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Fig. 1. The diagrammatic representation of a hypothetical mechanisms involved in the development of haemostatic abnormalities in

hepatosplenic schistosomiasis.

Recent evidences suggest that serine proteases
and their receptors might play a major role in the
host defense mechanism at the interface between
coagulation and inflammation [37]. Thrombin and
some upstream proteases of the extrinsic coagula-
tion cascade, such as FXa and FVIla, are known
to participate vascular permeability, cell migra-
tions, endothelial functions and cellular events
involved in inflammation by binding to protease
activation receptors (PARs) or effector cell prote-
ase receptors (EPRs) on the surface of target cells
[24,37-39]. Extravascular activation of coagula-
tion proteases and fibrin deposition can occur in
certain pathological situations that are associated

" with increased vascular permeability, inflammation
and tissue fibrosis [40—44]. A number of nonvas-
cular cells, including macrophages, fibroblasts and
epithelial cells, express tissue factor [47,48] and
are therefore capable of triggering the extrinsic
coagulation cascade. Accordingly, it can be possi-
ble that the localized expression of procoagulants
in the livers, spleens and intestines play a pivotal
role in the activation of extrinsic coagulation
cascade and in the pathogenesis of granuloma

formation and tissue deterioration {inflammation
and fibrosis) in S. mansoni-infected animals
through the actions of activated serine proteases
on mitogenesis [45,47], chemotaxis {46], cytokine
expression [48,49] and cell functions of target cells
(Fig. 1.

4. Inducing mechanism of procoagulants in
schistosomiasis mansoni

The mechanism involved in procoagulant induc-
tion by schistosome infection remains obscure.
The vascular endotheljum participates in the con-
trol of haemostasis through mechanisms that
involve the synthesis and release of coagulation
and anticoagulation factors. When the endothelium
is damaged, the balance between both factors is
lost and lean toward procoagulant-dominant state
[24,39]. Activation of coagulation proteases is one
of the earliest events, and is usually initiated when
tissue factor, expressed on the surface of vascular
smooth muscle cells, activated endothelial cells
and platelets, triggers the extrinsic coagulation
cascade by binding to circulating FVIL In vitro
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studies have shown that cultured endothelial cells
can induce TF expression in response to many
kinds of agents, such as pro-inflammatory cytoki-
nes [50~52], lymphokines [52], LPS [53], or PMA
[53]. In the patients with advanced hepatosplenic
schistosomiasis high levels of pro-inflammatory
cytokines, IL.-1ae and TNFa, and LPS have been
detected in the sera of these patients. It is, there-
fore, assumed that TF expression of endothelial
cells by stimulation with these agents may partic-
ipate in the activation of extrinsic coagulation
cascade. However, no direct evidence indicating
TF expression on the surface of vascular endothe-
lium has been obtained in the patients with this
endemic disease.

Tanabe and his colleagues have conducted a
series of experiments to clarify the inducing mech-
anism of FX activating procoagulant, and have
demonstrated that thioglycollate-induced peritoneal
macrophages can produce high level of FX acti-
vating procoagulant in vitro when stimulated with
splenic or hepatic lymphocytes that are prepared
from S. mansoni-infected mice and sensitized/
activated with SWAP antigen or T cell mitogens
[55]. In this assay condition, optimal macrophage
procoagulant production has been recorded when
stimulated with splenic lymphocytes that are iso-
lated from the infected mice and sensitized with
SWAP antigen. Among lymphocyte sub-popula-
tions, CD4™" helper T cells and NK cells, but not
CD8* T cells and B cells, isolated from the
spleens of S. mansoni-infected mice, have potently
promoted the macrophage procoagulant expres-
sion. They have also demonstrated the augmenta-
tion of macrophage procoagulant activity by
incubation with LPS, IFNvy and GM-CSF, but not
with TNF«, IL-1a, 1L-4, I1-6, and IL-12. A
synergistic increase in macrophage procoagulant
production has also been found in the incubation
with any two agents among IFNvy, GM-CSF and
LPS. Moreover, lymphocyte-mediated macrophage
procoagulant production has been markedly inhib-
ited by addition of anti-IFN+y monoclonal antibody.

These evidences indicate that macrophages can
induce FX activating procoagulant through inter-
action with activated T helper cells or NK cells,
lymphokines and/or LPS. Moreover, significantly
higher activities of macrophage procoagulants have

been induced by sensitized splenic lymphocytes
with SWAP antigen as compared with those
induced by LPS, pro-inflammatory cytokines or
sensitized lymphocytes with LPS. This finding
probably indicates that host immune mechanisms
play a pivotal role in the induction of macrophage
FX activating procoagulant in the tissues of S.
mansoni-infected animals. Accordingly, it may be
possible that host immune responses to schisto-
some eggs and adults participate in not only
granuloma formation and tissue fibrosis, but also
the development of haemostatic abnormalities in
schistosomiasis mansoni (Fig. 1).
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ings provide evidence that therapeutic approaches targeting mucosal T cells expressing high levels of IL-7R are effective in the
treatment of chromic intestinal inflammation and may be feasible for use in the therapy of human inflammatory bowel
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of lymphocyte lineage cells (1). Abundant IL-7 expression

has been demonstrated in the bone marrow stroma, thymus,
spleen, and liver. However, a potential role for IL-7 in peripheral
nonlymphoid tissues remained unclear. We have demonstrated that
IL-7 is produced by intestinal epithelial cells and regulates muco-
sal lymphocytes (2). Following our study, other investigators dem-
onstrated that IL-7 is crucial for the development of TCR-y8 T
cells and the formation of Peyer’s patches in the intestinal mucosa
of the mouse (3-6). TCR-y8 intraepithelial lymphocytes (IELs)?
are completely absent from IL-7R knockout mice, and their num-
ber is extremely decreased in IL-7 knockout mice. It has been
demonstrated that IL-7 expression under intestinal fatty acid bind-
ing protein promoter in intestinal epithelial cells of IL-7 knockout
mice was sufficient for the development of extrathymic TCR-y8
IELs (7). The effect of IL-7 expression on the development of
Peyer’s patches further emphasized the critical role for IL-7 in the
ontogeny of the mucosal immune system. Moreover, we have re-

