of studies have shown
the importance of selecting the appropriate biomaterials
as scaffolds for the cell adhesion and supporting the
proliferation [2-10]. For the reason given above, the
ideal scaffold material should be one which closely
mimics the natural environment in the tissue-specific
ECM [9].

Once damaged, the articular cartilage consisting of
hyaline cartilage tissue has little capacity for spontaneous
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healing. Although the limited potential for self-repair of
the articular cartilage necessitates operations to treat
injured cartilage, no current procedures for cartilage
repair have successfully regenerated long-lasting
hyaline cartilage tissue to replace a cartilaginous lesion
[11,12]. To solve this limitation, tissue engineering
techniques by culturing isolated chondrocytes on a
variety of scaffold materials, including naturally occur-
ring and synthetic, have been developed [4-10]. How-
ever, there have been no ideal materials for cartilage
tissue engineering.

One of the considerable characteristics in the cartilage
tissue is that a small number of chondrocytes are
embedded in the rich ECM. Therefore, cell-matrix
interactions play a crucial role in the development and
regeneration of the cartilage tissue. To successfully
achieve cartilage tissue regeneration, a cell-carrier
substance which closely mimics the natural environment
in the cartilage-specific ECM must be developed. In the
current study, hyaluronic acid, which is a main
component of the proteoglycans (PGAs) in the cartilage,
was applied to chitosan as a fundamental biomaterial.

Recently, several studies have demonstrated that
cellular functions differ in two-dimensional and three-
dimensional (3D) systems [13,14]. In cartilage tissue
engineering, a closer approximation to in vivo environ-
ments should be attained by culturing cells in 3D
materials. Additionally, the articular cartilage must be
considered for its mobility as an excessively stressed
tissue. To structurally mimic the environments of the
cartilage tissue, the fundamental structure of a scaffold
should be a 3D system with adequate mechanical
strength. In the current study, the authors have
structurally developed a novel polymer fiber-—chito-
san-based hyaluronic acid hybrid fiber—as a biomaterial
to easily fabricate 3D scaffolds.

In this study, we hypothesized that hyaluronic acid
could provide superior biological effects on the chon-
drocytes in a 3D culture system. To test this hypothesis,
we investigated the in vitro behavior of rabbit chon-
drocytes on a novel chitosan-based hyaluronic acid
hybrid polymer fiber. The objectives of the current study
were to evaluate the chondrocyte adhesion, prolifera-
tion, and the synthesis of the ECMs in the chitosan-
based hyaluronic acid hybrid polymer fiber and to show
the superiority of this novel fiber as a scaffold
biomaterial for cartilage tissue engineering.

2. Materials and methods
2.1. Polymer fibers
Polymer fibers were developed by the wet spinning

method as described by Tamura et al. [15] with the
following modification. Fig. 1 shows the process of
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Fig. 1. The original roller system.

developing the fibers using an original apparatus [15].
Chitosan is a commercial material purchased from
Kimitu Chemical Co. Inc., (Tokyo, Japan). Hyaluronic
acid produced by lactic acid bacteria, with a viscosity
average molecular weight of 2,400,000, was gifted from
DENKI KAGAKU KOUGYO Co. Ltd. (Tokyo,
Japan). The degree of deacetylation of the chitosan
was 81%, and viscosity average molecular weight was
600,000. To prepare the polymer fiber 7g of chitosan
powder was dissolved in 200ml of 2% aqueous acetic
acid solution to give 3.5% of polymer concentration.
Dope of chitosan was spun into a calcium coagulant
bath (64% CaCl, dissolved in 50% aqueous methanol
solution) through a stainless steel spinnlet (0.1 mm
diameter, 50 holes) at a winding speed of 4.4 m/min at
room temperature. Then, 50% aqueous methanol
solution was used as a second coagulation bath and
0.04 or 0.07% hyaluronic acid dissolved in 50% aqueous
methanol solution was a third coagulation bath. Using
an original roller system (Okada Co. Inc., Sapporo,
Japan), the resulting fibers were stretched and treated
with 0.8% sodium hydroxide (NaOH) dissolved in 90%
aqueous methanol solution to neutralize the acidity of
the fibers. The fibers wound in the roller were washed
with methanol and dried at room temperature. The
diameter of each fiber was 0.03 mm.In the current study,
chitosan polymer fiber (chitosan group) and chitosan-
based hyaluronic acid hybrid polymer fiber (chitosan
coated with hyaluronic acid 0.04%, HA0.04% group;
chitosan coated hyaluronic acid 0.07%, HAO0.07%
group) were originally developed. For further investiga-
tions of the chondrocyte culture system, we automati-
cally made a fiber sheet using the original apparatus
(Fig. 1). Coagulated fibers were passed through a cross
feeding guide and wound onto a stainless rolier (120 mm
diameter and 120 mm wide) at the rate of 17rpm. The
cross feeding guide set forward in the roller was moved
from side to side at a rate of 100 mm/30s. The cross-feed
length and rotation count were 100mm and 40 times,
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Fig. 2. (A,B) Three-dimensional (3D) scaffold material for the
chondrocyte culture. Sheets consisting of each polymer fiber are
stacked in a perpendicular pattern with six layers (8 x 8 mm, 1 mm
thickness). (C) Scanning electron micrograph of the 3D scaffold
material.

