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Table 1. Candidates for anti-RANKL therapy

OPG, OPG-Fc (23, 129, 144, 188, 189, 195, 196)
RANK-Fc (191-194)

Anti-RANKL monocloncal antibody (197)

OPG-like peptidemimetics (OP3-4) (190)

RANKL vaccine (199)

Interferon-B, v (201, 202)

p38 inhibitor (SB203580, FR167653) (203, 204)

INK inhibitor (SB600125) (59)

IKK inhibitor (NBD peptide) (209)

NF-kB inhibitor (NF-xB decoy) (206)

Calcineurin inhibitor (Cyclosporin A, FK 506) (59, 64, 65)
NFAT inhibitor (VIVIT peptide) (59)

PI3K inhibitor (wortmannin, LY290442) (85, 86, 205)

stage. Lymphotoxin P signaling is indispensable for both
lymph node and Peyer’s patch organogenesis, and the RANK
signaling regulates lymphotoxin f expression in lymph nodes
(208). Therefore, RANKL/RANK pathways may be required
for lymph node genesis in the developmental stage but not for
lymph node function in adulthood.

OPG binds to TNF-related apoptosis-inducing ligand (TRAIL)
with the similar affinity to RANKL (209), and therefore, OPG
weatment may affect the function of TRAIL. Mice with TRAIL
gene deletion were more susceptible to experimental and sponta-
neous tumor metastasis, and they were more sensitive to chemical
carcinogens, indicating the importance of TRAIL in the host
defense against transformed cells (210). Although neither the
increase in the overall risk of malignancy nor the exacerbation
of the metastatic bone tumors has been reported in the clinical
trials of Fc-OPG or anti-RANKL antibody, these data warrant
a careful observation on the patients receiving anti-RANKL
therapy.
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Conclusion

The accumulating knowledge on the molecular mechanism
regulating osteoclast development has opened a new era of
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Regulation of Osteoclast Apoptosis and Motility by Small GTPase
Binding Protein Racl*

Akira Fukuda,' Atsuhiko Hikita,' Hidetoshi Wakeyama,' Toru Akiyama,' Hiromi Oda,* Kozo Nakamura,’
and Sakae Tanaka'

ABSTRACT: The role of Racl in osteoclast survival and bene-resorbing activity was examined using adeno-
virus vector expression systems. Racl is critically involved in M-CSF receptor signaling and mediates survival
signaling primarily through PI3K/Akt pathways. Racl also plays a significant role in bone resorptive activity,
probably by regulating the motility of osteoclasts.

Introduction: Racl is a member of Rbho family small G-proteins, and recent studies have revealed that it
mediates anti-apoptotic signals in some types of cells. Racl is reported to be required for the cytoskeletal
organization and bone-resorbing activity of osleoclasts, but their roles in osteoclast survival and function are
not fully elucidated.

Materials and Methods: We constructed the adenovirus vector carrying cDNA of either the dominant negative
Racl (RacIP™) or constitutively active Racl (Racl®*) gene, and osteoclast-like cells (OCLs) generated in
mouse co-culture system were infected with these viruses. To examine the role of Racl in osteoclast survival
and function, we performed pit formation assays, survival assays, and Western blotting, including an activated-
Racl pull-down assay using adenovirus-infected OCLs. To further clarify the mechanism of Racl regulation
in osteoclast survival, some specific inhibitors and adenovirus vectors of signal transduction molecules were
used. To quantify membrane movement before and after macrophage colony-stimulating factor (M-CSF)
treatment, OCLs expressing either enhanced green fluorescent protein (EGFP) or Rac1P™ were recorded with
a time-lapse video microscope.

Results: Adenovirus vector-mediated dominant negative Racl (Racl®™) expression significantly reduced pit
formation, and promoted their apoptosis. M-CSF rapidly activated Racl, and the prosurvival effect of M-CSF
for OCLs was abrogated by RacI”™ overexpression. Constitutively active Racl enhanced OCL survival, which
was completely suppressed by phosphatidylinositol 3'-kinase (PI3K) inhibitors, whereas a Mek inhibitor had
only partial effect. Rac1P™ also partially blocked the activation of Akt induced by the overexpressing catalytic
subunit of PI3K. Using time-lapse video microscopy, we found that Rac1PN expression reduced membrane
ruffling and the spreading of OCLs in response to M-CSF.

Conclusions: Small guanosine triphosphatase (GTPase) Racl is critically involved in M-CSF receptor signaling
and mediates survival signaling of osteoclasts primarily by modulating PI3K/Akt pathways. Racl also plays a
significant role in the bone resorptive activity of cells, probably by regulating the motility of osteoclasts.