I nterleukin-7 is a nonredundant cytokine for the development
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cently demonstrated the presence of a novel lymphoid tissue, des-
ignated cryptopatches, in murine intestinal mucosa, where clusters
of IL-7R™*¢c-Kit™ lympho-hemopoietic progenitor develop in an
IL-7-dependent fashion (8, 9). All these findings indicated that
intestinal epithelial cell-derived IL-7 plays a crucial role in the
organization of mucosal lymphoid tissues and in the regulation of
the normal immune response in the intestinal mucosa.

However, the role of IL-7/IL-7R-dependent signals during in-
flammation and in human intestinal disease is poorly understood.
We tried to clarify the mechanism by which locally produced IL-7
regulates mucosal lymphocytes and the role of mucosal IL-7/1L-
7TR-dependent signals in chronic intestinal inflammation. We have
demonstrated that mucosal IL-7/IL-7R-mediated immune re-
sponses are dysregulated at the chronic inflammation sites in hu-
man ulcerative colitis (our unpublished observation). We have also
demonstrated that IL-7 transgenic (Tg) mice developed chronic
colitis (10, 11). IL-7 Tg mice frequently showed rectal prolapse
and remittent intestinal bleeding at 8-12 wk of age. Histopatho-
logical examination of the colonic tissues revealed the develop-
ment of chronic colitis that mimicked histopathological character-
istics of ulcerative colitis in humans. Of note, IL-7 protein
accumulation was significantly decreased in the epithelial cells of
the inflamed region of chronic colitis, both in human ulcerative
colitis and in the colitis region of IL-7 Tg mice. IL-7R™ cells were
significantly infiltrated in the lamina propria at the colitis lesions.
These findings in human ulcerative colitis and IL-7 Tg mice indi-
cated that chronic inflammation of the colonic mucosa may be
mediated by dysregulation or down-regulation of epithelial cell-
derived IL-7 and by infiltration of IL-7R¥ T cells in both human
and rodents.

Here we demonstrate the essential role of the mucosal IL-7R-
dependent pathway in the development of chronic intestinal in-
flammation. We provide evidence that infiltration of highly IL-7R
a-chain-expressing T cells is a common characteristic of chronic
colitis, and new therapeutic approaches targeting mucosal T cells
expressing high levels of IL-7R were successful in the treatment of
chronic intestinal inflammation in mouse models without deletion

0022-1767/03/$02.00
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of cells with low or intermediate expression of IL-7R. We have
shown that the mucosal IL-7R-dependent signaling pathway in the
colonic mucosa was dysregulated in human ulcerative colitis.
Therefore, our results indicated the potential of targeting mucosal
T cells expressing high levels of IL-7R for the therapy of human
inflammatory bowel disease.

Materials and Methods
Mice

TCR a-chain knockout (TCRa ™) mice with a background of C57BL/6
were purchased from The Jackson Laboratory (Bar Harbor, ME). C57BL/6
recombinase-activating gene-2 (RAG-2)"'" mice were provided by Cen-
tral Laboratories for Experimental Animals (Kawasaki, Japan). BALB/c
and C.B.17-SCID mice were purchased from Japan Clea (Tokyo, Japan).
IL-7 Tg mice carrying murine IL-7 cDNA under the control of the SRe
promoter were established as previously described (10). In some experi-
ments wild-type littermates were used as controls. Mice were maintained at
the animal care facility of Tokyo Medical and Dental University. The re-
view board of the university approved our experimental animal studies.

Induction of experimentally induced colitis

For chemically induced colitis, we used dextran sulfate sodium (DSS)-
induced, oxazolone-induced, and 2,4,6-trinitrobenzene sulfonic acid
(TNBS)-immune colitis models (12). These models developed acute or
short term colitis. CD4*CD45RB"#" T cell transfer model using C.B.17-
SCID mice (13) was also used as a chronic colitis model.

Histological and immunohistochemical analyses

Colonic tissues were embedded at —80°C. Six-micrometer sections were
placed on glass slides and stained with H&E. The severity of colitis was
graded by histological findings. The disease score (0, normal; 1, mild; 2,
moderate; 3, severe colitis) in stained sections were determined according
to the degree of inflammation as previously described (14). For the staining
of IL-7R™ cells, sections were incubated with 10 pg/mi of anti-IL-7R mAb
(A7R34, provided by Dr. T. Sudo, Toray Industries, Tokyo, Japan). Iso-
type-matched control Abs were used as controls. Staining of the sections
was performed using the avidin-biotin complex method (Vectastain ABC
kit; Vector Laboratories, Burlingame, CA). Staining was then visualized
using diaminobenzidine solution, and the slides were then counterstained
with hematoxylin.

