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oped the disease, the symptoms of which include lack of
weight gain (Figure 7A), anorectal prolapse, and a hunched
posture. In contrast, mice treated with anti~IL-6R mAb did
not exhibit these pathologic characteristics (Figure 7A).
Histologically, the intestinal LP of mice treated with anti—
IL-6R mAb had less elongation of epithelial villi and much
less infiltration of inflammatory cells than did those of mice
treated with mock antibody (Figure 7B). Also, the number
of goblet cells was almost normal in the colons of mice
treated with anti-IL-6R mAb burt reduced in mock anti-
body—treated mice (Figure 7B). Finally, the clinical scores of
anti~IL-6R mAb-treated mice were comparable to those of
healthy, control CRY*Y mice (Figure 7C). Thus, the ad-
ministration of anti~IL-6R mAb inhibited the pathologic
effects induced by CD4* T-cell-derived IL-6 and thereby
seemed to prevent the development of colonic inflammation
in the euthymic (nu/+) mutant CRY™Y mice.

Anti-IL-6R mAb Treatment Induced
Apoptosis in IL-6 -Producing Pathogenic
CD4* T Cells

To elucidate the mechanisms by which anti—IL-6R
mADb treatment inhibits development of colitis, we next
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Figure 7. The effect of treatment with anti-IL-6R mAb on the devel-
opment of colitis in CRy~/Y mice. (4) CRy~/Y mice were treated once
at 6 weeks of age with either anti-IL-6R mAb (closed circles) or control
rat 1gG (closed triangles). Body weights of the mice were compared
with those of unreconstituted CRy*/Y mice (closed squares). (B)
Histologic analysis of CRy~/Y mice treated with or without anti-IL-6R
mAb was also performed. The large intestines of CRy~/Y mice were
dissected, and sections were prepared and stained with H&E. His-
topathologic alterations in the colons were assessed according to a
modified clinical analysis system. (C) The histologic score of the large
intestine in the CRy~/Y mice treated with or without anti-IL-6R mAb
was also examined. The large intestines of mice treated with anti-
IL-6R mAb were less affected than those of mice treated with isotype
control antibody. The data represent mean + SD from 3 independent
experiments (4 mice per group). Statistical comparisons were deter-
mined by Student t test (*P < .05).

examined the possibility that the mAb could have induced
apoptosis because IL-6—producing pathogenic T cells ex-
pressed IL-GR (Figure 6B). Because IL-6 has been shown to
possess antiapoptotic activity,3® the autocrine manner be-
tween IL-6 and IL-6R may lead to the creation of an
antiapoptotic environment for the pathologic IL-6-produc-
ing colonic IL-6R* CD4™ T cells. To investigate this
possibility, colonic CD4* T cells were isolated from
CRY™Y mice with and without large intestinal inflamma-
tion and then subjected to Bcl-x— and Bcl-2—specific re-
verse-transcription PCR analysis. The levels of antiapoptotic
gene expression were consistently up-regulated in CD4+ T
cells isolated from colonic LP of the diseased mice (Figure
8A). Thus, the levels of Bcl-x and Bel-2 expression by
pathogenic CD4" T cells were higher than those seen in
CDA4* T cells isolated from nondiseased mice. It should be
noted that anti-IL-6R mAb treatment resulted in the sig-
nificant reduction of Bel-x and Bel-2 expression by colonic
pathologic CD4™" T cells (Figure 8A). Identical results were
obtained when SP CD4" T cells isolated from the same
mice were examined. Thus, the reduction of Bel-x and Bel-2
expression by colonic CD4™ T cells suggested that anti—

— 106 —



930 KAl ET AL

>

Bel-x

10000 -

:

Relative quantity
{mRNA of Bel-x / mRNA of GAPDH)

c

W

GASTROENTEROLOGY Vol. 128, No. 4

Bcel-2

Relative quantity
(mRNA of Bel-2 / mRNA of GAPDH)

sp c-Lp

Colonic LP

I1sotype control

Isotype control Anti-iIL.-6R mAb

10¢
109

2
&

<
e
o el p
%6 (= L+ = 5o
R £ e
£ £e £e
: o o
i t15 .8 Eo 3 . & >
e - : A r i R s L e <
3 0 0! 102 108 1% 10' 10° 10° 10 10° ' o
10! 105 10° 10 10 10! 10 10° 10 ! 10° 10° 10
Annexin ¥ FITC Annexin ¥ FITC Annexin ¥ FITC Annexdin ¥ FITC
Stage of Apoptosis Splean Colonic LP
Annexin V  Propidium iodide {sotype controf Anti-IL-6R mAb {sotype control Anti-IL-6R mAb
. _ 86 %02 14.6 = 2.4 % 122 +28 16.2 + 2.0 3
+ + 35408 10.9 = 3.8 % 18114 352 £ 13.9 %

Figure 8. Characterization of antiapoptotic and apoptotic conditions of CRy~/Y CD4* T cells before and after anti-IL-6R mAb treatment. (A) Analysis
of antiapoptotic Belx and Bel-2 expressions by colonic and splenic CD4* T cells isolated from CRy~/Y mice with IBD. Colonic and splenic CD4* T cells
were isolated from the diseased (black bars) and nondiseased (dotted bars) CRy~/¥ mice, healthy controls (white bars), and anti-IL-6R mAb-treated
(hatched bars) CRy~/Y mice and then subjected to Belx— and Bcl-2-specific quantitative reverse-transcription PCR. Pathogenic CD4* T cells showed
higher levels of antiapoptotic gene expression than did CD4* T cells isolated from nondiseased mice. The levels of antiapoptotic gene expression were
reduced in anti-IL-6R mAb-treated mice (hatched bars). (B) In the second experiment, the apoptosisinducing effect of anti-lL-6R mAb treatment on
CDh4+ T cells isolated from colonic LP and SP cells of CRy~/Y mice was examined. Colonic LP and SP CD4* T cells from CRy~/Y mice were cultured
with 1 mg/mL of anti-IL-6R mAb (MR-16) or isotype IgG control. After 6 hours of incubation, cells were harvested for FACS analysis using the Annexin
V FITC Apoptosis Detection Kit | (BD PharMingen). The data represent the mean * SD from 3 mice per group. Statistical comparisons were determined

by Student t test (*P < .05).

IL-6R mAb treatment induced apoptosis. To directly elu-
cidate this point, CD4* T cells were isolated from SP cells
and colonic LP of CRY ™Y mice and then incubated with
anti-IL-GR mAb or isotype control. Following 6 hours of
incubation, the numbers of annexin V—positive and annexin
V and propidium iodide double-positive cells were signifi-
cantly increased in anti—IL-6R mAb-treated CD4™ T cells
when compared with the control (Figure 8B). Taken to-
gether, these findings suggest that anti-IL-6R mAb treat-
ment interblocks the autocrine antiapoptotic molecular in-

teraction of IL-6 and IL-6R and thus results in the

induction of apoptosis in IL-6-producing pathogenic IL-
6RT CD4" T cells.