J Bone Miner Res 2005;20:2245-2253. Published online on August 22, 2005; dei: 10.1359/JBMR.050816
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INTRODUCTION absence of trophic factors, such as macrophage colony-

stimulating factor {M-CSF) and RANKL.*) Although re-

OSTE()(_'LASTS ARE PRIMARILY responsible for bone re-
sorption and play essential roles in maintaining sket-
etal homeostasis. They are terminally differentiated cells
with a short life span and undergo rapid apoptosis in the

*This study was presented in abstract form at the 24th Anoual
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Annual Meeting of the American Society for Boue and Mineral
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cent findings suggest that osteoclast sarvival is regulated
through interactions of various hormones and cyto-
kines,™* the underlying molecular mechanism is not fully
understood. Bisphosphonates are widely used in the man-
agement of osteoporosis and are known to suppress patho-
logical bone resorption by direcily suppressing osteoclast
activity. Numerous studies have shown that one of the prin-
ciple mechanisms of bisphosphonate action is to induce 0s-
teoclast apoptosis both in vitro and in vivo. The remarkable
success of bisphosphonates as an anti-osteoporotic treat-
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ment has led us to believe that the osteoclast apoptosis can
be a good therapeutic target to develop efficient drugs for
pathological bone loss, and therefore, the molecular mecha-
nistnn of the osteoclast apoptosis has attracted a great deal of
attention.

Guanosine triphosphate {GTP)-binding proteins (G-
proteins) regulate cellular function by interconverting be-
tween the GTP-binding {active) form and the guanosine
diphosphate (GDP)-binding (inactive) form. Small G-
proteins are monomeric G-proteins with molecular weight
of 20-30 kIDa, and to date, >100 members have been iden-
tified. Recent studies have revealed that small G-proteins
can be targets of nitrogen-containing hisphosphonates.™ It
has been shown that these bisphosphonates inhibit post-
translational prenylation of small G-proteins, which may be
a mechanism of their action to induce osteoclast apoptosis.
Rho, Rac, and Cded2 are members of Rho family small
G-proteins,‘® and accumulating evidence has shown that
they mediate growth factor receptor signaling and regulate
the cytoskeletal organization in various types of calls. "
Recent studies, however, have revealed that some members
of Rho family small G-proteins, especially Racl, also me-
diate anti-apoptotic signals in some types of cells, such as
hematopoietic cells, cerebellar granule neurons, and CO87
cells.®-'1) RhoA and Racl are reported w be required for
the cytoskeletal organization and bone-resorbing activity of
osteoclasts, but their roles in the osteoclast survival and
function are not fully elucidated.

In this study, with the adenovirus vector expression sys-
tem, we investigated the role of RhoA, Racl, and Cded2
astecclast survival and function. Amoong them. we found
that Racl is critical for both osteoclast survival and bone
resorption, and we showed that Racl lies downstream of
M-CSF receptor signaling, mediates the survival signaling
of osteoclasts through phosphatidylinositol 3-kinase
(PI3K)-Akt pathways, and plays an important role in bone-
resorbing activity, probably by regulating osteoclast mem-
brane movement.

MATERIALS AND METHODS
Animals and chemicals

Treatment of each animal was conducted in accordance
with the Guide for Animal Experimentation established at
our institute. Newborn ddY mice and S-week-old male ddY
mice were purchased from Sankyo Laboratories Animal
Center. o-MEM and DMEM were purchased from GIBCO
BRL and Life Technologies (Rockville, MD, USA), and
FBS was purchased from Sigma Chemical (St Louis, MO,
USA). Bacterial collagenase was purchased from Wako
Pure Chemical (Tokyo, Japan) and dispase from Godo
Shusei Co. {Tokyo, Japan). Prostaglandin E, (PGE,) was
obtained from Sigma Chemical, and la,25-dihydroxy-
vitamin D; [10,25(0OH),.D,] was purchased from Catbio-
chem (La Jolla, CA, USA). Type T collagen gel was
purchased from Nitta Gelatin (Osaka, Japan). MEK inhibi-
tor PDY80SY was purchased from Cell Signaling Technol-
ogy (Beverly, MA, USA), PI3K inhibitor LY294002 was
purchased from Sigma Chemical, and wortmannin and

FUKUDA ET AL

rapamycin were obtained from Calbiochem. Recombinant
mouse M-CSF was obtained from R&D Systems (Minne-
apolis, MN, USA). Ant-GFP antibody (J1.-8) was obtained
from Clontech (Palo Alto, CA, USA), anti-Racl and anti-
ERK were from Transduction Laboratories (Lexington,
KY, USA), anti-phospho-ERK was from New England
Biolabs (Beverly, MA, USA), and anti-phospho Akt (8473)
and anti-Akt were from Cell Signaling Technology. Other
chemicals and reagents used in this study were of analytical
grade.

Osteoclast culture

Osteoclast-like cclls (OCLs) were generated in the
mouse co-culture system as described previousky.' 72
Briefly, mouse primary osteoblastic cells from 1-day-old
ddY mouse calvaria and bone marrow cells from tibias of
S-week-old male ddY mice were co-cultured on 18-cm plas-
tic dishes or collagen gel-<coated dishes with 10% FBS con-
taining «-MEM in the presence of 10 nM 10.25(0OH LD,
and 1 mM PGE, On day 4 or 5, when OCLs began to
appear, mouse co-cultures were incubated with a small
amount of a-MEM containing adenovirus vectors for 1 h at
37°C. The cells were washed twice with PBS and further
incubated with o-MEM/I0%FBS at 37°C. Twenty-four
hours after adenovirus infection, collagen gel was digested
with 0.2% collagenase, and co-cultured cells were reseeded
onto dentin slices or plastic dishes. For Western blotting
and the survival assay, OCLs were purified following a
modified method originally reported by Tezuka et alt'* In
brief, osteoblasts and stromal cells were removed with
o-MIIM containing (.1 % collagenase and 0.2% dispase 48 h
after reseeding.