respectively. The fibers wound onto the roller were
washed and dehydrated with methanol, and then dried
at room temperature. The dry filaments were cut from
the roller and a sheet fiber of filaments were piled 40
high (380mm length, 100mm wide and 0.25mm
thickness). The sheets consisting of each polymer fiber
were cut into small sheets and stacked in a perpendicular
pattern with six layers (8 x 8mm, 1mm thickness)
(Fig. 2A,B,C). Each sheet was peripherally adhered
with 2% chitosan gel and dried at 40°C for over night.
During this process, we constantly obtained the same
3D fabrications. These 3D materials were sterilized in
autoclave at 135°C for 20 minutes for the chondrocyte
culture.

2.2. Measurement of material properties

Material properties of five samples in each fiber group
were measured according to the Japanese Industrial

Standards L1015. Tensile tests for each fiber group were
performed at a crosshead speed of 20 mm/min using a
material testing machine (P/N346-51299-02, SHIMAD-
ZU, Kyoto, Japan). The cross-sectional area was
determined using a microscope (BX50, OLYMPUS,
Tokyo, Japan) and a video dimension analyzer (VM-30,
OLYMPUS, Tokyo, Japan).

2.3. Chondrocyte suspension

Ten week old Japanese white rabbits with a mean
body weight of 2.0kg (Hokudo, Sapporo, Japan) were
used in this study. Articular cartilage slices, gathered
from the knee, the hip, and the shoulder joints of each
animal, were detached from the adherent connective
tissues. Cartilage specimens were minced like paste and
washed three times in sterile 0.9% sodium chioride.
Then, the chondrocytes were isolated with 0.25%
trypsin (Difco Lab., Detroit, MI) in sterile saline for
30 minutes followed by 0.25% collagenase (Worthing-
ton, Freehold, NJ) in Dullbecco’s modified Eagle’s
medium (SIGMA Chemical Co., St. Louise, MO)
supplemented with 10% fetal bovine serum (Invitrogen
Corp., Carlsbad, CA), 1001U/ml penicillin, 100 pg/ml
streptomycin, and 0.25pug/ml fungizone (BIOWHIT-
TAKER, Walkersville, MD) for 6h at 37°C in a culture
bottle.Finally, the isolated cells were collected by
centrifugation (1,500 g, 37°C, 5min) after removal from
the culture bottle and washed three times with the
culture medium. The final cell density of chondrocyte
suspension was adjusted for further investigations.

2.4. Cell adhesion study

Chondrocyte adhesion to the polymer fibers was
assessed by the method as previously reported by
Nishimura et al. [16]. The polymer fibers of Polyglactin
910, a 90:10 copolymer of glycolide and lactide, coated
with polyglactin 370 (9-0 Vicryl suture material, Ethicon
Co., Somerville, NJ), were used as control materials.
The fibrous samples were cut into 10 mm pieces and
packed in Teflon tubes (25mm length, 4.8 mm inner
diameter) and then 0.1ml of chondrocyte suspension
containing 0.5 x 10° cells was loaded on the column at
room temperature. The cells were allowed to adhere in a
humidified incubator (37°C, 5% CO,) for 1h. Each
column was gently rinsed with I ml of 1 M phosphate-
buffered saline (PBS), and the number of unattached
cells in the rinsed solution was quantified by microscopic
observation using a hemocytometer. Parallel samples of
n = 5 were used for each group of polymer fiber.