Preparation of colonic lamina propria lymphocytes (LPLs)

For the isolation of LPLs from colon, nonadherent mesenteric tissues were
removed, and the entire colon was opened longitudinally, washed, and cut
into pieces. The dissected mucosa was incubated with Ca**, Mg?*-free
HBSS containing 1 mM DTT (Life Technologies, Gaithersburg, MD) for
30 min at 37°C with gentle stirring, and this step was repeated. The resid-
ing tissue fragments were washed and incubated with collagenase A
(Roche, Mannheim, Germany) for 2 h at 37°C. The supernatants were
collected and washed, and the lymphocyte fraction was isolated on dis-
continuous Percoll gradients of 75 and 40%.

Flow cytometry

The profile of LPLs of the colon was analyzed by flow cytometry. To detect
the expression of a variety of molecules on the cell surface, isolated cells
were preincubated with a FcyR-blocking mAb (CD16/32; 2.4G2; BD
PharMingen, San Diego, CA) for 20 min, followed by incubation with
FITC-, PE-, or biotin-labeled specific Abs for 30 min on ice. The mAbs
used were anti-CD4 mAb (anti-L3T4, RM4-5; BD PharMingen), TCR-f8
mAb (H57-597; BD PharMingen), and anti-IL-7R mAb. Biotinylated Abs
were detected with PE-streptavidin (BD PharMingen). Standard two-color
flow cytometric analysis was performed using FACSCalibur (BD Bio-
sciences, Mountain View, CA) with CellQuest software. Staining with con-
trol irrelevant isotype-matched mAbs assessed background fluorescence.
Dead cells were eliminated from analysis by propidium iodide staining.

Cytokine-specific ELISA

To measure cytokine production, isolated LPLs were cultured in medinam
supplemented with 1 pg/ml of soluble anti-CD28 mAb (37.51; BD Phar-
Mingen) in 96-well plates precoated with 10 pg/ml of anti-CD3 mAb (145-
2C11; BD PharMingen) in PBS. Culture supernatants were collected, and
the cytokine concentrations of IL-2, IL-4, IL-10 and IFN-y were deter-
mined by specific ELISA (Endogen, Woburn, MA).
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Cell transfer experiments

CD4* T cells were separated from colonic LPLs from colitis-free
TCRa ™'~ mice (4 wk of age), TCRa ™'~ mice with chronic colitis (20 wk
of age), and IL-7 Tg mice (60 wk of age) by MACS (Miltenyi Biotech,
Bergisch Gladbach, Germany). We then sorted IL-7R™ T cells using
FACSVantage (BD Biosciences). The purity of IL-7R™ T cells was con-
firmed by flow cytometry and was >97%. The purified IL-7R* T cells
were i.p. transferred into RAG-27/~ mice (8~10 wk of age). Mice were
sacrificed 4—6 wk after cell transfer for analysis. In some experiments
purified CD4*IL-7R™ T cells from colitic mice were further separated into
cells expressing high and low levels of IL-7R. In the histogram of IL-7R
expression determined by flow cytometry, the top 30% of the cells were
separated as TL-7R™E" cells and the bottom 30% of the cells were separated
as IL-7R'". We then transferred 5 X 10° of either IL-7R™" or IL-7R™¥
mucosal T cells into RAG-27'" mice.

Administration of saporin-conjugated anti-IL-7R mAb

We conjugated the plant toxin saporin to our anti-IL-7R mAb (A7R34) as
a custom service at Advance Targeting System (Carlsbad, CA). We then
treated chronic colitis in TCRa ™~ mice from 20-24 wk of age by i.p.
injection of this toxin-conjugated anti-IL-7R mAb at a dose of 10 ug, once
a week for 6 wk. As a control, the same amount of a mixture of free
anti-IL-7R mAb (10 pg) and saporin (unconjugated) was injected. All mice
were sacrificed on the day after the last treatment, and colitis lesions were
evaluated.

Statistical analysis

The results were expressed as the mean = SD. For statistical analysis, we
used the program StatView for Macintosh (Abacus Concepts, Berkley, CA)
and MS Office (Excel; Microsoft, Redmond, WA) and analyzed the data
with Student’s ¢ test. : .

Results
Infiltration of T cells expressing high levels of IL-7R in the
colonic mucosa of TCRa™™ mice with chronic colitis