Adoptive Transfer of SP CD4* T Cells From
CRy~/Y Mice With Disease Into SCID Mice

In a final series of experiments, we attempted to
directly show the role of IL-6—producing CD4™ T cells
in the development of colitis. Thus, we isolated and
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Figure 9. The induction of colitis in SCID mice adoptively transfered
with SP CD4* T cells isolated from the diseased CRy~/Y mice. (A) The
histologic score of the large intestine in the C.B-17 SCID mice adop-
tively transferred with or without SP CD4* T cells isolated from either
CRvy~/Y mice with colitis or CRy*/Y mice was examined. (B) The large
intestines of CRy~/Y mice were dissected, and sections were pre-
pared and stained with H&E. The data represent the mean * SD from
3 independent experiments (4 mice per group). Statistical compari-
sons were determined by Student t test (*P < .05).

C.B-17 8CID

transferred SP CD4% T lymphocytes from euthymic
(nu/+) mutant CRy™Y or CRy*"Y mice into age- and
sex-matched C.B-17 SCID recipient mice that lacked
both T and B cells. The SCID hosts that had been given
CD4"* T cells from the CRy*"Y mice showed no clinical
or histologic evidence of disease (Figure 9A and B). In
contrast, SCID mice adoptively transferred with SP
CD4" T cells from mutant CRy™’Y mice with the disease
developed evidence of colitis, that is, elevated colitis
scores (Figure 9A) and inflammatory and hyperplastic
lesions in the large intestine (Figure 9B). When we
tested the SP CD4* T cells for the spontaneous produc-
tion of IL-6 before the adoptive transfer experiments, we

Cr¥ % nu/+
—+ C.B-17 SCID

Cy* x nu/+
— C.B-17 SCID

found the cells capable of producing IL-6 (data not
shown). The results of these adoptive transfer experi-
ments further incriminated IL-6—producing CD4% T
cells in eucthymic (nu/+) mutant CRy™"Y mice in the
development of colitis.

Discussion

In patients with IBD, the mucosal immune sys-
tem, especially the T-cell-dependent regulatory system,
is disturbed.?”-3% Results from several studies suggest
that immunoregulatory cells, particularly dysregulated
CD41 T cells in intestinal mucosa—associated tissues, are
important in the pathogenesis of Crohn’s disease and
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ulcerative colitis.'? Our CRy ™'Y IBD model, the mice of
which lack Peyer’s patches and cryptopatches, provides a
unique opportunity to investigate the potential systemic
origin of pathologic CD4™* T cells in mucosa-associated
tissues and their potential role in the development of the
inflammatory disease. Naturally occurring murtations in
CRy are responsible for the X-linked severe combined
immunodeficiency disease in humans, characterized by
the absence of T and natural killer cells but the presence
of B cells.2! Targeted deletion of CR7y in mice provokes
a wide variety of defects in lymphoid development, in-
cluding absence of natural killer cells, y8 T cells, and
gut-associated lymphoid tissue.?>2¢ Because these orga-
nized lymphoid tissues are necessary for the induction
and regulation of the gut mucosal immune system, we
believed it was important to examine the possible mech-
anisms involved in the pathogenesis of colitis in the
unique immunologic environment provided by CRy~™"¥
mice in this study. _

Dysregulation of the delicate balance between Thi-
and Th2-type CD4™" T cells resuits in the development of
IBD in various animal models.1®3? In all murine models
initially used, including specific gene-manipulated and
hapten-induced mice and adoptive transfer models, the
intestinal disease was associated with enhanced Thl-type
activity.1®4041 However, more recent studies have pos-
ited that Th2-like responses are also involved in the
colonic inflammation in murine IBD models!2!5:2842 and
in human ulcerative colitis.?3**#4 In previous studies,
the Th2 responses associated with colitis, such as those
seen in TCR-a™/~, hapten-induced, and oxazolone coli-
tis, were mainly IL-4 dependent.?#42 Our present find-
ings show that the development of colitis is mediated by
IL-6, most likely produced by a selected population of
CD4* af T cells using VB14 TCR (Figures 3 and 4).
The antiapoptotic behavior of these pathogenic CD4™ T
cells expressing high levels of Bcl-x and Bcl-2 seemed to
be responsible for their increased numbers in the diseased
region (Figure 8). Indeed, Bcl-x and Bcl-2 have been
shown to be associated with antiapoptotic activity.’
Because these IL-6—producing pathologic CD4% T cells
simultaneously expressed high levels of IL-GR specific
mRNA (Figure 6B), it is possible that the antiapoptotic
conditions could be created by the autocrine interactions
between IL-6 and IL-6R. Lending further support to this
view is the finding that IL-6 induces antiapoptotic con-
ditions.?® Thus, the present study provides the first evi-
dence that IL-6~producing CD4* T cells can behave as
a pathogenic subset via the creation of autocrine anti-
apoptotic conditions conducive to the development of
colitis in the CRy-deficient condition.

GASTROENTEROLOGY Vol. 128, No. 4

Taken together, these findings provide compelling evi-
dence that VPB14-expressing CD41 off T cells and IL-6 are
implicated in the pathogenesis of colitis in CRy™Y mice.
First, among colonic lymphocytes isolated from CRy™Y
mice, Y8 T cells were absent, whereas a8 T cells were
markedly increased; among such af8 T cells, CD4* but not
CD8* T cells were increased (Figute 3). Second, among the
different cytokines, IL-6, but not IL-4, IL-5, IL-12, or
TNF-o, was preferentially produced by colonic CD4™ T
cells isolated from CRy™ mice with inflammation. The
selectivity of the IL-6 production was further documented
by the finding that production of the Th1 cytokine IFN-y
by the colonic CD4* T cells was not increased in the
diseased mice (Figure 5). Third, anti—IL-6R mAb treatment
(Figure 7A—C), which presumably blocked the autocrine
IL-6/IL-6R signaling, prevented the development of colitis,
because pathogenic IL-6—producing CD4* T cells ex-
pressed IL-GR for the creation of an antiapoptotic nature
(Figure 8A). Further, anti-IL-6R mAb treatment resulted
in the induction of apoptosis in CD4™ T cells isolated from
the colon and spleen -of CRY™Y mice (Figure 8B). This
finding corroborates previous reports*!4¢ chat anti—IL-GR
mAb treatment prevented the development of IBD caused
by adoptive transfer of CD4TCD45RBM 8" cells. Fourth, on
transfer to immunodeficient C.B-17 SCID recipients, SP
CD4* T lymphocytes isolated from CRy™Y mice with
colitis induced disease that was as severe as that seen in the
donors, while transfer of a similar population of T cells from
wild-type mice had no such pathologic effect (Figure 9A
and B).