Adenovirus construction

Bvery cDNA of fusion protein of enhanced green fiuo-
rescent protein (EGFP) and dominant negative mutant of
RhoA (TIYN, RhoAP™), Racl (TL7N, Racl®™), and
Cded2 (T1TN, Cded2P™)) or constitutively active Racl
{12V, Racl®™) gene cloned in pCAGGS vector was a
kind gift from Dr Michiyuki Matsuda (Research Institute
for Microbial Diseases. Osaka, Japan).t'> Adenovirus vec-
tors carrying these cDNA was constructed using the in vitro
ligation technigue with a comroercially available kit from
Clontech. The adenovirus vector carrying only EGFP
c¢cDNA was used as a control vector. Adenovirus vector
carrying the dominant negative mutant of Racl with CAG
promoter was kindly provided by Yoh Takuwa (Kanazawa
University, Japan). Adenovirus vector carrying ¢cDNA of
the myristoylated [orm of Akt {Akt“™), which contains a
Sre myristoylation signal that promotes association with the
plasma membrane causing constitutive activation through
phosphorylation by Akt-activating kinases, was a generous
gift from Dr Hideki Katagiri (Tohoku University).¢*® Ad-
enovirus vector carrying ¢cDNA of a catalytic subuuit
pli0a of PI3K was also kindly provided by Dr Hideki
Katagiri."'"! To determine the multiplicity of infection
(MOI) ot the viruses, we used a modified endpoint cyto-
pathic effect assay as previously described.('®
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Pit formation assay

The pit formation assay was carried out as reported.”'”

Briefly, OCLs obtained on a collagen gel co-culture system
were recovered by digesting the gel as described above. An
aliquot of the crude QCL preparation was transferred onto
dentine slices (Wako Pure Chemical) and cultured for an
additionat 8 h. To prevent the effect of OCL survival on the
pit formation assay, the assay was performed after 8 h. Af-
ter the 8-h incubation, the medium was removed, and 1 M
NH,OH was added to the wells for 30 minutes. Adherent
cells were removed from the dentine slices by ultrasonica-
tion, and the resorption pits were visualized by staining with
1% toluidine blue. The resorbed area was measured using
an image analysis system (System Supply, Nagano, Japan)
linked to a light microscope (Nikon, Tokyo, Japan).

Osteoclast survival assay

The survival rate of OCLs was measured as re-
ported.!? Briefly, OCLs were subjected to TRACP
staining at 0, 12, and 24 h after purification. Cell viability/
survival rate was expressed as the proportion of morpho-
logically intact TRACP™ multinucleated cells. The number
of viable cells remaining at the different time-points was
shown as a percentage of the cells at time 0. To determine
the effect of M-CSF or various inhibitors of signal trans-
duction pathways on cell survival, each reagent was added
to OCL cultures at time 0 after purification.

Western blotting

All extraction procedures were performed at 4°C or on
ice. Cells were washed with ice cold PBS and lysed by add-
ing TNE buffer (1% NP-40, 10 mM of Tris-HCI [pH 7.8},
150 mM of NaCl. 1 M of EDTA, 2 M of Na VO,
10 mM of NaF, and 10 pg/ml of aprotinin). The lysates were
clarified by centrifugation at 15.000 rpm for 20 minutes. An
equal amount of protein was subjected to 10% SDS-PAGE,
transferred electrophoretically onto a nitrocellulose mem-
brane, and probed sequentially with an appropriate primary
antibody followed by a secondary antibody coupled with
horseradish peroxidase (Promega, Madison, WI, USA). Im-
rmunoreactive proteins were visualized by enhanced chemi-
luminescence (ECL) Western hlotting detection reagents
(Amersham, Arlington Heights, TL, USA) following the
procedure recommended by the supplier. The blots were
stripped by incubating for 20 minutes in stripping butfer
(2% SDS. 100 mM of 2-mercaptoethanol, and 62.3 mM of
Tris-HCl [pH 6.7]) at 50°C and reprobed with other anti-
bodies.

Determination of Racl and Cdc42 activation
by M-CSF

Activation of Racl and Cded?2 in response to M-CSF was
examined with a glutathione S-transferase (GST) pull-
down assay using a comnmercially available Rac/Cded2 ac-
tivation assay kit (Upstate, Charlottesville, VA, USA). In
brief, after adding 100 ng/ml M-CSF, total cell lysates of
OCLs from 10-cm dishes were collected as described above
at indicated time-points and incubated with p21-binding do-
main of PAKI and GST fusion protein immobilized on
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glutathione agarose beads for | h at 4°C. Precipitates were
subjected to 10% SDS-PAGE and unmunoblotted with
anti-Racl or anti-Cded2 antibody.

Actin ring formation

Cells were first stained for TRACP o identify osteoclasts
and then incubated for 30 minutes with rhodamine-
conjugated phalloidin solution (Molecular Probes, Eugene,
OR. USA).C” The actin rings formed by osteoclasts were
detected with a fluorescence microscope (Carl Zeiss,
Oberkochen, Germany).