We assessed whether the mucosal IL-7R-dependent immune re-
sponse is dysregulated in the development of acute and chronic
intestinal inflammation. As acute or short term colitis models, we
used chemically induced colitis models, including DSS-induced,
oxazolone-induced, and TNBS-immune colitis models. As chronic
or long term colitis models, CD4"CD45RB"#" T cell transfer into
the SCID mice model and TCRe:™’ ™ mice (14) were examined. No
changes in IL-7/IL-7R-mediated immune responses were observed
in the inflamed colonic mucosa of chemically induced acute colitis
models (data not shown). TNBS-treated mice developed short term
colitis, but IL-7R* T cells did not infiltrate the lamina propria of
the inflamed mucosa. This was also observed in oxazolone-treated
mice and the DSS-induced mouse colitis model. In contrast, IL-
7R™* T cells were remarkably infiltrated in lamina propria of chron-
ically inflamed mucosa of CD4*CD45RB™&" T cell-transferred
SCID mice. These results are consistent with the findings in IL-7
Tg mice and in human ulcerative colitis. The results suggested that
mucosal IL-7R-dependent immune responses were involved in
chronic intestinal inflammation, but not in acute inflammation.
To prove this possibility, we then focused on TCRa ™" mice.
Our TCRa™~ mice spontaneously developed chronic colitis at
8-16 wk of age (14). We assessed the expression of IL-7R on
infiltrated mucosal T cells before and after the development of
colitis. In TCRa™~ mice, previous reports showed that
CD4*TCRBY™ T cells mediate chronic colitis (15, 16). Flow cy-
tometric analysis of isolated LPLs demonstrated that CD4*
TCRBY™ T cells were demonstrable in the colonic mucosa of both
colitis-free TCRa™/~ mice and mice with chronic colitis. How-
ever, IL-7RT"TCRB*™ T cells were remarkably increased in co-
lonic LPLs after the development of colitis (Fig. 1A). In the co-
lonic mucosa of colitis-free TCRa ™/~ mice, TCRB%™ LPLs were
demonstrable, but only half of these cells expressed IL-7R. In con-
trast, almost all TCRB%™ cells in the colonic mucosa of TCRa ™~
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FIGURE 1. Infiltration of LPLs expressing IL-7R at a high level in the
colonic mucosa of TCRa ™ mice with chronic colitis. A, Flow cytometric
analysis of isolated LPLs demonstrated that CD4*TCRBY™ T cells were
demonstrable in the colonic mucosa of both colitis-free TCRa™/~ mice
(n = 18) and TCRa ™~ mice with chronic colitis (n == 28), but not in that
of wild-type littermates (WT; n = 32). However, IL-7TR*TCRB%™ T cells
were remarkably increased in colonic LPLs after the development of co-
litis. In the colonic mucosa of colitis-free TCRa~'~ mice, TCRB%™ LPLs
were demonstrable, but only half these cells expressed IL-7R. In contrast,
almost all TCRB™ T cells in the colonic mucosa of TCRa ™~ mice with
chronic colitis expressed IL-7R. B, The degree of IL-7R expression in
CD4*TCRB*™ LPLs in the colonic mucosa of TCRa ™'~ mice with
chronic colitis (n = 28) was significantly (*, p < 0.001) higher than that
in the colonic mucosa of colitis-free TCRa ™~ mice (n = 18; mean fluo-
rescence intensity (MFI), 553 + 21 and 41 + 5, respectively). C, There
were only a few IL-7R™ cells in the colonic mucosa of colitis-free
TCRa ™'~ mice (n = 10) or wild-type mice (n = 21). In contrast, cells
expressing IL-7R at a high level detected by immunchistochemistry were
predominantly infiltrated in the lamina propria at chronic colitis lesions in
TCRo ™'~ mice (n = 20). These data are representative of four separate
series of experiments.

mice with chronic colitis expressed IL-7R. Moreover, the degree
of IL-7R expression in CD4*TCRB*™ LPLs of the colonic mu-
cosa of TCRa ™~ mice with chronic colitis was significantly (p <
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0.001) higher compared with that in the colonic mucosa of colitis-
free TCRa ™'~ mice (Fig. 1B). The degrees of IL-7R expression
determined by the mean fluorescence intensity in flow cytometric
histogram were 553 * 21 and 41 * 5, respectively. To confirm
that infiltrated CD4™ T cells expressed IL-7R at high level in the
chronic inflamed colonic mucosa, we then performed imimunohis-
tochemistry. There were only a few IL-7R™ cells in the colonic
mucosa of colitis-free TCRa ™'~ mice or wild-type mice. In con-
trast, T cells expressing intense staining signals of IL-7R were
predominantly infiltrated in the lamina propria at chronic colitis
lesions in TCRa™/™ mice (Fig. 1C). Most of these infiltrated cells
expressed CD4. In addition, IL-7R transcript was up-regulated in
chronic colitis lesions, as determined by RT-PCR (data not
shown). These results further reinforce the concept that IL-7R-
mediated immune responses are dysregulated in chronic intestinal
inflammation. The expansion of LPLs expressing high levels of
IL-7R in the colonic mucosa was a characteristic feature of the
chronic colitis lesion.

Transfer of IL-7R™&" mucosal T cells induced chronic colitis in
immunodeficient mice