In previous studies, the transfer of CD4TCD45RBish
T-cell populations from the spleens of healthy donor mice
into SCID mice resulted in the development of colitis in the
recipient mice, whereas transfer of CD41CD45RBM™ T
cells did not.4?-32 Cotransfer of the CD4TCD45RB® T-cell
population together with the CD4*CD45RBMs" T-cell
population prevented the colitis.*” In contrast, in this study,
the adoptive transfer of whole CD4* T-lymphocyte popu-
lations from the diseased CRy~™"Y mice, which certainly
contained both CD4*CD45RBM&" and CD45RB*V frac-
tions, resulted in colonic inflammation in the SCID mice.
This finding suggests that IL-G—producing pathologic
CD4* T cells were resistant to the inhibitory effects of the
CD4TCD45RB"™ T cels.

Previous studies on murine colitis focusing on the trans-
fer of CD4*CD45RBMe" T cells had also shown IFN-y to
be an important pathogenic cytokine.’? Because we have
found IL-6 produced by CD4™ cells to be the key cytokine
in the CRY™Y IBD model, an opportunity now is afforded
to investigate 2 distinct pathogenic pathways (ie, IFN-y- or
IL-6—producing pathogenic CD4* T cells) for the develop-
ment of colitis in cell-transfer models. Moreover, these
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findings point to the possible treatment of experimental
IBD by the blockage of the IL-6/IL-GR signaling pathway.
To this end, it has been shown that the anti-IL-6R treat-
ment is effective for the control of murine colitis induced by
the adoptive transfer of CD4*CD45RBM&" T cells.*¢ Fur-
ther, humanized mAb anti—IL-6R is currently in a clinical
trial .32

In summary, this study showed that unwanted CD4* T
cells, selectively producing the inflammatory cytokine IL-6,
can induce colitis in CRy™¥ mice. Also, the colitis can be
prevented by inhibiting IL-6/IL-6R interaction with anti—
IL-6R mAb. The euthymic (nu/+) mutant CRy Y mouse
model is yet another example of how a disturbed mucosal
immunologic environment can lead to pathologic colonic
inflammation. To our knowledge, it is the first colitis model
in which CD4* Th-cell—originated IL-6 is pathogenetically
implicated, raising the possibility that certain experimental
intestinal inflammarory conditions could be prevented by
intercupting the IL-6/IL-6R signaling pathway.
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Abstract, The mucosal immune system acts as a first line
of defense against bacterial and viral infections while
also playing a crucial role in the establishment and main-
tenance of mucosal homeostasis between the host and the
outside environment. In addition to epithelial cells and
antigen-presenting cells (dendritic cells and macrophages),
B and T lymphocytes form a dynamic mucosal network

for the induction and regulation of secretory IgA (S-IgA)
and cytotoxic T lymphocyte (CTL) responses. This review
seeks to shed light on the pathways of induction and
regulation of these responses and to elucidate the role
they simultaneously play in fending off pathogen invasion
and maintaining mucosal homeostasis.

Key words. Secretory IgA; cytotoxic T lymphocyte; ySIEL; M cell.

Introduction

Intact or injured sites of the respiratory and digestive
tracts represent major entry sites for pathogens from the
lumen via inhalation and digestion, respectively. Several
physical and biological barriers associated with the innate
immune system protect these sites from invasion and help
to maintain their mucosal homeostasis. The first line of
defense is offered by a barrier structure made up of epithe-
lial cells (ECs) joined firmly by tight junction proteins
such as occludin, claudins and zonula occludens [1, 2]. In
addition, the attachment and penetration of pathogenic
microorganisms to mucosal sites are impeded physically
by brush-border microvilli and a dense layer of mucin at
the apical site of the EC, and biologically by the production
of antimicrobial peptides such as a B-defensin [3]. Addi-
tionally, Paneth cells secrete biological defensive mole-
cules, including lysozyme, type II phospholipase A2, and
a-defensins, in response to bacterial infection [4, 5].

In addition to these physical and innate defense systems,
mucosal tissues contain immunocompetent cells for
adaptive immunity. As drawn in figure 1, numerous pop-

* Corresponding author.

ulations of T and B lymphocytes, dendritic cells (DCs),
macrophages and granulocytes form a mucosal network
known as the common-mucosal immune system (CMIS)
[6]. The CMIS links inductive and effector tissues and
also plays a key role in the induction of antigen-specific
immune responses. The primary CMIS inductive site for
orally administered antigen is the Peyer’s patch (PP)
of the gastrointestinal tract, and for nasally administered
antigen, the nasopharynx-associated lymphoid tissue
(NALT). Isolated lymphoid follicles (ILFs), which are lo-
cated throughout the intestine, were recently identified
and characterized by Dr Ishikawa’s and our groups as an
additional inductive site for the digestive tract [7]. These
different organized lymphoid structures are generally
known as mucosa-associated lymphoid tissues (MALTS).
Despite variations in organogenesis {7-9], the MALTs
share several interesting features associated with their
role as inductive tissues. First, MALTs are overlaid by a
follicle-associated epithelium (FAE) containing antigen-
sampling M (microfold) cells, allowing selective transport
of antigens to underlying antigen-presenting cells (APCs)
in the inductive tissues. Second, they consist of an assem-
bly of naive B cells, often including a germinal center,
supported by a network of follicular DCs and CD4*
T cells. Upon activation by antigens, B and T cells emi-
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grate from the inductive tissue, circulate through the
bloodstream and home to distant mucosal compartments,
especially the lamina propria regions of the intestinal,
respiratory and reproductive tracts. The diffused lamina
propria region and the epithelium have been censidered
effector sites, where the MALT-originated, immunoglob-
ulin A(JgA)-committed B cells differentiate into IgA
plasma cells for the secretion of dimeric or polymeric
forms of IgA. Effector tissues contain a variety of T cell
subsets, which exhibit helper, regulatory and cytolytic ac-
tivities and so help to regulate protective immunity at the
mucosal surface. Additionally, a unique T cell population,
known as intraepithelial lymphocytes (IELs), is located
between ECs. IELs have been shown to possess a cytotoxic
function against pathogen-infected cells.

Accumulating evidence suggests that the mucosal immune
system not only protects from bacterial or viral infection,
but also aids in the maintenance of mucosal homeostasis
between the host and outside environmental antigens.
This review focuses on the cellular and molecular
mucosal network for the induction and regulation of
mucosal antibody and T cell responses.

