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Figure Legends

Figure. 1. Schematic representation of the constructs of HCV subgenomic and genome-length
replicon RNA. On the left, the constructs .of each replicon RNA are shown. HCV strains as well
as genotypes from which the replicon RNA sequences are derived are indicated in the second
column. The names of replicon cell clones established with each replicon RNA are in the third
column. The sensitivity to CsA of each replicon RNA revealed in this study is summarized in
the right column. The replicon RNAs comprise the HCV 5°-UTR including HCV IRES, the
neomycin phosphotransferase gene (Neo®), EMCV IRES or HCV IRES, the coding region for
HCV proteins NS3 to NS5B (subgenomic) or Core to NS5B (genome-length or full-genome),
and HCV 3’-UTR. MH-14 (NN/1b/SG), #50-1 (NN/1b/SG), MH14#W31 (NN/1b/SG), SN1
(Conl/1b/SG), sO (O/1b/SG), JFH1#4-1 (JFH1/2a/SG), and JFH1#2-3 cells (JFH1/2a/5G) carry
subgenomic replicons while NNC#2 (NN/1b/FL), SN1A#2 (Conl/1b/FL), and SNC#7 cells
(Conl/Ib/FL) have genome-length replicons. NNC#2 (NN/1b/FL) and SNC#7 cells

(Con1/1b/FL) contain the replicon RNA without EMCV IRES.

Figure. 2. CsA suppressed the replication of HCV genome irrespective of the presence of the
structural proteins. (A) Detection of HCV proteins from NNC#2 (NN/1b/FL) genome-length
replicon. Core (panel a), E2 (panel b), NS3 (panel c¢), NS5A (panel d), NS5B (panel e), and
tubulin (panel f) in Huh-7, NNC#2 (NN/1b/FL), and MH-14 cells (NN/1b/SG) analyzed by

immunoblot analysis. (B) HCV RNA in Huh-7, NNC#2 (NN/1b/FL), and MH-14 cells
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(NN/1b/SG) quantified by real time RT-PCR analysis. The data represent the mean of three
independent experiments. (C) CsA decreased the production of HCV proteins in NNC#2
(NN/1b/FL) as well as MH-14 cells (NN/1b/5G). After treatment with 1 pg/ml CsA (“+”) for 5
days or without treatment (“-”), total cell lysate of NNC#2 (NN/1b/FL) and MH-14 cells
(NN/1b/SG), together with Huh-7 cells as a negative control, was recovered to examine the
production of HCV NS5A (upper panel), NS5B (middle panel), and tubulin as an internal
control (lower panel) by immunoblot analysis. The same result was obtained at day 7 after the
treatment. (D) The sensitivity to CsA of HCV genome-length replicon was almost the same as
that of subgenomic replicon. HCV RNA was quantified by real time RT-PCR analysis using
total RNA from NNC#2 (NN/1b/FL), SN1A#2 (Conl/1b/FL), and SNC#7 cells (Conl/1b/FL)
treated with various concentrations of CsA for 7 days. The relative amount of HCV RNA was
plotted against the concentration of CsA (ug/ml). (E) Effect of CsA on cell proliferation.
NNC#2 cells (NN/1b/FL) were treated with various amount of CsA for 7 days. Cell numbers
were counted and relative cell numbers to that of cells without treatment were plotted against the

concentration of CsA.

Figure. 3. Replication of a genotype 2a strain, JFHI, was less sensitive to CsA. (A) Sensitivity
to CsA of HCV genotype 1b and JFHI replicons. SN1 (Conl1/1b/SG), MH-14 (NN/1b/5G), sO
(O/1b/SG), #50-1 (NN/1b/SG), JFH1#4-1 (JFH1/2a/5G), and JFH1#2-3 cells (JFH1/22/5G),
carrying HCV subgenomic replicon, were treated with 1 ug/ml CsA for 7 days. HCV RNA titers
were quantified by real time RT-PCR analysis and the relative amount is shown. The bars

represent the mean of three independent experiments. White bars, no treatment; black bars, 1
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pg/ml CsA. The numbers above the black bars indicate fold difference of the titer under the
treatment of 1 pg/ml CsA compared with that with no treatment. (B) Levels of NS3 and tubulin
as an internal control in MH14#W31 (NN/1b/SG) and JFH1#4-1 cells (JFH1/2a/SG) without
(“-*y or with (“+”") 1 pg/ml CsA treatment for 5 days were detected by immunoblot analysis. (C)
HCV RNA was quantified and plotted as described in Fig. 2D in genotype 1b replicon cells such
as MH-14 (NN/1b/SG), #50-1 (NN/1b/SG), MH14#W31 (NN/1b/SG), SN1 (Conl/1b/5G), and
sO (O/1b/SG), and JFH1-carrying replicon cells, JFH1#4-1 (JFH1/2a/5G) and JFH1#2-3 cells
(JFH1/2a/SG). (D) Effect of CsA on cell proliferation. The cell growth of MH-14 (NN/1b/8G)

and JFH1#4-1 cells (JFH1/2a/SG) were examined as described in the legend for Fig. 2E.