To prove the hypothesis that T cells expressing high levels of
IL-7R in the lamina propria of the colonic mucosa mediated the
development of chronic intestinal inflammation, we first performed
transfer experiments of mucosal T cells expressing IL-7R into im-
-munodeficient mice. IL-7R*CD4 " T cells were isolated from the
colonic mucosa of TCRa '~ mice that developed chronic colitis
or wild-type mice by sorting and then were transferred into syn-
geneic RAG-2"'~ mice (Fig. 24). Phenotypic analysis of IL-
7R*CD4" LPLs from TCRa™’~ mice with chronic colitis re-
vealed that these isolated cells comsisted of 80% TCRB*™ and
20% v8, 95% CD45RB™ and 5% CD45RB™&", and CD25™ cells
(Fig. 2B). Cytokine production of isolated IL-7R"CD4* LPLs in
TCRa ™'~ mice with chronic colitis and that in wild-type mice
after stimulation with anti-CD3 mAb and anti-CD28 mAb were
quite different. Isolated IL-7R*CD4™ LPLs from TCRa ™'~ mice
with chronic colitis produced significanily higher amounts of IL-2
(p < 0.001), IFN-y (p < 0.05), and IL-4 (p < 0.01) compared
with those from wild-type mice (Fig. 2C). IL-10 production was
decreased in isolated IL-7R*CD4™ LPLs from TCRa ™'~ mice
with chronic colitis (p < 0.05 compared with that from wild-type
mice). .
All recipient mice transferred 5 X 10° IL-7R*CD4™" LPLs from
TCRa ™~ mice with chronic colitis developed severe colitis within
4-6 wk (Fig. 2D). Colonic inflammation occurred more rapidly
and was more severe in the recipient mice compared with the orig-
inal TCRe: ™"~ mice. Histopathological examination of the colonic
tissues revealed that inflammatory cell infiltration and goblet cell
depletion were prominent throughout the colon. Crypt abscesses,
Paneth cell metaplasia, and infiltration of eosinophils were also
observed in the inflammatory lesions. These features resembled the
histopathological characteristics of the colitic lesion of TCRa™"~
mice and our IL-7 Tg mice (10, 14-16). In contrast, transfer of
JL-7R*CD4™ LPLs from wild-type mice into RAG-2"/" mice did
not produce colitis in the mice during the observation period. In
addition, IL-7R™CD4* LPLs from both mice never induced coli-
tis. In the chronic colitis lesion of RAG-2~/" mice transferred
IL-7R™CD4™" LPLs from TCRa /" mice with chronic colitis, IL.-
7R™ T cells were remarkably infiltrated in the lamina propria (Fig.
2D). Flow cytometric analysis revealed that these infiltrated LPLs
mainly consisted of TCRBU™, CD4", CD4*CD45RB™Y, and
CD257 cells (Fig. 2E).

To eliminate the possibility that not mucosal T cells expressing
high Jevels of IL-7R, but merely CD4* TCRBY™ T cells mediated
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FIGURE 2. Transfer of IL-7R*CD4* LPLs from TCRe ™~ mice into
RAG-27/" mice induced chronic colitis. A, IL-7TR*CD4" T célls were
isolated from the colonic mucosa of both TCRa ™'~ mice with chronic
colitis and wild-type mice by sorting and then were transferred into syn-
geneic RAG-27/~ mice. B, Phenotypic analysis of IL-7R*CD4* LPLs
from TCRe ™'~ mice with chronic colitis (n = 10) revealed that these
isolated cells consisted of 80% TCRBE™ and 20% 8, 95% CD45RB
and 5% CD45RB"#", and CD25™ cells. C, Cytokine production of isolated
IL-7R*CD4* LPLs from TCRa ™'~ mice with chronic colitis (n = 8) and
wild-type mice (n = 10) after stimulation with anti-CD3 mAb and anti-
CD28 mAb presented remarkable differences. Isolated IL-7R*CD4* LPLs
from TCRe ™'~ mice with chronic colitis produced significantly higher
amounts of IL-2 (*, p < 0.001), IFN-y (¥, p < 0.05), and IL-4 (¥, p < 0.01)
compared with those from wild-type mice. IL-10 production was decreased
in isolated IL-7R*CD4* LPLs from TCRa ™'~ mice with chronic colitis
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chronic inflammation, we performed another set of transfer exper-
iments using purified and sorted IL-7R*CD4™ T cells from the
mucosa of TCRa™’~ mice with chronic colitis. Purified IL-
7RTCD4" LPLs from TCRa ™~ mice with chronic colitis were
further separated into cells expressing IL-7R at high and low lev-
els. In the flow cytometric histogram of IL-7R expression, the
highest 30% of IL-7R-expressing T cells were separated as IL-
7RbEN cells, and the lowest 30% of IL-7R expressing T cells were
separated as IL-7R'™ cells (Fig. 3A). We transferred 5 X 10°
cells/body of those sorted cells into RAG-2~/" mice. All recipient
RAG-2~'" mice that were transferred IL-7R™&" LPLs developed
severe colitis within 4—6 wk after transfer (Fig. 3B). In sharp con-
trast, none of mice that were transferred IL-7R°* LPLs developed
colitis during the observation period. Assessment of the severity of
colitis examined by histological scores showed a significant (p <
0.001) difference between mice transferred IL-7R™M2" LPLs and
those given IL-7R'" LPLs (Fig. 3C). These results supported the
concept that IL-7R™# T cells, not merely CD4"TCRBY™ T cells,
in lamina propria of colonic mucosa induced chronic colitis.

To further eliminate the possibility that not IL-7R"&" mucosal T
cell, but TCRBY™ T cells mediated chronic inflammation, we per-
formed another transfer experiment using IL-7R™ T cells from
IL-7 Tg mice. In IL-7 Tg mice, purified IL-7R* T cells from
colitic lesions of TL-7 Tg mice contained no TCRB®™ T cells (Fig.
4A), We also sorted IL-7R™2" and IL-7R'” CD4 ™ T cells from the
colonic mucosa of IL-7 Tg mice that developed chronic colitis and
transferred these sorted cells as well as whole IL-7R™ T cells into
RAG-27'" mice (Fig. 4B). All recipient mice that were transferred
IL-7R™#" mucosal T cells or whole IL-7R™ T cells from IL-7 Tg
mice developed severe colitis within 4 wk (Fig. 4C). In conirast,
transfer of IL-7R™™ T cells did not induce inflammation. Similar
to the transfer experiments with IL-7R"2" mucosal T cells from
TCRa ™" mice, colonic inflammation occurred more rapidly and
was more severe in the recipient mice compared with the colitis in
original IL-7 Tg mice. Histopathological examination of the co-