2.5. Chondrocyte culture

The 3D scaffold materials mentioned previously were
used for the chondrocyte culture. Chondrcyte suspension
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containing 0.6 x 10° cells was embedded on the materi-
als. These samples were placed in a 37°C, humidified 5%
COj; incubator for 1 h and then overlaid with 2ml of the
culture medium. Chondrocyte cultures were placed in a
humidified incubator and replaced with a fresh medium
twice a week..

2.6. DNA quantification

At 1, 7, and 14 days after cultivation, 5 cultured
materials of each fiber group were harvested to quantify
the total amount of DNA. The DNA content (pg/
sample) was measured in aliquots of the sodium citrate
(0.05M phosphoric acid, 2 M NaCl) dissolved powdered
samples by the modified fluorometric assay using a
bisbenzididazole dye (Hoechst dye 33258, Polyscience
Inc., Northampton, UK) [17]. In fluorescence measure-
ments, disposable cuvettes were used; the excitation
wavelength was 356nm and the emission wavelength
was 458 nm. The results were extrapolated from a
standard curve using salmon testis DNA (Worthington,
Freehold, NJ).

2.7. RNA isolation

After 14 days of culture, samples of each fiber group
were frozen in liquid nitrogen prior to RNA extraction.
Total RNA was extracted by the TRIspin method
described previously [18]. Briefly, frozen samples were
powdered in liquid nitrogen cooled with Brown Dis-
membrater vessels (B. Braun Biotech., Allentown, PA).
The TRIzole reagent (Life Technologies, Gaitherburg,
MD) was added to the powdered tissue at the rate of
1 ml/100 mg sample weight and the samples warmed to
room temperature. The samples, to which chloroform
was added, were centrifuged at 12,000 g for 15min at
4°C. Then, the upper aqueous phase containing the
RNA was obtained and mixed with 70% ethanol.
Finally, total RNA was isolated using the RNeasy total
RNA kit (Qiagen, Chatsworth, CA) according to the
manufacturer’s protocol.

2.8. Semiquantitative reverse transcriptase-polymerase
chain reaction (RT-PCR) analysis

Total RNA yield was fluorometrically quantified with
the SYBR® Green reagent (Molecular Probes, Eugene,
OR) according to the manufacturer’s recommendations.
According to the previous reports, semiquantitative
RT-PCR analysis was performed using rabbit specific
primer sets for type I collagen, type II collagen,
aggrecan, and a housekeeping gene, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) [19-22]. First, 1 ug
of total RNA was reverse-transcribed into cDNA using
the StratScript RNase H™ kit (Stratagene, La Jolla,
CA). Second, aliquots (1.5 ul of 50 pl total value) of the

resulting cDNA were amplified in a total volume of 50 pl
containing PCR buffer, 0.2 pM dNTP mixture, 1.5mM
MgCl, 0.5pM of each primer, and 1 unit of the Taq
DNA polymerase (Life Technologies Inc., Gaithersburg,
MD). As reported previously, conditions were deter-
mined to be in the linear range for both the PCR
amplification and the image analysis system [19-22]. The
PCR products were separated by electrophoresis of
20 pl of each reaction mixture in a 2% agarose gel at
100 V/cm in 1 x Tris-acetate-EDTA buffer. Following
electrophoresis, the gels were stained with ethidium
bromide, destained in distilled water and photographed
using a charge coupled device (CCD) camera. Compar-
ison to the standard 1 kb DNA ladder (Life Technolo-
gies Inc., Gaithersburg, MD) ensured proper size of
PCR products. Then, the PCR products were separated
by electrophoresis. Finally, the images were captured
with a CCD camera and analyzed with Quantity One
(PDI., Inc., Huntington Station, NY). To yield a semi-
quantitative assessment of the gene expression, the data
were expressed as normalized ratios by comparing the

integrated density values for the genes in question with
those for GAPDH.