Quantification of esteoclast membrane movement
with time-lapse video microscopy

The effect of Racl®™ expression on the dynamic cyto-
skeletal organization of OCLs was evaluated and quantified
using tme-lapse video microscopy as follows. After con-
firming the gene transduction to QCLs on collagen gel by
detecting green fluorescence under a fluorescent micro-
scope. the gel was digested, and OCLs infected by either
EGFP or RactP™ adenovirus were reseeded on serum-
coated glass coverslips placed in 35-mm dishes. Three to 8
h later, when OCLs had fully spread, 50 ng/ml M-CSF was
applied to the cultures. Recording of OCLs started 30 min-
utes before the M-CSF treatment and continued for 90 min-
utes using a phase contrast time-lapse video microscope
{LLVR-3000N and pxc930; Sony, Tokyo, Japan). Resulting
moving images were transferred to a computer. Pairs of the
first and the second cell images with a S-minute interval in
between were selected at 30 minutes or longer after M-CSF
treatment, and the contours of the cell pairs were traced
with photo-tetouch software (Photoshop; Adobe). Each
pair's second image was subtracted from its first image.
Total number of pixels remaining after the subtraction of
two serial static images were counted on the image analysis
software (NIH image) and called the motife area. Motility
was expressed as a percentage of the motile area to the first
umage. The measurement was performed on 20 pairs from
four OCLs in RactP™ and control virus.

Statistical analvsis

Fach series of experinients was repeated at least three
times. The results obtained from a typical experiment were
expressed as the means = SD. Significant differences were
determined using an unpaired rtest, the Mann-Whitney
test, or a factorial ANOVA. Fisher’s protected least signifi-
cant difference (PLSD) or Dunnett test was used as a
posthac test.

RESULTS

Adenovirus vector-mediated gene transduction
into OCLs

To analyze the role of Rho family small G-proteins in
mature OCLs, we constructed adenovirus vectors carrying
constitutively active Racl or dominant negative RhoA,
Racl, and Cded? fused with EGFP and infected OCLs with
these viruses. First, we confirmed the etficiency of adeno-
virus vector-mediated gene transduction into OCLs 36 h
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after infection by fluorescence microscopy to detect EGFP
fluorescence in situ and Western blot analysis using anfi-
EGFP antibody. Clear EGFP fluorescence was detected
with a fluorescence microscope in almost 100% of the in-
fected OCLs (Fig. 1A). Expression of fusion proteins of
each dominant negative mutant and EGFP was observed
as ~48-kDa molecular weight bands by Western blotting
{Fig. 1B).

Effects of dominant negative mutants of Rho family
small G-proteins on the activity and survival
of OClLs

We examined the effect of Rho family small G-proteins
mutants on pit-forming activity of OCLs and their survival.
As shown in Fig. 2, RhoAP™ and Rac1™™ virus-infected
OCLs showed a remarkable decrease in their bone-
resorbing activity, whereas Cded2”™ overexpression had no
observable effect. In contrast, as shown in Fig. 3A, only
Racl™™ virus could significantly decrease their survival rate
compared with the control virus, and RhoA®N and
Cded2PN viruses had no effect on their survival (Fig. 3).

« EGFP+SmallG
(48 ~ 50 kDa)

EGFP
(27 kDa)
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FIG. 1. Adenovirus vector-mediated gene
expression in OCLs. The expression of
EGFP, EGFP-RhoAPN, EGFP-Ract P, and
EGFP-Cded2P™ introduced into OCLs was
coufirmed 36 h after infection by (A) fluo-
rescence microscopy and (1) Western blot
analysis using anti-EGFP antibody. Most
OCLs expressed EGEFP or EGFP-fusion pro-
tein 36 b atter infection. On Western blotting
using ant-EGFP antibody, EGFP-Rho fam-
ily small G-protein fusion protein was ex-
pressed as a molecule with molecular weight
about 48-50) kDa.

The survival rate of OCLs in EGFPP virus—, RhoAP™ virus—,
RactPMvirus—, and Cded2PM virus—infected cultures at 24 h
was 35.7 £ 5.0%, 373 £ 3.5%, 24.0 = 1.0%., and 41.7 = 4.7%,
respectively. These results clearly show that Racl signaling
promotes osteoclast survival. Similar results were obtained
using Racl®™ adenovirus vector with CAG promoter (data
not shown).

Racl lies downstream of M-CSF receptor and
mediates an anti-apoptotic signal

M-CSF markedly eshances the survival of osteoclasts
and causes their spread in vitro,''*! Because Racl is also
known to regulate the cytoskeletal organization and induce
cell spreading in some types of cells, we hypothesized that
Racl might lie downstream of M-CSF receptor pathways
and mediate signaling pathways essential for the survival
and the cytoskeletal organization of osteoclasts. We first
examined whether Racl was activated in OCLs in response
to M-CSF treatment using the GST pull-down assay. As
expected, Racl was activated immediately after application
of M-CSF, and the activation was sustained for at least {0
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FIG. 2. Effect of dominant vegative mitant of RhoA. Racl. and