~ lonic tissues of those transferred mice revealed that inflammatory

cell infiltration and goblet cell depletion were most prominent
throughout the colon. Crypt abscesses, Paneth cell metaplasia, and
infiltration of eosinophils were also observed in the colitis lesions.
Assessment of the severity of colitis by histological scores showed
a significant (p < 0.001) difference between mice transferred IL-
7RMeR 1 PLs and those given IL-7R'™ from the colitic lesion of
IL-7 Tg mice (Fig. 4D). All these results indicated that mucosal T
cells expressing high levels of IL-7R mediated the development of

(*, p < 0.05 compared with that from wild-type mice). D, All the recipient
RAG-27'" mice that were transferred 5 X 10° IL-7R*CD4* LPLs/body
from TCRa™"" mice with chronic colitis developed severe colitis at 4—6
wk after transfer (n = 30). Colonic inflammation occurred at earlier periods
and more severely in these mice than in the original TCRa ™/~ mice. His-
topathological examination of the colonic tissues revealed that inflamma-
tory cell infiltration and goblet cell depletion were most prominent
throughout the colon. In contrast, transfer of the same numbers of IL-
TR*CD4* LPLs from wild-type mice into RAG-2~/~ mice did not pro-
duce colitis during the observation period (n = 10). In chronic colitis lesion
of RAG-2~'" mice transferred CD4*IL-7R* LPLs from TCRa™'~ mice
with chronic colitis, IL-7R™ T cells were remarkably infiltrated in the
lamina propria. In the colonic mucosa of RAG-2'" mice that were trans-
ferred IL-7R* LPLs from wild-type mice, IL-7R* T cells were not infil-
trated in the lamina propria. These data are representative of four sep-
arate series of experiments. E, Flow cytometric analysis revealed that
infiltrated IL-7R* LPLs mainly consisted of TCRB¥™, CD4%,
CD4*CD45RB™¥, and CD25 cells in the chronic colitis lesion of
RAG-27'~ mice that were transferred IL-7RTCD4* LPLs from
TCRa ™'~ mice with chronic colitis (n = 8).
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FIGURE 3. Transfer of LPLs expressing IL-7R at a high level from
TCRa ™'~ mice into RAG-2™'" mice induced chronic colitis. A, Purified
IL-7R*CD4" LPLs from TCRa ™~ mice with chronic colitis were further
separated into cells expressing IL-7R at high and low levels. In the flow
cytometric histogram of IL-7R expression, the top 30% of IL-7R-express-
ing T cells were separated as TL-7R™#" cells, and the bottom 30% of IL-7R
expressing T cells were separated as IL-7R'®” cells. We transferred 5 X 10°
cells/body of those sorted cells into RAG-27/" mice. B, All recipient RAG-
27/~ mice that were transferred IL-7R™" LPLs (n = 12) developed severe
colitis within 4—6 wk. In sharp contrast, none of mice that were transferred
TL-7R™¥ LPLs from same mice (n = 9) developed colitis during the ob-
servation period. C, Assessment of the severity of the colitis by histological
scores showed a significant (*, p < 0.001) difference between the recipient
mice transferred IL-7R™&" LPLs and those given IL-7R'¥. These data are
representative of three separate series of experiments.

chronic intestinal inflammation. Therefore, therapeutic approaches
targeting IL-7R-mediated immune responses are thought to be
feasible.

Successful treatment of established, ongoing chronic colitis in
TCRa™~ mice by selective elimination of LPLs expressing high
levels of IL-7R using saporin-conjugated anti-IL-7R Ab

To correct the dysregulation of mucosal IL-7/IL-7R-mediated im-
mune responses, we attempted to control mucosal T cells express-
ing high levels of IL-7R. On the basis of previous findings, we then
tried to eliminate mucosal T cells expressing high levels of IL-7R
by toxin-based destruction of IL-7R-expressing cells. A plant
toxin, saporin, was conjugated to our anti-IL-7R mAb (17). In
preliminary experiments we confirmed that a low concentration
(10 pg/mi) of saporin-conjugated anti-IL-7R mAb inhibited the
proliferation of IL-7-dependent cell line DW34 cells expressing
IL-7R at a high level, but not of LPLs and spleen cells from wild-
type mice. Using 10 ug/ml of this toxin-conjugated anti-IL-7R
mADb, we found that this agent did not inhibit the in vitro prolif-
eration of CD4™" spleen cells that expressed IL-7R at low and
intermediate levels from wild-type mice, but did inhibit that of
IL-7RP&" T cells from chronically inflamed mucosa of TCRa ™/~
mice (data not shown). In preliminary experiments treatment of
wild-type mice by i.p. injection of small amounts (10 ug/body) of
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_FIGURE 4. Transfer of sorted IL-7R"#" LPLs from IL-7 Tg mice into