2.9. Morphological and immunohistochemical analysis

Cell morphology in the 3D scaffold material was
observed by light microscopy and scanning electron
microscopy (SEM) at 14 days after cultivation. At the
end of the cultivation period, all samples were rinsed
with Ringer’s solution to remove nonattached cells. The
cells in the material were fixed over night with 2.5%
glutaraldehyde supplemented with 0.1 M phosphate
buffer. After fixation, the SEM specimens were rinsed
with 0.1 M phosphate buffer and fixed in 1% OsO, for
1 h, then soaked in 1% tannic acid for an additional 1 h.
These processes were repeated three times. The speci-
mens were dehydrated through a graded ethanol series
and dried at the critical point of CO,. The specimens
were then mounted on an aluminum stub and sputtered
with argon using an ion coater (Hitachi, Tokyo, Japan),
and viewed with a SEM (Hitachi S-4500, Hitachi,
Tokyo, Japan) immediately after preparation. Immuno-
histochemical stains were performed with anti-type 1
and anti-type II collagen antibodies (Fuji Pharm. Lab.,
Toyama, Japan) to detect expression of the type I and
type II collagen products.

2.10. Statistical analysis

All data were represented as mean + standard
error. Statistical comparisons were performed using
one-way analysis of variance (ANOVA) and Fisher’s
PLSD test. Differences were considered significant
for p<0.05.
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3. Results
3.1. Material properties

The tensile strength of each fiber group was
87.4+2.0N/mm? in the chitosan group, 168.2+7.0N/
mm? in the HA0.04% group, and 144.4+2.1 N/mm? in
the HA0.07% group. The values of the hyaluronic acid
hybrid fiber significantly increased as compared with
that of the chitosan fiber (p<0.0001). The strain at
failure was 11.241.7% in the chitosan group,
9.8%+2.4% in the HA0.04% group, and 9.7+1.9%
in the HA0.07% group. There were no significant
differences among the 3 groups.

3.2. Cell adhesion

Adhesivities of the chondrocytes were expressed by
the percentage of chondrocytes trapped in the column to
the total chondrocytes loaded on the column (0.5 x 10°
cells). The percentage was 53.34+7.1% in the control
group, 79.3+2.2% in the chitosan group, 95.14+1.3 in
the HA0.04% group, and 90.54+3.2% in the HA0.07%
group. The values in the HA 0.04% and HA 0.07%
groups were significantly higher than that in the control
(p<0.0001) and in the chitosan groups (p<0.05).

3.3. Cell proliferation

Light micrographs (Fig. 4) showed the proliferation
of chondrocytes on all the fibers at 14 days after
cultivation. From day 1 to day 14 of the culture period,
the total amount of DNA increased in all the fiber
groups (Fig. 3). After 7days in culture, the total amount
of DNA in each group was 134.5+3.9 ug/sample in the
chitosan group,-142.24+11.2 pg/sample in the HA0.04%
group, and 240.1+23.0pg/sample in the HA0.07%
group. The value in the HA 0.07% group was
significantly higher than that in the chitosan and
HA0.04% groups (p<0.05). On the other hand, at 14
days after cultivation, there were no significant differ-
ences among the 3 groups.

300
—o— Chitosan

250
= - & - HA 0.04%
[=9 —
g 200 e— HA 0.07%;
g
\U’
:? 150
z
= 100

50 ; :

1 day 7 days 14 days

Fig. 3. The increase of DNA content per sample (ug/sample) in the
chitosan and hybrid 3D scaffolds seeded with chondrocytes. *p<0.05
versus the other groups. N = 5, mean + standard error.

3.4. Cell morphology

There was no effect of fiber material on cell
morphology at 14 days after cultivation. Light micro-
graphs (Fig. 4) and SEM micrographs (Fig. 5A,B)
revealed the characteristic round morphology of the
chondrocytes on all the fibers.