Cded2 expression on bone-resorbing activity of OCLs. Twenty-
four hours after adenovirus infection, (OClLs were collected and
reseeded onto dentin slices. OCLs were removed 12 h later, and
pits were visnalized with 0.5% toluidine blue. Pit area was guan-
tified with an image analysis system. Overexpression of RhoAPN
and R. “ decreased boue resorptive activity of OCLs. whereas
Cded2PN had no significant effect.

minutes (Fig. 4A). Next we studied the effect of RactPN
overexpression on M-CSE-induced promotion of OCL sur-
vival. As shown in Fig. 4B, M-CSF clearly increased the
survival of conwrol virus-infected OCLs. Rac1®Y over-
expression not only suppressed the survival rate of OCLs at
the basal level but alse completely abrogated the pro-
survival effects of M-CSF (Fig. 4B). In addition. the survivai
rate of Rac1“*infected OCL at 24 h after purification was
significantly higher than that of control virus—infected
OCLs, further confirming the role of Racl in OCL survival
(Fig. 4C).

Racl“* induced osteoclast survival and its survival
signal of osteoclasts was mediated mainly through
the PIZK/AkL pathway

To further clarify the role of Racl in the survival signal,
we studied the downstream cascade of Racl signaling. We
previously reported that the Ras/Erk pathway promotes
osteoclast survival, whereas other groups described the
anti-apoptotic function of the PI3K/Akt signaling path-
way. ™' To determine whether these pathways contribute
to the effects on cell survival by Racl, we used specific
inhibitors to these molecules. Figure 5A shows the effects
of the inhibitors on OCL survival at 12 h after puritication
and addition of each reagent. The effect of Rac1“* on the
promotion of OCL survival was blocked by either
L.Y294002 or wortmannin but not significantly by PIDOS059
at this time-point, indicating the essential role of PI3K/Akt
pathways downstream of Racl. Mandatory activation of
Akt pathways by overexpressing Akt“* remarkably en-
hances OCL survival as shown in Fig. 5B, further confirm-
ing the anti-apoptotic role of these pathways. Consistent
with these results, M-CSF-induced Akt phosphorylation
was markedly suppressed by Rac1P¥, whereas RhoAPN
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FiG. 3. Effect of dominant negative mutant of RhoA, Racl. and
Cde42 expression on survival of OCLs. Twenty-four hours after
adenovirus infection, OCLs were purified and cultured for an
additional 24 h. {A) The survival of the cells after 24 h of purifi-
cation was evaluated by TRACP staining. (B) After TRACP
staining. viable OCLs were counted after 12 and 24 h of purnifica-
tion and expressed as a percentage of the cells at time 0. RaclPN-
infected OCLs died significantly earlier than those in the conirol
group, whereas RhoPN and Cded2P¥ had no effect on OCL ap-
optosis. Results represent the mean + SD for a typical experiment
among three independent experiments.

and Cded2™™ had no effect (Fig. 5C). On the other hand,
the activation of Erk as determined by anti-phospho-Erk
antibody blotting was not affected by any of the mutants of
three smail G-proteins, as shown in Fig. 5D.

Racl and PI3K synergistically act downstreant of
M-CSF receptor signaling

These results suggest that Racl lies upstream of PI3K
pathways, but there is a controversy with regard to the
hierarchy of Racl and PI3K. Therefore, we further ana-
lyzed the relationship between Racl and PI3K activation
downstream of M-CSF receptor pathways using specific in-
hibitors and adenovirus vectors. The activation of Racl in
response to M-CSF treatment was not suppressed by
TY294002 (Fig. 6A). Overexpression of a catalyue subunit
of PI3K, pl10, promoted the downstream effector Akt
phosphorylation even in the absence of M-CSF, which was
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FIG. 4. Racl lies downstream of M-CSE signaling in OClLs.
(A} After application of 100 ng/ml M-CSE, total cell lysates of
OCLs from 10-cm dishes were collected at indicated time-points
and incubated with p21-binding domam of PAK! and glatathione
S-transterase (GST) fusion protein immobilized on glutathione
agarose beads for | h at 4°C. Precipitates were subjected to 10%
SDS-PAGE and immunoblotted with anti-Racl antibody. (B) Pu-
rified adenovirus-infected OCLs were incubated for 24 b with or
without 10 ng/ml M-CSF, and cell survival was assessed. Whereas
M-CSEFE clearly jocreased OCL survival in control vims-infected
OCLs, Racl®N completely abrogated the M-CSF-induced sur-
vival. (C) The survival rate of Rac!“® virus-infected QOCLs was
significantly bigher than that of control virus-infected cells,
whereas RaclP™ expression promoted their apoptosis. Results
represent the mean + SD for a typical experiment among three
independent experiments.

partially blocked by co-expression of Racl™™ (Fig. 6B).
These results suggest that Racl serves as both upstream
and downstream effector of PI3K and that interaction be-
tween Racl and PI3K is important for the survival signaling
of OCLs.