RAG-27'~ mice induced chronic colitis. A, Purified CD4* LPLs from the
colonic mucosa of IL-7 Tg mice with chronic colitis contained no TCRg%™
T cells. B, We sorted IL-7RM&" and IL-7R"Y CD4™ T cells from the co-
lonic mucosa of IL-7 Tg mice with chronic colitis as described in Fig. 3 and
transferred these sorted as well as unfractionated IL-7R™ T cells into RAG-
27/~ mice. C, All recipient mice that were transferred IL-7RY&" mucosal T
cells (n = 12) as well as unfractionated IL-7R* T cells from IL-7 Tg mice
(n = 8) developed severe colitis within 4 wk after cell transfer. In contrast,
transfer of IL-7R™¥ T cells did not induce inflammation (# = 8). Similar
to TCRa™~ IL-7R™#" mucosal T cell transfer experiments, colonic in-
flammation occurred more rapidly and was more severe in the recipient
mice compared with that in the original IL-7 Tg mice. Histopathological
examination of the colonic tissues revealed that inflammatory cell infiltra-
tion and goblet cell depletion were prominent throughout the colon. D,
Assessment of the severity of colitis by histological scores showed a sig-
nificant (¥, p < 0.001) difference between the recipient mice that were
transferred either IL-7R#" LPLs or TL-7R™" and the colitic IL-7 Tg mice.
These data are representative of three separate series of experiments.

saporin-conjugated anti-IL-7R mAb once a week for 6 wk did not
cause any change in the total cell number and phenotypic change
in spleen cells or LPLs (data not shown). Depletion of IL-7R* or
CD4™ cells was not observed even after six treatments with 10
pglbody of saporin-conjugated anti-IL-7R mAb. We then assessed
the therapeutic effect of this saporin-conjugated anti-IL-7R mAb in
the established, ongoing colitis of TCRe '~ mice. Since all un-
treated TCRe ™'~ mice developed colitis within 16 wk of age in
our series, we started the treatment of established colitis in these
mice at 20 wk of age. We treated chronic colitis in TCRa ™'~ mice
by i.p. injection of small amounts (10 ug/body) of saporin-conju-
gated anti-IL-7R mADbD, once a week for 6 wk. Selective elimina-
tion of IL-7R™&" L PLs by the administration of small amounts of
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FIGURE 5, Successful treatment of established, ongoing chronic colitis
in TCRa™'~ mice by the selective elimination of LPLs expressing IL-7R
at a high level using saporin-conjugated anti-IL-7R Ab. All untreated
TCRa ™'~ mice developed colitis within 16 wk of age in our series; there-
fore, we started the treatment of this established, ongoing colitis in these
mice at 20 wk of age. We treated chronic colitis in the TCRa™'~ mice by
i.p. injection of small amounts (10 ug/body) of saporin-conjugated anti-
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saporin-conjugated anti-IL.-7R mAb completely ameliorated estab-
lished colitis in TCRa ™/~ mice. Gross inspection of the colon in
TCR« ™'~ mice revealed complete reduction of inflammatory ac-
tivity after treatment with saporin-conjugated anti-IL-7R mAb,
comparable with that in wild-type mice. In contrast, TCRa™/~
mice treated with a mixture of free anti-IL-7R mAb and saporin
(not conjugated) using the same protocol developed severe colitis,
comparable with that in untreated TCRa ™/~ mice (Fig. 5A). His-
tological analysis of saporin-conjugated anti-IL-7R mAb-treated
mice showed the dramatic decrease in colonic inflammation, com-
parable with the histology of the colonic mucosa in wild-type
mice. In contrast, TCRa ™'~ mice treated with a mixture of free
anti-IL-7R mAb and saporin developed severe colitis (Fig. 5B).
The histological score assessing the severity of inflammation was
significantly (p < 0.01) decreased after saporin-conjugated anti-
IL-7R mAb treatment compared with that after treatment with a
mixture of free anti-IL-7R mAb and saporin (Fig. 5C). Colonic wet
weight and isolated total cell number of colonic LPLs were sig-
nificantly (p < 0.001) decreased in TCR« ™'~ mice after saporin-
conjugated anti-IL-7R mAb treatment compared with those after
treatment with a mixture of free anti-IL-7R mAb and saporin (Fig.
5D). The decrease in colonic weight and total LPL number reached
the level in wild-type mice. Flow cytometric analysis of isolated
LPLs revealed that the degree of IL-7R expression on CD4™ LPLs
from the colonic mucosa of TCRa ™/~ mice with chronic colitis
was gradually and significantly (p < 0.01) decreased after saporin-
conjugated anti-IL-7R mAb treatment (Fig. SE). The decrease in