3.5. Extracellular matrix products

The SEM micrographs revealed the dense fiber, which
indicated the type IT collagen, in interstitial space
between the fibers (Fig. 5B). At 14 days after cultivation,
the quantity of total mRNA yield per mg wet weight in
the chitosan group, in the HA0.04% group, and in the
HAO0.07% group were 0.27+0.02, 0.24+0.02, and
0.1540.02 pg/mg, respectively. The mRNA for
GAPDH was well expressed in all samples. Based on
the analysis of 1 pug of total RNA converted to cDNA by
RT from each sample, integrated density values of
GAPDH in the linear PCR range (25 cycles) of the
chitosan group, of the HA0.04% group, and of the
HAO0.07% group were 0.2040.01, 0.224-0.01, and
0.204-0.01 integrated density units, respectively. There
were no significant differences in GAPDH band density
among the 3 groups. These results support the normal-
ization of subsequent assessments to this gene. At 14
days the culture materials, normalized ratio of mRNA
of type I collagen, of type II collagen, and of aggrecan to
that of GAPDH is summarized in Table 1. In the values
of type I and type II collagen, there were no statistically
significant differences among the 3 groups (Table 1 and
Fig. 6). On the other hand, no expression of the mRNA
of the aggrecan was identified in the chitosan group
(Table 1 and Fig. 6). The normalized ratio of the
HAO0.07% group significantly increased, as compared to
that in the HA0.04% group (p<0.05). In a histochem-
ical study, safranin O lightly stained the pericellular
matrix around the chondrocytes in all the fibers at 14

Fig. 4. Light micrograph of chondrocytes proliferated in the 3D
scaffold material consisting of the chitosan-based 0.04% hyaluronic
acid hybrid polymer fiber at 14 days after cultivation (hematoxylin—
eosin staining, original magnification x 50).
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(A)

®)

Fig. 5. Scanning electron micrographs of the chondrocytes seeded on
the 3D scaffold material consisting of the chitosan-based 0.07%
hyaluronic acid hybrid polymer fiber at 14 days after cultivation. (A)
Scaffold superficial surface; (B) scaffold sagittal surface. The
characteristic round morphology of the chondrocytes (white arrows)
and the dense fibers of the type II collagen can be found around the
chondrocytes. Arrow heads, polymer fiber.

Table 1

Material groups Type 11 Aggrecan Type 1
(n=25) collagen collagen
Chitosan group 1.5140.07 No expression 0.45+0.04
HA 0.04% group 1.5940.07 1.07+0.17 0.60+0.11
HA 0.07% group 1.374+0.12 1.5940.09* 0.4310.11

* p = 0.025 versus HA 0.04% group.

days -after cultivation. Immunohistochemical staining
with an anti-type II collagen antibody demonstrated
rich type II collagen production in the pericellular
matrix (Fig. 7A). However, there was no staining for
type I collagen in all the fibers (Fig. 7B).

4. Discussion

The final goal of the current study was to clarify the
feasibility of the novel chitosan-based hyaluronic acid

Chitosan

HAO0.04%

HAO0.07%

1 2 3 4 5

Fig. 6. Reverse transcriptase-polymerase chain reaction (RT-PCR)
analysis in the chitosan, the HA0.04%, and the HA0.07% group
specimens. Lane 1, ladder marker; lane 2,GAPDH; lane 3, type 1I
collagen; lane 4, aggrecan; lane 5, type I collagen. At 14 days after
cultivation, the mRNA for type II collagen was well expressed in all
specimens. On the other hand, no expression of the mRNA of the
aggrecan was identified in the chitosan group specimens.

Fig. 7. Immunohistochemical stainings with anti-type I and II collagen
antibodies. A, Rich production of type II collagen is indicated in the
HAO0.07% group. B, No staining of type I collagen is found in the
HAO0.07% group. (original magnification x 100).

hybrid polymer fibers as a scaffold biomaterial for
cartilage tissue engincering. Recently, several reports
have shown the potential of chitosan scaffold biomater-
ial for cartilage tissue engineering [6,8,9,44]. Suh and
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Matthew [9] reported that chitosan is well suited as a
carrier material for the transplant of autologous
chondrocytes. Our results demonstrated that adhesion,
proliferation, and ECM products of the chondrocytes
were significantly higher on the hybrid polymer fibers
than on the non-hybrid chitosan polymer fiber, which is
well accepted as a scaffold material. Based on these
previous and our current results, we reasonably con-
clude that the chitosan-based hyaluronic acid hybrid
polymer fibers have a great potential as a desirable
biomaterial in cartilage tissue scaffolds.