Antigen uptake, processing and presentation
at mucosa

Following oral or nasal administration, foreign antigens
follow the sequence of uptake, transport, processing and
presentation at the inductive tissues, such as PPs and
ILFs, or NALT, respectively. For selective uptake of anti-
gens, the epithelium covering the inductive tissues devel-
ops FAE consisting of professional antigen-sampling
epithelial cells, known as M cells (fig. 1) [10]. M cells are
distinguished from the surrounding ECs by some unique
histological and biochemical features, including the lack
of brush borders, a limited mucus production and a lower
level of degradation activity [11, 12]. Conversely, M cells
exhibit a high transcytosis activity and are characterized
by a unique pocket structure, where numerous kinds of
immunocompetent cells, including DCs, macrophages,
T cells and B cells, are located [12, 13]. These unique
biological characteristics allow M cells to take up antigens
from the lumen into their pocket structures and so selec-
tively transport them to APCs. Hence, mice who lacked
PPs because the tissue genesis cytokine cascade of inter-
leukin 7 receptor (IL-7R) and lymphotoxin f receptor
(LTBR) had been disrupted showed alternative and/or less
ability to take up bacteria and particulate antigens from
the intestinal lumen [14, 15]. Once antigens have been
taken up from the lumen by M cells and transferred to the
M cell pocket, APCs, including DCs, can process the
antigens and migrate into the interfollicular areas of the
PP, where they present epitopes to T cells [13, 16] (see
Iwasaki’s review, this issue). ‘
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Although FAE-associated M cells at inductive tissues
(e.g., PP) are thought to be a major gateway for antigen
uptake from the lumen for the initiation of antigen-
specific immune responses, an alternative induction path-
way may exist for the mucosal immune system, since
antigen-specific immune responses have been induced in
PP-null mice following oral immunization [15, 17]. At
least three different scenarios have been offered regarding
this alternative pathway. First, our group has recently
identified M cells on intestinal villous epithelium (villous
M cells) that is not in the vicinity of PP [14]. Intestinal
villous M cells are developed in various PP/ILF-null mice
and are capable of taking up bacterial antigens. Thus,
villous M cells represent one novel gateway for antigen
uptake in the intestine, as well as a possible new site for
invasion of pathogenic microorganisms. Second, an M
cell-independent pathway is operated by mucosal DCs,
which express tight junction-associated proteins (e.g.,
occludin, claudin 1 and zonula occludens 1) and thus are
capable of extending their dendrites between ECs [18].
On a similar note, CD18-expressing phagocytes have
been reported to be involved in an M cell-independent
pathway for bacterial invasion [19]. By protruding
dendrites into the lumen, mucosal DCs located between
ECs are able to sample gut antigens and then present
them to T and/or B cells [18]. The third pathway for
antigen uptake are ECs themselves. Some evidence has
shown that ECs could process and then present antigens
to T cells via major histocompatibility complex (MHC)
class I as well as class II molecules [20]. In addition to
sampling a wide variety of foreign antigens, the mucosal
immune system must contend with the high number of
apoptotic ECs, which result from the rapid turnover of
epithelium. Although most of these apoptotic ECs are
ceded by the epithelium io the lumen, some of them are
potentially immunogenic and can be transported to T cell
areas of mesenteric lyrrph nodes (MLNs) by mucosal
DCs [21].

Like the intestinal tract, NALT and bronchus-associated
lymphoid tissue (BALT) of the respiratory tract have been
shown to contain M cells along their epithelium for
antigen sampling [22, 23]. Thus, nasal immunization has
been shown to be effective for the induction of Ag-
specific immune responses. Qur previous study showed
that nasally administered fusogenic liposome-containing
vaccine antigens were effectively taken up by M cells
located on the NALT epithelium [24]. The efficacy of
NALT-mediated immunity was further demonstrated by
the use of o-1 protein-coupled DNA vaccine [25]. These
NALT- and BALT-associated M cells were of course also
entry sites for pathogens [26]. Currently, far less is known
about the antigen uptake pathways for the respiratory
tract than for the intestinal tract, and indeed, it is not yet
known whether alternative gateways even exist in the
respiratory tract.
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Figure 1. Multistep model to generate secretory IgA (S-IgA) responses in the intestine. In the common-mucosal immune system (CMIS)-
dependent pathway, naive B cells, also known as B2 lymphocytes, are stimulated in a T cell-dependent manner within Peyer’s patches (PPs)
and isolated lymphoid follicles (ILFs), where several factors (e.g., CD40 and cytokines) induce class-switch recombination from IgM to
IgA. The IgA-committed B cells exit through the lymph and home through the thoracic duct and peripheral blbod to mucosal effector sites
such as the lamina propria of the gut. Intestinal homing is mediated by adhesion molecules and chemokine-mediated interaction. At the
effector site, IgA-committed B2 cells receive several signals, resuiting in the generation of plasma cells. The plasma cells produce IgA as
a dimer joined by a J-chain, and the dimeric form of IgA binds to poly Ig receptor (pIgR) on epithelial cells, is transported across the
epithelium and is released in the intestinal lumen as S-IgA, which acts as a first line of defense against pathogens and maintains mucosal
homeostasis. Another lineage of B cells, B1 cells, are derived from the peritoneal cavity and act as the other source of intestinal secretory
IgA. AID, activation-induced cytidine deaminase; APC, antigen-presenting cell; CCR9, CC-type chemokine réceptor; FAE, follicle-associated
epithelium; IL-4, interleukin 4, MHC, major histocompatibility complex; TCR, T cell receptor; TGF-B, transforming growth factor S.
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Unique B cell network for mucosal IgA production

To provide a first line of defense at the mucosal surfaces
of the aerodigestive and reproductive tracts, the mucosal
immune system selectively uses IgA as a major isotype of
antibody for the formation of secretory IgA (S-IgA). In
order to induce the secretory form of IgA, mucosal B
cells have to undergo two major molecular and cellular
events in the organized inductive and diffused effector
tissues interconnected by the CMIS. In PP, for example, a
pto a class switch recombination (CSR) occurs under the
influence of transforming growth factor § (TGF-B) and
antigen stimulation (fig. 1) [27]. After IgA isotype
switching, IgA-committed B cells leave PP, migrate to
distant effector tissues such as the intestinal lamina
propria, and then, under the influence of IgA-enhancing
cytokines such as IL-5 and IL-6, enter the terminal differ-
entiation process to become IgA plasma cells (fig. 1)
[28, 29]. Dimeric or polymeric forms of IgA produced by
these plasma cells then interact with the poly Ig receptor
(pIgR) expressed on the basal membrane of ECs and are
transported to the apical membrane, where they form
S-IgA [30].

As shown in figure 1, at least three different types of cells
have to harmoniously form a mucosal internet for the
induction of S-IgA at the diffused effector site: (i) IgA-
committed B cells originated in PP, (ii) T helper 2 (Th2)-
type cells producing IgA-enhancing cytokines (IL-5 and
IL-6) and (iii) ECs expressing pIgR. Once in place, S-IgA
antibodies also play a key role in establishing a cohabitant
environment with commensal microorganisms in the
intestinal tract [31].