Racl overexpression does not affect actin ring
formation in OCLs, but reduces M-CSF-induced
cell spreacling

We next examined the effect of Racl activation or inac-
tivation on the cytoskeletal organization of OCLs. Unex-
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FIG. 5. lovolvement of PI3K/Akt pathways on OCL survival
(A) Purified EGFP adenovirns— or Racl“® adenovirus—infected
OCLs were jnenbated for 12 hoin the presence of one of the
following inhibifors: PD980539 (40 pnM). LY294002 (4 M), or
Wortmannin (100 nM). After TRACP staining, viable OCLs were
counted, and the survival rate was expressed as a percentage of
the cells at time 0. The effect of Ract“” on the promotion of OCL
survival was blocked by 1.Y294002 and Wortmannin, but not sig-
nificantly blocked by PDI%059. (B} The active form of Akt
(Ak1"™) was overexpresseid in OCLs by adenovirns, and OCL
sarvival was assayed. Akt“* increased OCL survival about 2-fold
to control virus-infected OCLs. (C and D) The effect of RhoAP™,
RaclP™ and Cded2™™ adenovirus on Akt and ERK activation
was examined by Western blotting with anti-phospho-Aki or
ERK antibody. M-CSF treatment stimulated both PI3K and Mek-
Erk pathways within 3 minutes. The activation of Akt was abro-
gated only by RaclPN {C), whereas these dominant negative
mutants did not affect the phosphorylation of Eck (D). Results
represent the mean = 8D for a typical experiment among three
independent experiments.
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FIG. 6. Relationship between Racl and PI13K activation. The
activation of Racl after 100 ng/ml M-CSF treatmen{ with or with-
out 20 pM LY294002 was examinad by GST pull-down assay
meintioned in Fig. 4A. The M-CSF-induced Racl activation was
ot suppressed by LY294002 (A), whereas enhancement of Akt
phosphorylation by overexpression of catalytic subunit plic of
PI3K was partially blocked by coinfection of Racl®™ (B).

pectedly, however, as shown in Fig. 7A, we could not detect
any obvious difference in acun ring formation between mu-
tant Racl adenovirus-infected and control vector-infected
OCLs in a static condition. All the OCLs were almost the
same size and showed apparently norroal actin ring forma-
tion. On the other hand, using time-fapse video microscopy,
we found that overexpression of RaclP™ dramatically re-
duced the membrane ruftling and spreading of the cells in
response to 50 ng/m] M-CSF application as shown in Fig. 7B.
Motile area of control virus— and Ract®Minfected OCLs
was 5.7 = 1.1% and 4.0 = 1.7%, respectively {(p < 0.01).

DISCUSSION

Rho family members are known to wediate various
growth factor receptor signaling pathways and to regulate
cytoskeletal organization of the cells.*?* Racl is a member
of Rho family small G-proteins and is known to be a potent
activator of actin polymerization and induce lamellipodia
formation and surface membrane ruffling.” [n addition to
its role in the cytoskeletal organization, Racl is also known
to be involved in the apoptosis signal. Whereas its pro-
apoptotic function has been shown in some types of cells
through INK activation, ™% anti-apoptotic effects of
Racl signaling have also been reported ln other types of
cells.®1127) Moreover, the Racl™ embryos showed nu-
merous programmed cell deaths in the space between the
erabryonic ectoderm and endoder, leading to carly em-
bryonic lethality.* These results clearly indicate that Racl
is implicated in the survival signals in various types of cells.

Nitrogen-containing bisphosphonates such as alendro-
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mutant adenovirps-infected OCLs were incubated for [2 h after
purification, and actin ring formation was visualized by rhoda-
mige-phalloidin staining. No obvious difference in cytoskeletal
organizalion was observed between mutated Racl-expressed
GCLs and control OCLs. {B) Before and after 50 ng/ml M-CSF
treatment, OCLs expressing either EGFP or Rack®™ were re-
corded with a time-lapse video microscope. and membrane move-
ment was quantified with image analysis software. Resulis repre-
sent the mean = SD of a typical experiment.