Figure. 4. JFH1 replication was less sensitive to a CsA derivative, NIM811. (A) MHI14#W31
(NN/1b/SG) and JFH1#4-1 cells (JFH1/2a/SG) were treated with 0.5 ug/ml NIM811 for 7 days.
HCV RNA ﬁters were quantified as described in Fig. 3A. White bars, no treatment; black bars,
0.5 ;;,g/ml NIMS811. (B) (C) HCV RNA in replicon cells treated with various concentrations of
NIMS811 (B) or PSC833 (C) for 7 days was quantified and plotted against the concentration of

NIMS811 (B) or PSC833 (C) (ug/ml) as described in Fig. 3C.

Figure. 5. Interaction of HCV NS5B with CyPB in the JFH1 replicon. (A)
Co-immunoprecipitation of endogenous CyPB with NS5B. Lysates from MHI14#W31
(NN/1b/SG), JEH1#4-1 (JFH1/2a/SG), and Huh-7 cells as a negative control were used for
immunoprecipitation with normal mouse IgG (“IgG”) or anti-NS5B antibody (“NS5B”),

followed by immunoblot analysis with either anti-CyPB (upper panel) or anti-NS5B antibodies
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(lower panel). “IP” indicates the antibodies used for immunoprecipitation. (B) The interaction of
CyPB with NS5B in JFHI replicon was disrupted by CsA treatment. Co-immunoprecipitation
between CyPB and NS5B in MH14#W31 (NN/1b/SG) or JFH1#4-1 cells (JFH1/2a/SG) treated
without (lanes 1 and 5) or with CsA (0.3 pg/ml in lanes 2 and 6, 1 pg/ml in lanes 3 and 7, and 3

ug/ml in lanes 4 and 8) was analyzed.

Figure. 6. CyPB in HCV replication of genotype 1b and JFHI1. (A) Expression level of
endogenous CyPB protein (upper panel) and tubulin as an internal control (lower panel) in
MH14#W31 (NN/1b/SG), SN1 (Conl/1b/SG), sO (O/1b/SG), JFH1#4-1 (JFH1/22/SG), and
Huh-7 cells. (B) Knock-down of endogenous CyP proteins. MH14#W31 (NN/1b/SG) and
JEH1#4-1 cells (JFH1/22/SG) were transfected with siRNA specific for CyPA (“si-CyPA”),
CyPB (“si-CyPB”), a broad range of CyP subtypes (“si-CyP(broad)”) or with a randomized
siRNA (“si-control”). At 72 h posttransfection, CyPA (upper panels), CyPB (middle panels) and
tubulin as an internal control (lower panels) were detected in total cell lysates of MH14#W31
(NN/1b/SG) (left panelé) and JFH1#4-1 cells (JFH1/22/SG) (right panels) by immunoblot
analysis. (C) Depletion of CyPB did not affect HCV replication of JFH1 replicon. At 5 days
posttransfection, HCV RNA titers in MH14#W31 (NN/1b/SG) (left panel) and JFH1#4—1 cells
(JFH1/2a/SG) (right panel) were quantified by real time RT-PCR analysis. No treatment,
treatment with only the transfection reagent in the absence of siRNA. (D) Effect of siRNA on
cell proliferation. Cell numbers of MH14W#31 (NN/1b/SG) and JFH1#4-1 cells (JEH1/2a/5G)

treated with siRNA for 5 days were counted. Relative cell numbers were indicated.
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Figure. 7. RNA binding capacity of JFH1 NS5B was independent of CyPB. (A) RNA-protein
binding precipitation assay was performed using MHI14#W31 (NN/1b/SG) (lanes 1-6) and
JFH1#4-1 cells (JFH1/2a/SG) (lanes 7-12) as described in Materials and Methods. MH14#W31
(NN/1b/SG) and JFH1#4-1 cells (JFH1/2a/SG) preincubated without (lanes 1,3, 5,7, 9, and 11)
or with (lanes 2, 4, 6, 8, 10, and 12) CsA were treated with digitonin, followed by digestion with
proteinase K to isolate the replication complex. This fraction was then incubated with poly-U
RNA-sepharose (lanes 5, 6, 11, and 12) or protein G-sepharose as a negative control (lanes 3, 4,
9, and 10). Precipitates were detected by immunoblot analysis with anti-NS5B antibody. “INP”
indicates the 1/6 amount of cell lysate used in the precipitation assay. “G” and “pU” designate
the samples using protein G-sepharose and poly-U-sepharose, respectively. (B) In vitro RNA
binding assay was performed as described in Materials and Methods. In vitro synthesized NS5B
of MH-14 (lanes 1-6) or JFH1 (lanes 7-12) using the rabbit reticulocyte lysate in the presence of
[**S]methionine were incubated with protein G-sepharose (lanes 2 and 8) or poly-U-sepharose in
the absence (lanes 3 and 9) or presence of varying amount of purified recombinant GST-CyPB
(2 ng in panels 4 and 10, 10 ng in panels 5 and 11, and 50 ng in panels 6 and 12). The resultant
precipitates were fractionated by SDS-PAGE followed by the detection of radiolabeled protein.
(C) The density of the bands of NS5B in the RNA binding fraction was quantified and plotted
against the amount of the recombinant GST-CyPB (ng). Solid line, NS5B of MH-14; faint line,

NSS5B of JFH1.