Contribution of conventional B cells (B2 cells)

to IgA responses

In the mucosal immune system, IgA is produced by two
subsets of B cells, namely Bl and B2 cells [32]. For
example, the murine intestinal lamina propria region
contains equal numbers of B1 and B2 cells committed for
IgA [33]. When MALTs such as PPs, ILFs and NALT
were examined, the inductive tissues were found to con-
tain numerous B2 cells originating from bone marrow-
derived precursor cells. IgA-committed B cell develop-
ment in these inductive organs seerms to depend on anti-
genic stimulation of germinal centers, where B cells
interact with both antigens trapped on follicular DCs and
local CD4* T cells to induce the p to « isotype CSR and
somatic hyper mutation [34]. Similarly, NALT revealed
the presence of germinal centers and p to o isotype
switching after antigen stimulation [35, 36]. The CSR
in PPs is mediated by the CD40/CD40 ligand and by
TGF-B [27, 37]. Also essential to CSR is the interaction
between the inducible co-stimulator (ICOS), which is
expressed on activated Th cells, and its ligand, ICOS-L,
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which is constitutively expressed on B cells [38].
Following stimulation by these molecules, multiple tran-
scription factors induce the CSR. For example, an element
for binding to Smad, which is a TGF-B-induced transcrip-
tional factor, is located in the Cy, promoter region, and
this pathway co-operates with acute myeloid leukemia
(AML) transcription factors [39]. The discovery of
activation-induced cytidine deaminase (AID) has led to a
dramatic breakthrough in our understanding of the CSR
and somatic hyper mutation in germinal centers [40]. AID
is specifically expressed in germinal center B cells and
may also exhibit an RNA- or DNA-editing cytidine
deaminase activity. Surprisingly, the expression of AID
alone induced CSR on artificial substrates in fibroblasts,
indicating that AID per se can induce CSR [41, 42].
However, the molecular mechanism by which AID
initiates this reaction in B cells and recognizes the spe-
cific immunoglobulin loci has yet to be clarified. By
AlID-mediated CSR together with TGF-£ and antigen sig-
naling, 1gM*B220'B cells undergo p-to-a gene re-
arrangement via the formation of an Ia-Cp circular tran-
script. The expression of an Ip-Ca transcript indicates the
completion of the isotype switching for the generation of
IgM-TgA*B220* B cells [40].

The post-switched IgA* B cells exit PP and NALT and
migrate to MLNs and cervical lymph nodes, respectively,
where they proliferate further and differentiate into B
blasts (fig. 1). The B blasts migrate preferentially into the
mucosal effector tissues (e.g., the gut lamina propria and
the nasal passage) through the thoracic duct and blood
circulation. Accumulating evidence suggests that the
IgA* B cell trafficking to the gut lamina propria is facili-
tated by changes in the expression of adhesion molecules
and chemokine receptors. IgA* B cells produce a4f7
integrin that interacts specifically with mucosal vascular
addressin cell adhesion molecule 1 (MAJCAM-1)
expressed by blood vessels in the lamina propria {43].
Later, CCR9 is selectively expressed on IgA-, but not
IgM- or IgG-, committed B cells [44]. The ligand of
CCR9 is CCL25, also known as thymus-expressed
chemoking (TECK), which is produced dominantly by
the intestinal epithelium, determining the selective homing
of IgA* B cells into the intestinal lamina propria [44].
Although the detailed mechanism remains to be investi-
gated, it has been reported that the migration of IgA* cells
from NALT to the nasal passage might be due to the
expression of mucosae-associated epithelial chemokine
(MEC)/CCL28 [45].

Role of B1 cells in mucosal IgA respeonses

The peritoneal cavity may be another source of intestinal
B cells (fig. 1) [46]. Early research demonstrated that
peritoneal cavity-derived B1 cells differ from conven-
tional B2 cells in origin, surface marker expression (e.g.,
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B220, IgM, IgD, CD35 and Mac-1) and growth properties
[32,47]. Of note, B cells exhibit different V,; repertoires
and Ig specificities, and they are thought to be specialized
in responding to T cell-independent antigens conserved
on common pathogens, such as DNA and phosphatidyl-
choline. In contrast, the response of B2 cells to most pro-
tein antigens requires activation by DCs and Th cells
[48-51]. Consistent with this notion, IgA production
from B1 cells was noted in MHC class II-deficient mice
as well as in T cell receptor (TCR) f and 6 chain-deficient
mice [52, 53].

B1 and B2 responses have distinct cytokine requirements.
Our previous studies demonstrated that, like IL-5, a well-
known IgA-enhancing cytokine, IL-15, promotes prolif-
eration and differentiation into IgA-producing cells of B1
but not of B2 (fig. 1) [33, 54]. Indeed, a disruption in the
IL-5 receptor gene or treatment with anti-IL-15 antibody
resulted in the severe paucity of B1 cells at effector sites
such as the intestinal lamina propria and nasal passage
but did not affect B2 cell number [33, 54]. A previous
report proposed that the homing pathway of B1 cells to
the peritoneal cavity depended on the CXCLI13 (also
known as B lymphocyte chemoattractant, BCL) produced
by peritoneal macrophages [55]. Another study using
alymphoplasia (aly) mice that carried a point mutation in
the nuclear factor xB-inducing kinase (NIK) demon-
strated a complete absence of B cell population in the
intestinal lamina propria of aly mice, and a defective
migration of peritoneal cells to intestinal effector compart-
ments [56, 57]. These data imply that the NIK-mediated
pathway is involved in the B1 cell mucosal migration,
which might be dependent on specific but not yet identi-
fied chemokine receptors. We previously reported that Bl
cells existed in the nasal passages [33], but the actual
molecular machinery of B! cell migration into the nasal
passages remains an open question.

Recent resylts obtained from AID” mice suggest an
alternative pathway for CSR induction at diffused effector
sites (e.g., the intestinal lamina propria), one that does not
involve the organized inductive tissues, such as PPs [58].
In this study, stromal cell-derived TGF-f in the intestinal
lamina propria was shown to trigger IgM*B220* B cells
to undergo p-to-a CSR and to become IgA-switched B
cells. Thus, the intestinal lamina propria might be able to
act as both inductive and effector sites. However, the
recent discovery of ILFs that are equipped like mucosal
inductive sites challenges this hypothesis [7]. Because
AID mice were shown to exhibit numerous hyperplasia
of ILFs, it is possible that IgA-switching of B cells was
triggered within ILFs [59]. In accordance with these
observations, the expression of a series of IgA isotype
CSR molecules, including AID, the Ia-Cp circular tran-
script and the Ip-Ca transcript, were detected only in the
organized tissues (e.g., PPs, ILFs and NALT), and not in
diffused effector tissues [34]. Although this finding
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directly demonstrates that organized lymphoid structures
are key to CSR in B2 cells, it does not rule out the possi-
bility that IgA-specific CSR for B1 cells may not occur in
the organized lymphoid tissues. In this regard, a majority
of B cells belonging to the organized MALT were found
to be of B2 lineage, and the diffused lamina propria
regions of the aerodigestive tract and peritoneal cavity
were observed to be rich in BI cells [32].