Of emphasis in our mnovel biomaterial is that
hyaluronic acid, which is a main component of cartilage
glycosaminoglycans (GAGs), is applied to chitosan as a
fundamental substance. The ideal cell-carrier substance
should be one which closely mimics the natural
environment in the cartilage ECM. Glycosaminogly-
cans, which are parts of the cartilage ECM components,
play an important role in regulating expression of the
chondrocyte phenotype and in supporting chondrogen-
esis [8,23-26]. Therefore, the application of hyaluronic
acid as a component of the cartilage scaffold biomaterial
must be a reasonable approach for enhancing chon-
drogenesis. Concerning the cell adhesivity of hyaluronic
acid, Zimmerman et al. [27] showed that hyaluronic acid
is an adhesion modulator molecule, which can mediate
the early stage of cell-substrate interaction. On the other
hand, CD44 is well known as a cell surface receptor for
hyaluronic acid [28,29]. CD44 is a transmembrane
glycoprotein expressed in a variety of cell types in
connective tissues and a major cell surface protein in
chondrocytes. This has been postulated to have a
function as the principal receptor for hyaluronic acid,
a common GAG component of the ECMs [29-31].
Murdoch et al. [32] demonstrated that there was a
dramatic increase of CD44 expression on the isolated
chondrocytes from the cartilage. Based on these
previous data and the current results, we reasonably
conclude that scaffold biomaterials introducing hya-
luronic acid can provide excellent chondrocyte adhesive
activity.

In the current study, another important point is that a
polymer fiber has been applied to the scaffold biomater-
ial. A scaffold for cartilage tissue engineering requires
adequate mechanical strength to maintain the initial
shape of the implanted scaffold. Several studies have
demonstrated the chondrogenic potential of GAGs-
augumented chitosan hydrogels [8,45]. However, these
hydrogels do not have the required mechanical strength
as mentioned above. Therefore, scaffolds consisting of
these hydrogels cannot be transplanted into large
cartilaginous lesions in advanced degenerative diseases
such as osteoarthritis and rheumatoid arthritis. To solve
this drawback, we have developed a new polymer fiber
as a fundamental material for 3D fabric. The obtained
data showed a significant increase of mechanical

strength in the hyaluronic acid hybrid fibers. This
indicates that introducing hyaluronic acid to the
fundamental materials plays an important role in
increasing the material properties of the scaffold.
Tamura et al. [15] reported the enhancement of tensile
strength by the coating of alginate fiber with chitosan.
Ionic interaction is the most convenient way to form a
tight bond between two molecules. They concluded that
the tight bond of chitosan to alginate increased the
tensile strength of the hybrid fibers. In the current study,
the tensile strength of a chitosan polymer fiber increased
by applying hyaluronic acid coating. As chitosan is a
cationic polysaccharide consisting of glucosamine resi-
dues and hyaluronic acid has anionic behavior, a tight
bond between both molecules was expected. The main
reason for the increase of mechanical strength in the
novel hybrid fiber is this tight bond between chitosan
and hyaluronic acid polymers. The novel fabric consist-
ing of chitosan-based hyaluronic acid hybrid polymer
fibers will serve as an ideal scaffold with adequate
strength for cartilage tissue engineering.

Chitosan is a partially deacetylated derivative of
chitin, the primary structural polymer in arthropod
exoskeletons. Structurally, chitosan is a linear poly-
saccharide consisting of f(1—4) linked D-glucosamine
residues with a variable number of randomly located
N-acetyl-glucosamine groups. The average molecular
weight ranges from 50 to 1000kDa. The potential of
chitosan as a biomaterial is based on its cationic nature
and high charge density in solution. Madihally et al. [6]
reported that the cationic nature of chitosan allowed for
electrostatic interactions with anionic GAGs, PGAs,
and other negatively charged species. These ionic
interactions may serve as a mechanism for retaining
and recruiting cells, growth factors, and cytokines
within a tissue scaffold. Consequently, chitosan has
been already employed as an excellent biomaterial for
wound healing and tissue repair [33—35]. Since chitosan
is regarded as a cationic polysaccharide showing
excellent cell supporting properties, a hybrid material
composed of chitosan combined with hyaluronic acid
might prove to be a novel class of polyion complex
effective for cartilage specific scaffolds.