nate and risedronate are potent therapeutics of osteoporo-
sis and suppress bone-resorbing activity of osteoclasts and
induce their apoptosis. It has been proposed that nitrogen-
containing bisphosphonates act on osteoclasts by inhibiting
post-transiational prenylation of Rho family small G-
proteins, Zhang et al.®? first described the importance of
RhoA in osteoclast cytoskeletal organization and function
using clostridium botulinum—derived ADP-ribosylirans-
ferase (C3 exoenzyme). Similarly, using dominant active
and negative matant proteins of RhoA, Chellaiah et al.®™
reported that integrin-dependent activation of phospho-
inositide synthesis, actin stress fiber formation, podosome
reorganization for osteaclast motility, and bone resorption
require Rho stimulation. Razzouk et al.®" revealed that
both Racl and Rac2 are involved in actin ring formation
and the bone-resorhing activity of the cells by introducing
anti-Racl or anti-Rac2 antibody into permeabilized osteo-
clasts. Ory et al.® showed that Rho and Rac worked an-
tagonistically in avian multinucleated giant cells and that
Rac activation promoted spreading of the cells. More re-
cently, Faccio et al.®® showed that RhoA and Racl le
downstrearn of the B3 ntegrin and are involved in the cy-
toskeletal organization of osteoclasts. These results suggest
that RhoA and Racl critically regulate the cytoskeletal or-
ganization and function of osteoclasts.
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In this study, using adenovirus vector-mediated gene
transduction systems, we showed the essential role of Ract
in bone-resorbing activity, survival, and motility of OCLs.
Two major pathways have been reported to be involved in
osteoclast survival signaling (i.e., the Mek/FErk pathway and
the PI3K/Akt pathway). The effect of Rac1“* on the pro-
motion of OCL survival was blocked by PI3K inhibitors but
not by Mek inhibitors. M-CSF-induced phosphorylation of
Akt was inhibited by Racl®™ expression but not by Rho™™
or Cde4?P™ expression. In contrast, Ract™™ expression did
not affect M-CSF-induced Yirk phosphorylation, indicating
that Racl is specifically involved in Akt activation down-
stream of M-CSF receptor pathways (Figs. 5C and 5D).
These results clearly show that the prosurvival action of
M-CSF on OCLs is mainly mediated by Racl and that Raci
is important for M-CSF-dependent PI3K/AKkt activation in
OCLs. Lee et al.® also showed that TNF-« prolonged the
survival of osteoclasts, which was abrogated by PI3K inhibi-
tor. They also revealed the involvement of GrbZ and cer-
amide in TNF-a—induced Frk activation in osteoclasts.®
However, contrary to these observations, Sugatarni and
Hruska®™" recently reported that sifencing of Aktl and/or
Akt2 by small interfering RNA suppressed osteoclast dif-
ferentiation but did not affect osteoclast survival. The rea-
son for this discrepancy remains unknown, and further
study is required to clarify the exact role of PI3K/Akt path-
ways in osteoclast survival. Recent studies have shown the
involvement of mTOR (mammalian target of rapamycin) in
osteoclast survival. #+% We also found that rapamycin
strongly suppressed QCL survival in both the presence and
absence of M-CSF (data not shown). The role of Racl on
mTOR activation remains elusive, and further studies will
be required.

Although our results suggest that Racl seems to act up-
stream of PISK in OCLs and is consistent with some re-
ports, 337 other studies have shown that Racl serves as
downstream effector of PI3K."***” Because many guanine-
nucleotide exchange factors {GEFs) for Racl have been
identified, and among them, members of the Vav, Sos,
Tiam, PIX, SWAP-70, and P-Rex families have been sug-
gested to be regulated by PI3K."*” Furthermore, phospha-
tidylinositol 3,4,S5-triphosphate, the endproduct of PI3K.
can bind directly to Racl in vitro. In this study, we showed
that PI3K iohibitor did not affect M-CSF-induced Racl
activation (Fig. 6A), which means Racl lies upstream of
PI3K. However, our results also indicate that Racl seerns to
act downstream of PI3K, because p110a-induced Akt phos-
phorylation was partially blocked by Raci®™ {Fig, 6B), and
Rac1® could not activate Akt by itself (data not shown).
One possible explanation for these contradictory results is
that Racl and PI3K act synergistically on cell survival or
there is a positive feedback loop between Racl and PI3K
activation, which may play an important vole in the survival
signaling of OCLs.

Finally, we examined the effect of Racl on the cytoskel-
etal organization of OCLs. Unexpectedly, however, there
was no remarkable difference in actin ring formation be-
tween control OCLs and RaclP™ or Racl “-infected cells
(Fig. 7A). Because this is considered to be caused by the
static condition in which we observed the cells, dynamic
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cytoskeletal rearrangement of OCLs in response to M-CSF
treatment was examined using a video microscope. Sup-
pression of Racl pathways by dominant negative mutant
overexpression induced less membrane movemernt i re-
sponse to M-CSF treatment compared with EGFP adeno-
virus-infected cells (Fig. 7B). Based on these observations,
we concluded that Racl plays a crucial role in membrane
movement of OCLs and that decreased bone resorption in
RactP™.infected OCLs is probably caused by the reduced
motility of the cells.

In conclusion, small GTPase Ract is critically involved in
M-CSF receptor signaling and mediates survival signaling
of osteoclasts primarily by modulating the PI3K/Akt path-
ways. Racl also plays a significant role in bone resorptive
activity of the cells, probably by regulating the motility of
osteoclasts.
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—HEPTIIUERAEROZNR L ERTH W &, e OEEE T B OBk
Rt IREM LR LU CRBRFTCHEILTwAZ &, EENICHE SN EWET L
DHEELR EVBIEHEROBE 2R L Tw5, REEFREICHES 35170, &
ROBEFR, B, REENZEOFELHVELN, ThL2ERIZANTLEEN
BROMGEIHETHLLEZONTWS, —ERNEROKRE—BEIL, FHCH
BB TV W15 ~30%BETHY, ZhonFnEBEELRVHEEBE LT,
BIEERDEE N E WIFEREL D S, FFBEHNBERSREOFRICKECHET 5 L)
MLZZEZ I NI nEEZ GRTWA5S,

CDEHIEBEROEER T Do TV B, ek, SHE SN T D EERM
HABETESE MHC, & FTIRHLA) 79 ANEGETLOMEND 5T &3k
ETH LY, FNUNOEEOBETOREDVH#ATWRDP S 2. BIRT OFFHHE
FHVCHBELT, UTOMERZ2H T2 TEs. O ACRERE CIIHEM
BEFVUHBECLRL, METREERFIRETELY. @ AV TFVOEEER
(BHEPHMD) PhohbR\y, E5IEDECRBIKRBGHMZ X > 7 Vo]
Pt - CHEEYET, EHEIZIEAHOKNTHEETS. @ — MR OREE—K
WA, ARBEE—HRSBIRICET Y 20T, ZRTHERETH 2 2 LRGSR
b, @ WHEEE OBETFEROSHENRMICEE LD > TRESNTVDE LE L
b, YRS Y ALBRTOMENEN (epistatic interaction) bH 5 EEZ &
N5, ® FNENOEMLEFOREEPES, WBBRENEL S, Thbbi B
BIZTFEREAE OBREIERFERIARDVP I IFIETHE V) L BT TR0,
® WBOBE, WRYEENKE V., @ RA ZEOLBNEHBEOKRBATIE, 2
Wik BRI TR OBEFEPRETE R, RETHA.