Formation and transport of S-IgA

by epithelial cells via pIgR

Two essential steps for the production of IgA antibody in
the lumen and secretions have already been outlined: (i)
the switching of B cells to IgA at inductive sites (e.g.,
PPs, ILFs, and NALT) and (ii) the migration of those IgA-
committed B cells to effector sites (the intestinal lamina
propria and nasal passages). Additionally, IgA production
requires the expression of the joining chain (J-chain) and
plgR (fig. 1). The J-chain gene expressed in B cells is a
small polypeptide that regulates polymer formation of
IgA and IgM, but not that of other types of Ig [60, 61]. J-
chain synthesis is tightly regulated at the transcription
level. Transcription is induced by antigen recognition,
which is dependent on IL-2-induced chromatin remodel-
ing of the J-chain locus and interaction of specific tran-
scription factors with the J-chain promoter [62, 63]. It is
interesting to note that the expression of the J-chain has
been identified in invertebrates (Mollusca, Annelida,
Arthropoda, Echinodermata and Holothuroidea) that lack
B cell development in the phylogenic tree [64]. Since mu-
cosa-oriented, IgA-committed B cells produce dimeric or
polymeric forms of IgA in the effector tissues, while
serum IgA is generally a monomeric form, the expression
of the J-chain is essential for the formation of S-IgA.
Similarly, pIgR expressed by the basal membrane of ECs
1s a prerequisite for the formation and transport of S-IgA
[30]. Dimeric or polymeric IgA containing the J-chain
shows a high affinity for pIgR, thereby accelerating the
internalization and transport of the complex to the apical
site via transcytosis [65]. Thus, elevated serum IgA and
decreased fecal IgA levels were observed in J-chain
knockout mice due to the decreased affinity for pIgR
[66, 67]. At the apical site, S-IgA antibodies are produced
by endoproteolytic cleavage of the pIgR domain to become
secretory components. As i J-chain knockout mice,
disruption of the pIgR gene results in a defective transport
of IgA into the intestinal lumen and, thus, in the reduction
of IgA antibodies in the gut secretions, despite the presence
of high numbers of IgA plasma cells in the intestinal
lamina propria [68, 69]. The high levels of pIgR constitu-
tively expressed by ECs are regulated at the transcription
level by specific transcriptional factors (USF-1 and USF-2)
[70, 71]. Additionally, the constitutive expression of pIgR
is further upregulated by a group of Thl, Th2 and in-
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flammatory cytokines [e.g., interferon, (IFN-y), IL-4 and
tumor recrosis factor (TNF)], indicating that pIgR
expression is also involved in increased local IgA pro-
duction during the course of mucosal injury, such as
infection [72]. This evidence further emphasizes the unique
mechanism of S-IgA production, whereby PP- or NALT-
originated Th1 and Th2 cells as well as IgA-committed
B cells form a mucosal intranet together with ECs.
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IgA as a mucosal guarding and symbiosis molecule

Several studies have shown that S-IgA is capable of neu-
tralizing viruses and bacteria in cultures and of protecting
the host from pathogenic microorganisms in vivo. For
example, IgA derived from the saliva of mice nasally
immunized with fimbriae prevented the adhesion of
Porphyromonas gingivalis to ECs, which resulted in the
subsequent inhibition of inflammatory cytokine produc-
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tion [73]. S-IgA prevents mucosal infection with viruses
and neutralized microbial toxins [74-76]. Additionally,
the J-chain- and plgR-mediated transport machinery
through ECs is an effective physical system not only for
the delivery of dimeric/polymeric IgA from the basolateral
surface to the lumen, but also for the creation of a
one-way transport pathway that blocks antigens from
penetrating the body [77]. Furthermore, the mucosal IgA
plays a pivotal role in impairing pathogen penetration by
neutralizing pathogens during transcytosis by ECs, espe-
cially within the apical recycling endosome [78, 79].
The mucosal immune system acts as more than just the
first line of defense against pathogenic microorganisms:
the mucosal epithelium, especially the intestinal tract,
serves as the means by which nonpathogenic commensal
bacteria cross-talk with the immune system to foster the
development and maintenance of the mucosal IgA pro-
duction pathway [31]. For example, the unusually small
and flattened PPs of germ-free mice, which also showed
a paucity of IgA-producing B cells, matured normally
once commensal bacteria were introduced, and an increase
in the number of IgA plasma cells was seen as well [80].
It has also been reported that disruption of the AID gene
resulted in ILF hyperplasia and a high degree of germinal-
center formation, as discussed above [59]. These obser-
vations were associated with an increase in anaerobic
flora and with the antibiotic treatment meant to destroy
them, indicating that ILF development was also regulated
by the interaction with commensal bacteria [59]. Further,
most recent studies suggest that secretions of intestinal
IgA are a key factor in the regulation of commensal
microflora [81]. Thus, an altered bacterial flora charac-
terized by an aberrant increase in segmented filamentous
bacteria was observed in the intestinal tract of IgA-
deficient mice.

Since both commensal and pathogenic bacteria express
conserved molecular features of microbes (so-called
pathogen-associated molecular patterns; PAMPSs) neces-
sary for stimulation of innate immunity and eventually, of
acquired immunity, one obvious question would be why
commensal bacteria do not induce inflammatory re-
sponses [82]. Several recent investigations offer plausible
explanations for this intriguing interaction between in-
testinal commensal microflora and the host immune sys-
tem. First, induction of S-IgA responses against com-
mensal bacteria is derived from T cell-independent B1
cells, while the S-IgA response against pathogen-derived
epitopes required antigen-specific T cell help presumably
belonging to B2 cells [53]. As mentioned above, the T
cell-independent IgA antibodies originating from B1 cells
possessed reactivity to conserved bacterial products,
which resulted in the undiscriminating blockade of com-
mensal bacteria attachment to mucosal surfaces. It was
further demonstrated that intestinal macrophages rapidly
kill commensal bacteria, while intestinal DCs retain
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small numbers of live commensal organisms and migrate
only into MLNs, and do not stray beyond them. This func-
tion ensures a commensal bacteria-specific IgA response
that is specifically produced at gut mucosa, but not at sys-
temic compartments {83]. In contrast, pathogenic Salmo-
nella enterica serovar Typhimurium are detected in both
DCs and macrophages from the MLNs as well as the
spleen, which allows bacteria to persist longer and induce
more pathogenic effects at both the local and the systemic
compartments [83].