The current strategies for the treatment of damaged
adult articular cartilage are limited. To solve the
limitations of the current operations such as osteotomies
and total joint arthroplasties, several tissue engineering
techniques have been developed and clinically applied to
such lesions [42,43]. However, because of the mechanical
weakness of scaffold materials and the limited number
of donor cells, the present techniques can be used only
for relatively small cartilaginous lesions following
traumatic injuries and osteochondritis dessecans. Ide-
ally, a tissue engineering technique could be available as
an alternative to the current operations mentioned
above for the treatment of large cartilaginous lesions
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in degenerative diseases, including osteoarthritis and
rheumatoid arthritis. In articular cartilage tissue en-
gineering, we must consider that the articular cartilage is
subject to excessive compression and shear stress.
Therefore, to maintain the initial shape of the scaffold
surface and the number of attached chondrocytes,
adequate mechanical strength and highly cellular
adhesivity are requirements for scaffold materials in
cartilage tissue engineering. The other consideration 1s
that the chondrocytes exhibit a profound change in their
phenotype after isolation from the ECM. They show the
development of a fibroblastic morphology and a switch
in production from type II collagen to type I collagen.
To maintain the chondrocyte phenotype through the
process of cartilage regeneration, scaffold material must
have the potential to support the chondrogenesis while
maintaining the chondrocyte phenotype. Based on the
current data, for cartilage tissue engineering, we may
reasonably conclude that our novel chitosan-based
hyaluronic acid hybrid polymer fiber serves as an ideal
biomaterial to create a 3D fabricated scaffold with
adequate strength, high cellular adhesivity, and excellent
support for chondrogenesis. In the current study, we
focused not on the shape or structure of the 3D
fabrication for cartilage tissue, but on the development
and assessment of the chitosan-based hyaluronic acid
hybrid fiber as a cartilage tissue engineering scaffold.
Using the novel 3D scaffold material with these
properties, this tissue engineering technique would be
applied to the treatment of large cartilaginous lesions in
a variety of diseases such as osteoarthritis and rheuma-
toid arthritis.

A considerable limitation of this study is that the
results were derived from an in vitro experimental model.
Therefore, the biocompatibility of the current fibrous
material in living joints is still unclear. A number of
studies have reported the tissue response to various
chitosan-based materials [36-41]. In general, these
chitosan materials have been observed to evoke a
minimal foreign body reaction. Sue and Matthew [9]
stated that this reaction may play a role in inducing local
cell proliferation and ultimately integration of the
implanted material with the host tissue. However, the
biocompatibility or immunological reaction of fibrous
chitosan material to the joint tissue remains unclear. In
addition, the process of degradation or absorption of the
current fibrous material in the articular environment is
still unknown. A further direction of our study will be to
clarify these points using animal experimental models.
Finally, further research will be needed to determine the
adequate shape, pore size and mechanical properties of a
3D fabrication for cartilage tissue regeneration.

Although there is a considerable limitation as men-
tioned above, the data derived from this study suggest
great promise for the future of chitosan-based hyaluro-
nic acid hybrid polymer fibers as a scaffold biomaterial.

The novel scaffold material will be applied to cartilage
tissue engineering for relatively wide cartilaginous
lesions caused by various joint diseases, including
osteoarthritis and rheumatoid arthritis.
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Summary

Surgical treatment for rheumatoid arthritis of the wrist

Surgical treatment for rheumatoid arthritis of the wrist is detailed. Synovectomy of the wrist joint
is effective for the prolonged synovitis that resists medicinal treatment with retained joint space.
Darrach, Sauvé-Kapandji and hemiresection interposition arthroplasty are indicated for painful forearm
rotation due to the destruction of distal radio-ulnar joint. Limited wrist fusion, especially radiolunate
fusion is a reliable method for pain relief and the stability of the joint. Each operative intervention should
be selected according to the radiographic stages and demands of the patients, considering the condition
of the other joints.

Jun—ichi ISHIKA WA et al, Hokkaido Univ., Hokkaido
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