Figuore. 8. Amino acid sequence alignment of NS5B encoded by HCV strains, NN, Conl, O,

and JFH1. The numbers above the sequence indicate the amino acid number. Conserved



residues are shown by dashes. The region of 521-591 aa, which is involved in the interaction

with CyPB, is boxed.
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Due to the recent development of a cell culture model, hepatitis C virus (HCV) can be efficiently propagated

in cell culture. This allowed us to reinvestigate t

erodimer is retained in the endoplasmic reticu

i he subcellular localization of HCV structural proteins in the
context of an infectious cycle. In agreement with previous reports,
subcellular localization of HCV structural proteins indicated that, in infected cells,

confocal immunofluorescence analysis of the
the glycoprotein het-

lum. However, in contrast to other studies, the glycoprotein

heterodimer did not accumulate in other intracellular compartments or at the plasma membrane, As previ-

ously reported, an association between the capsi
fraction of labeling was consistent with the capsi
is associated with the lipid droplets. However,
in the nucleus or in association with mitochon
ingly, no colocalization was observed between t

reported “membranous web,

» However, no virus-like partic
dense elements compatible with the size and shape of a viral part
In conclusion, the celi culture system for HCY allowed us for the first tim

d protein and lipid droplets was also observed. In addition, a
d protein being localized in 2 menbranouns compartment that
in contrast to previous reports,

the capsid protein was not found

dria or other well-defined intracellular compartments. Surpris-
he glycoprotein heterodimer and the capsid protein in infected
cells. Electron microscopy analyses allowed us to identi

fy a membrane alteration similar to the previously
les were found in this type of structure. In addition,
icle were seldom observed in infected cells.
e to characterize the subcellular

localization of HCV structural proteins in the confext an infectious cycle.

Hepatitis C virus (HCV) is a small enveloped virus that
belongs to the Hepacivirus genus in the Flaviviridae family (27).
Tis genome encodes a single polyprotein precursor of ~3,010
amino acid residues, which is synthesized on endoplasmic re-
ticulum (ER)-associated ribosomes. The polyprotein is cleaved
co- and posttranslationally by cellular and viral proteases to
yield at least 10 mature products. HCV genome encodes three
structural proteins: a capsid protein (C) and two envelope
glycoproteins (E1 and E2). These proteins are released from
the N-terminal region of the polyprotein by signal peptidase
cleavages (15). In addition, processing in the C-terminal region
of the capsid protein by a signal peptide peptidase leads to the
generation of a mature capsid protein (32).

In the absence of a robust cell culture model for HCV, the
analyses of the subcellular localization of HCV proteins have
been performed with heterologous expression systems or in the
context of HCV replicons (reviewed in references 15 and 33).
Transient expression of HCV envelope glycoproteins with het-
erologous expression systems has shown that HCV envelope
glycoproteins E1 and E2 assemble as a noncovalent het-
erodimer (11). Due to the presence of retention signals in the
{ransmembrane domains of HCV envelope glycoproteins (8,
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9), the glycoprotein heterodimer is mainly retained in the ER
(17). However, in some expression systems, a fraction of HCV
envelope glycoproteins has also been found to be located in the
intermediate compartment and the cis-Golgi apparatus (12, 29,
37) and at the plasma membrane (3, 13, 24).

When expressed with heterologous expression systems or in
the context of HCV replicons, the subcellular distribution of
the capsid protein seems to be complex. Most of the protein is
cytoplasmic where it is found both attached to the ER and at
the surface of lipid droplets (for a review, see reference 31).
The different extents to which the capsid protein is attached
either to lipid droplets or membranes may be dependent on
the amount of lipid droplets present in various cell types 22).
In some conditions, a minor proportion of the capsid protein
has also been found to be located in the nucleus (43). More
recently, the capsid protein has also been found to colocalize
with mitochondrial markers in Huh-7 cells containing a full-
length HCV replicon (39).

Very recently, a cell culture model has been developed for
HCV (26, 42, 44). This system is based on the transfection of
the human hepatoma cell line Huh-7 with genomic RNA de-
rived from a cloned viral genome. This culture sysiem allows
the production of virus that can be efficiently propagated in ceil
culture. Although a large amount of data has been accumu-
lated on most HCV proteins during the past 15 years, the
development of a cell culture system for HCV allows reinves-
tigation of the biological and biochemical properties of HCV
proteins in a more relevant context. Here, we analyzed the