Second, it was reported that avirulent Salmonella were
capable of disrupting inflammatory cytokine synthesis
from intestinal ECs by inhibiting ubiquitin-mediated
degradation of 1xB, leading to the blocking of nuclear
factor kappa B (NF-kB)-mediated transactivation of the
inflammatory gene [84]. The third possible mechanism of
inhibiting inflammatory response at mucosal sites is the
generation of tolerance to subsequent stimulation from
bacterial products. Otte et al. reported that repeated contact
with bacterial components (e.g., lipopolysaccharide)
induced downregulation of Toll-like receptors (TLRs) on
the surface of ECs, and inhibition of intracellular signaling
though TLRs by upregulation of Tollip [85]. These data
suggest mechanisms by which inflammatory responses
induced by commensal bacteria are inhibited to create
and maintain an immunological silence at the intestinal
mucosa. However, the exact means by which the mucosal
immune system cleverly distinguishes commensal from
pathogenic bacteria remains to be clarified.

Cytotoxic functions of mucosal T cells as
a cellular barrier

The mucosal immune system does not rely solely on
S-IgA-mediated humoral immunity to provide an effective
first line of defense. Since the mucosal immune system is
continuously facing harsh environmental stress, and
because a rupture of this first defense line can lead to
serious disease, the system must be equipped with multiple
layers of protective immunity. The experiments using
IgA~" mice pointed out that compensatory mechanisms
other than S-IgA might be responsible for protection
from viral or bacterial infection [86, 87]. In this respect,
there is substantial evidence that mucosal T cells harbor
cytolytic activity and are thus capable of killing cells in-
fected with virus or bacteria [88-90]. Like IgA-producing B
cells, large numbers of mucosal T cells, including both
CD4* and CD8* T cells, are situated in the intestinal
lamina propria for the delivery of protective functions,
including cytotoxicity (fig. 2). Moreover, a unique mu-
cosal T cell population exists in the intestinal epithelium.
Next we focus on the cytotoxic effects of intestinal T cells
as a major provider of cell-mediated immunity at the
mucosal surface.
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Intestinal lamina propria T cells with cytoetoxic function
Intestinal lamina propria T cells are largely composed of
affTCR lymphocytes expressing either CD4* or CD8«f3".
In addition, CD4* and CD8" T cells distribute in different
areas of intestinal tissue sections, as observed by
immunostaining. CD4* T cells are largely located in the
lamina propria, while CD8" T cells reside along the
epithelium [91]. Although we have no explanation for this
histological segregation, the most obvious interpretation
would be that mucosal CD8" T cells with cytotoxic activity
are situated close to the entry sites for pathogenic
invaders to ensure the immediate elimination of the
pathogens and infected ECs. Most of these mucosal
T cells are thought to derive from the CMIS-dependent
induction pathway. Recent studies have demonstrated that
PP- and MLN-derived DCs determine the gut tropism of
lamina propria lymphocytes (LPLs) by the induction of
high levels of a8, integrin and CCR9 expression, result-
ing in selective migration to the small intestine (fig. 2)
[92-94]. Thus, oral antigen-educated mucosal T cells
originating from PP migrate to distant effector sites by
obtaining the mucosal trafficking molecules (e.g., a,f;
and CCR9) via the CMIS.

At the periphery, CD8* T cells recognize the antigens
derived from the cytosolic antigen as a complex with
MHC class 1 molecules [95, 96]. Heterodimeric CDS8
(CD8ap) T cells are involved in the subsequent killing of
target or virus-infected cells [97, 98]. Thus, the « chain of
the CD8 molecule associates with MHC class I molecules,
and the § chain acts as a TCR co-receptor for the recog-
nition of cytotoxic T cell epitope antigens. Consistent with
the expression of CD8af on LPL T cells, these CD8*
LPLs present cytotoxic activities against MHC class
I-restricted antigens originating from various kinds of
intracellular antigens [99, 100]. Similar to peripheral
CD8" T cells, CD8«p LPLs express the pore-forming
protein perforin and cytolytic granules containing
granzyme proteases to exhibit cytotoxic activity against
pathogenic cells [101].

Intraepithelial T cells, an anonymous cell population,
are important as a first line of defense

An additional unique feature of the mucosal immune
system is the presence of T cells in the intestinal epithe-
lium known as IELs (fig. 2). IELs are located at every four
to nine ECs and are mainly composed of heterogeneous
groups of T cells based on the usage of TCRs as well as
CD4 and CD8 [102]. LPL CD8* T cells are exclusively
affTCR-positive cells with heterodimeric CD8ap (70%
of CD8* LPLs are aSTCR-positive, and 15% are y6TCR-
positive). In contrast, few affTCR CD8aff T cells are
found in IELs (about 10%), and most CD8* IELs are ei-
ther y6TCR- or afSTCR-positive cells with homodimeric
CD8aa (about 50%) [103]. Similar to CD8* T cells at the
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periphery and lamina propria, CD8«f3 IELs develop in
the thymus and migrate specifically into the mucosal
compartments by the selective expression of CCR9 and
o,f; integrin [104]. However, CCR9-deficient mice ex-
hibited a modest decrease of IELs, indicating that other
chemokines might be involved in IEL migration {105,
106]. Thus, several studies suggest the contribution of
other chemokines and chemokine receptor pathways as
mediators of gut tropism [107-109]. Intriguingly, TCR
clonotypes the CD8af afTCR IELs were almost identical
to those of the CD8aff LPLs and thoracic duct CD8* T
cells [110], implying that CD8af IELs were primed to
antigen in PPs and migrated into the intestinal region via
the CMIS-dependent pathway. The finding that DCs in
PPs and MLNs induce «,f3; integrin and CCR9 expression
on IELs as well as LPLs lends support to this theory
(fig. 2) [93, 94]. Under the influence of TGF-B, a cy-
tokine produced by ECs and numerous activated lympho-
cytes and macrophages, inhibition of a4 expression oc-
curs simultaneously with the induction of aFE, leading to
the expression of aEf7, a hallmark of IELs for the cell-
to-cell interaction with E-cadherin {111]. The presence of
a two-way communication of T cells between the epithe-
lial region and the lamina propria was also predicted
[112], but the exact governing of it remains to be eluci-
dated. At the least, these findings suggested that IELs
provide an additional layer of defense over and above
IgA-committed B cell-mediated humoral immunity.