RE - BB LUBRE

AFIIBWTE, REWHOCREBERRTHLEFET) 7~ b—T ADRE, BX
PR BDBEFRIZBOWTHWL NS RIENIHIEEICOWTHEH T 5 & & b2, fFE
HBOE L WAEYFRHRANIZOWTHfilh 5,

5% Y 77 b—F AOWEE L O2H

£BMIVFYN~FR (SLE) LEFHVIYF (RA) REHCORBERELART
HhIREBTHY, MIORBIZBWTHHE A ORIBREIRBIZR L ERE2EH %
Bi-geEZONTWS, RAIZBWTIEU DY M FEFRH CCP kM rRe
WERL, FARENMEMEEICERTS. Zhic LT, SLE TRE¥LRED
PURBHHB T 2 & & bI2, EROELBIHITRENRAZ LV —DDOFHTHL., D
£ 7% SLE B ALMREORIZHMEE LT, 2o TREREGAROTK L
FWEF~OUEDVRH TN Tz, LaL, EFIC2Y, BEOHE SRR E DR
EEEFERTLIENHOLNER-TETRSY,

SLE MiEHIcit S 2 2B AChho ) b, ELb02R31IRLAE. &

~344~



3.2 JREE - b LURE

# 31 SLETRSh3FHECHE

P ds-DNA FiiE 2 484 DNA N—T A5
Pl ss-DNA FLf& 17484 DNA
TN S N 710 N LAY N — T A
i nRNP Hiff U1-RNA % v %7 MCTD 5 BAZ kA
HL Sm P ff Ul, 2, 4, 5, 6RNA & ¥ /37
Pi SS-A/Ro HifF RNA % v 37 LERBELTO Y
Pt PCNA Fifk DNA K1) * 5 —¥ § P EF
PRI (7 — 2 ZHK) | ARiEkEUE AP E
LU VR CD45 7z &
WAHNVYF)E vHfE p2-ryasuig sl U~ PR E U E B
) RV — 4 PHAE VRY—LPZ VoD C v — 7 A A5
K 22 7 3 BB

N6HD ) LI dsDNA Fitfd & 5T Sm FifFid SLE ICHREOBVWLOTH Y, EBkE
PR E LTI ELSH 5. 8612, MANDFUEHE D LK SLE (24
BUEIENZ LS, ﬁtk&%%ﬁkmx%nfwé #3.LITR L7- 8 Chifko
) BT DOIEISRRE L OBEMIFEH S LTS b D0%\w», B2 1, ¥ dsDNA
MRE V=T AR, YRV —LPHEE V=7 2EWHEBO B0 Bk
e HT A, ZOLHI, SLE IZB 5k BaRE MBI 2 B Ok o
LToTHESN TR EEZLNS,

O L-BEEROEARRF L LT, »oTEE s a— 8B MIEEILE 2 &
NTEZD, fFIE, 29 L-HOCHAEDOBETICAMIEZRZER (somatic muta-
tion) ROEND Z & ERb, PUFEIMIC L 23E (antigen-driven) OFEFE DM
BHREINTnAE, &9 LTEASN-ETE SRS 4 OFSHE - &4 5
WCh7zo T, ERIVIBRHINTY S L) R RIEEGEROTBR - b & 3Bk 5%
FREHNTWD I EDPEZLNLD, FRHLZEDLE L, SHBORAVLETH S,

P RRSRYE PNREE O TE BT

a) BIBEEATEARY

ATEA4 FiE7 + A7+ 1) 83—+ A2 (phospholipase A2) BX Uy 7 atF 54
—t (cyclooxygenase) [HEFICL AT URY 7574 v BIFUA ) T VDR
AP % A U CHUSEER 2 889 2 25, 54— 0EBE LA S Es e <
HoH. UL, —IRICHEEER L) b REOWRIEZ LEE 5. GEIHIER
D) LEETHLDOVY A M4 VEEMGIERCH A, ZOERE, SHYA )
A VBIEFOEG 2 W 5BE5EF (AP-1 ° NF-«B %2 &) OBOBD?D DNA £
F—T7 DGR AT, FPHETAZLICLINVALLZ EANEEHRS A IZENT
ETWDH, —RIIZT ) ¥ 73 8ROHERE iXTD/f]\ X DFEHIHMI SN B, B Y
//\fﬁ@f&ﬁu%ﬁﬂfﬁﬂ‘fétéf)k BE ) BREOAT O, RPLEEEZ LNTWAS
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