In contrast to so-called thymus-dependent CD8ap IELs,
at least some populations of CD8aa IELs, such as
ySTCR T cells, are thought to be thymus-independent and
thus develope in gut-associated cryptopatches (CPs)
[113]. CP lymphocytes do not originate from the thymus,
because nude mice contain CPs of identical size, structure,
number and cell phenotype with normal mice. In con-
trast, CPs are absent in mice that have a defective cy-
tokine-receptor y chain gene and that also lack CD8aao
affTCR and ySTCR IEL fraction, but contain thymus-de-
pendent CD4* and CD8* afSTCR IELs [114, 115]. The
main population of CP cells displayed a c-kit, IL-7R and
CD44-positive, but lineage markers (CD3, B220, Mac-1,
Gr-1 and TER-119)-negative lympho-homopoietic stem
cell phenotype [116]. Consistent with the IL-7R expres-
sion on CP lymphocytes, gut epithelium-derived IL-7 has
been shown to be important in the induction of CD8a«
IEL T cells and CP maturation, since IL-7-- mice do not
have ySTCR IELs and CPs. The introduction of IL-7 into
IL-7-deficient mice. results in the recovery of y6TCR
IELs and CPs [117, 118]. In vivo studies demonstrated
that CPs had an ability to generate both «fTCR and
yS6TCR IELs without the influence of the thymus [115,
116]. However, other studies questioned the thymus-in-
dependent nature of IELs and implied that CD8a«
affTCR and y6TCR IELs developed at the thymus {119,
120]. The most recent study has demonstrated that all of
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the intestinal T cells expressing afTCR, regardless of co-
expression of heterodimeric or homodimeric CD8, are
progeny of CD4*CD8* thymocytes [121]. Although the
issue of thymus-independent development of IELs
remains controversial, CPs are still considered key mem-
bers of the gut-associated lymphoid tissue network and at
least serve as one immunological nest for the development
of some populations of intestinal T cells. Some researchers
have reported the expression of CCR6 by CP lymphocytes
and have noted that the expression of E-cadherin on
ECs could be a tethering molecule for IELs, helping
them migrate to and reside in the intestinal epithelium
[111, 122]. However, the molecular sequence mechanism
for IEL egress from CP and migration into the EC
compartment is still obscure.

Another key difference between CD8af IEL T cells and
CD8aa IEL T cells was revealed using MHC class I-
deficient mice. The experiments demonstrated that
CD8ap affTCR 1ELs were dependent on MHC class 1,
while CD8aa IELs were not [123, 124]. Thus, CD8af
affTCR IELs showed cytotoxic activity against nonself
cytoplasmic antigens in an MHC class I-restricted manner,
whereas CD8aa IELs exerted extremely low cytotoxic
activity against antigens associated with MHC class I
[89]. These observations raise the obvious question about
the nature of antigens and presentation molecules interact-
ing with CD8aa IELs. Mice lacking the MHC-regulating
molecules f2-microglobulin ($2m) and transporter asso-
ciated with antigen processing (TAP) shed new light
on the process of antigen presentation and recognition.
The number of CD8aa IELs were markedly reduced in
B2m-deficient mice compared with TAP-deficient mice,
implying that nonclassical MHC molecules might con-
tribute to antigen presentation to subpopulations of IELs
[125, 126]. In support of this hypothesis, intestinal ECs
express several nonclassical MHC molecules, including
thymus leukemia antigen (TL), Qa-1, Qa-2, CD1 and
MHC class I-related molecules (MICA and MICB)
(fig. 2) [127]. Some populations of these nonclassical
MHC molecules (TL and MICA) are capable of interact-
ing with their ligand without antigen, but the other popu-
lations present lipid antigen (e.g., CD1). As expected, Qa-
2-- mice contained a few CD8a«a 1ELs, and the mice
were susceptible to parasitic infections [128, 129]. The
other molecules interacting with y6TCR IELs are MICA,
capable of activating Vy1V é1* IELs (fig. 2) {130]. Addi-
tionally, MICA interacts with an ‘activating type’ of nat-
ural killer (NK) receptor, NKG2D [130, 131], and
CD8aa ySTCR IELs display both T and NK cell markers
and cytotoxic feasibility [132]. Since MICA is not ex-
pressed constitutively on normal ECs but is induced by
bacterial or viral infection [133, 134], it has been thought
that CD8aa ySTCR IELs recognize infected ECs via
MICA, hampering systemic dissemination of virus or
bacteria. These responses mediated by nonclassical
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MHC molecules were induced promptly after infection;
hence, it has been proposed that y6TCR IELs provided a
bridge between rapid innate responses and slower ac-
quired immune responses [135]. In support of this idea,
a recent study using a Listeria infection model demon-
strated that MHC class I-restricted memory T cells regu-
late H2-M3 (one of the nonclassical MHC molecules)-
restricted memory T cells by limiting antigen presenta-
tion by DCs, thereby preventing the contribution of
H2-M3-restricted protective mechanisms at late stages of
infection [136].

In addition to the interaction between nonclassical MHC
and TCR or NKG2D, CD8au itself interacts with TL, a
p2m-dependent nonclassical MHC class I molecule
[137]. TL is constitutively expressed by the ECs of the
small intestine and, like the other nonclassical MHC
molecules, does not present peptide antigens [138, 139].
Functional studies have demonstrated that the interaction
of TL with CD8aa on IELs promotes the production of
cytokines but does not induce their proliferation and
cytotoxic response [137]. These unique functions seem to
lead to IEL-mediated protection without destruction of
the EC layer. Regardless of the origin of IELs (thymic
versus extra-thymic development), these gut-oriented
T cells seem to be key players in establishing a surface
barrier-associated immunological flow of innate and
acquired immunity.

Concluding remarks

This review has been aimed at elucidating the functional
aspects of the molecular and cellular regulation of
mucosal B- and T-cell-mediated S-IgA and cell-mediated
immunity as a first line of defense against invading
pathogens. The mucosa-associated immunocompetent
cells, including mucosal ECs, DCs, macrophages, Thl,
Th2, CTL and IgA-committed B cells, harmoniously
interact in both innate and acquired immunity at mucosal
sites, thereby playing an important role in the early
and late phases of pathogenic microorganism invasion,
respectively. These facts have led to considerable efforts
at developing a mucosal vaccine using mucosal adjuvant
and/or mucosal delivery systems that could effectively
upregulate the induction of protective immunity at the
initial entry of pathogens via the aerodigestive and
reproductive tracts [140, 141]. In addition to protecting
against microorganism invasion at mucosa, the mucosal
immune system is capable of inducing and regulating a
mucosal homeostasis between host and outside environ-
ments. Thus, disruption of the system leads to the devel-
opment of mucosal immune diseases such as inflamma-
tory bowel disease, asthma and food allergies [142]. A
comprehensive molecular and cellular understanding of
the mucosal immune system will facilitate novel
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approaches to mucosal immune therapy and mucosal
vaccine design, eventually contributing to the improve-
ment of public health.
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