IL-7R mAb, once a week for 6 wk. A, Gross inspection of the colon in
TCRe ™'~ mice revealed a complete reduction in the inflammatory activity
after treatment with saporin-conjugated anti-IL-7R mAb (n = 16), com-
parable to the colitis observed in wild-type mice (n = 20). In contrast,
TCRa ™/~ mice treated with a mixture of free anti-IL-7R mAb and saporin
(not conjugated) using the same protocol (n = 14) developed severe colitis,
comparable to that in untreated TCRa ™/~ mice. B, Histological analysis of
saporin-conjugated anti-IL-7R mAb-treated mice showed the dramatic de-
crease in colonic inflammation, comparable to the histology of the colonic
mucosa in wild-type mice. In contrast, TCRa ™~ mice treated with a mix-
ture of free anti-IL-7R mAb and saporin developed severe colitis. C, The
histological score was significantly (¥, p << 0.01) decreased after saporin-
conjugated anti-IL-7R mAb treatment (» = 10) compared with that after
treatment with a mixture of free anti-IL-7R mAb and saporin (r = 10). D,
The colonic wet weight and isolated cell number of colonic LPLs were
significantly (%, p < 0.001) decreased in TCRa ™~ mice after saporin-
conjugated anti-IL-7R mAb treatment (» = 16) compared with those after
treatment with a mixture of free anti-IL-7R mAb and saporin (n = 14). The
decrease reached the level in wild-type mice. E, Flow cytometric analysis
of isolated LPLs revealed that the degree of IL-7R expression on CD4"
LPLs from the colonic mucesa of TCRe™'~ mice with chronic colitis was
gradually and significantly (¥, p < 0.01; ##, p < 0.001) decreased after
saporin-conjugated anti-IL-7R mAb treatment. The decrease in IL-7R ex-
pression was more prominent after six treatments (6X; n = 16) than that
after three treatments (3X; n = 5). F, Saporin-conjugated anti-IL-7R mAb
treatment induced a significant (*, p < 0.001) decrease in IL-7R expression
on CD4* LPLs in the colonic mucosa of TCRa ™'~ mice with chronic
colitis (n = 16) compared with that after treatment with a mixture of free
anti-IL-7R mAb and saporin (n = 14). The degree of IL-7R expression in
CD4% LPLs after treatment with a mixture of free anti-IL-7R mAb and
saporin was comparable to that in untreated TCRo ™™ mice (n = 20). G,
Saporin-conjugated anti-IL-7R mAb treatment induced a significant (¥,
p < 0.001) reduction in IL-2 production by CD4™ mucosal T cells after
stimulation with anti-CD3 and anti-CD28 mAbs. IL-4 production increased
in CD4* LPLs from untreated TCRe™/~ mice after the same stimulation.
This increase was significantly (¥, p < 0.001) reduced in CD4* LPLs from
saporin-conjugated anti-IL-7R mAb-treated TCRa ™'~ mice, and produc-
tion was below the level in wild-type mice. These data are representative
of five separate series of experiments.
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IL-7R expression was more prominent after six treatments than
after three treatments. Subsequently, saporin-conjugated anti-
IL-7R mAb treatment induced a significant (p < 0.001) decrease
in IL-7R expression on CD4* LPLs in the colonic mucosa of
TCRa ™~ mice with chronic colitis compared with that after treat-
ment with a mixture of free anti-IL-7R mAb and saporin (Fig. 5F).
The degree of IL-7R expression in CD4* LPLs after treatment
with a mixture of free anti-IL-7R mAb and saporin was compara-
ble to that in untreated TCRa ™/~ mice. Saporin-conjugated anti-
IL-7R mAb treatment induced a significant (p < 0.001) reduction
in IL-2 production by CD4* LPLs after stimulation with anti-CD3
and anti-CD28 mAbs (Fig. 5G). IL-4 production was increased in
CD4* LPLs from untreated TCRe ™/~ mice after stimulation, and
this increase was significantly (p < 0.001) reduced to the level in
wild-type mice in saporin-conjugated anti-IL-7R mAb-treated
TCRa ™'~ mice. These results indicate that successful treatment of
established, ongoing chronic colitis was achieved by the selective
elimination of LPLs expressing IL-7R at a high level without de-
letion of cells expressing with low or intermediate levels of IL-7R.

Discussion

A potential role for IL-7/IL-7R-mediated immune responses in the
intestinal inflammation was unclear. We have demonstrated that
IL-7 Tg mice developed chronic colitis that mimicked histopatho-
logical characteristics of human ulcerative colitis. In the colonic
mucosa of IL-7 Tg mice with chronic colitis, a decrease in IL-7
protein accumulation in the epithelial cells and marked infiltration
of IL-7R* T cells in the lamina propria were demonstrable (10,
11). We also showed the decrease in IL-7 protein accumulation in
the epithelial cells and infiltration of IL-7R™ T cells in the lamina
propria at the chronic inflammation sites of patients with ulcerative
colitis (our unpublished observations). These findings suggest that
dysregulation of the mucosal IL-7/IL-7R system is a common phe-
nomenon in chronic inflammation sites of the colonic mucosa. In
the present study we confirmed this concept in various chronic
colitis mice models. Interestingly, dysregulation of the mucosal
IL-7/IL-7R system is not apparent in the acute colitis mouse
model. This was consistent with our previous findings. In fact, IL-7
Tg mice developed acute colitis with infiltrating neutrophils and T
cells at 1-3 wk of age. In the acute colitis stage, IL-7 protein
expression was significantly increased in the inflamed colonic mu-
cosa. This contrasted with the decreased IL-7 expression in the
chronic colitis stage, but was consistent with the findings that IL-7
expression was increased in colonic mucosa of patients with acute
Salmonella enterocolitis and in severely inflamed mucosa in ul-
cerative colitis at acute exacerbation (our unpublished observa-
tions). The reason for substantial proliferation of mucosal IL-7R™
T cells in chronic colitis, although IL-7 expression in the epithelial
cells is decreased, remains unclear. Recent reports indicated that
the serum concentration of IL-7 is strongly related to CD4™ T cell
lymphopenia, and IL-7 is produced by dendritic-like cells within
peripheral lymphoid tissues in HIV disease (18). We are currently
investigating the extraintestinal source of IL-7 in murine colitis
models.

The most important finding of the present study was that at-
tempts could be feasible in the treatment of chronic intestinal in-
flammation by the regulation of a mucosal IL-7R-dependent sig-
naling pathway. Increasing evidence showed that chronic colitis in
murine models has been successfully prevented by the adminis-
tration of various mAbs or cytokines and by the establishment of
double-knockout mice (19-21). However, few attempts resulted in
adequate treatment of the established, ongoing colitis. We pre-
vented chronic colitis in TCRa ™'~ mice by establishment of
TCRa '~ X IL-7R™'~ double-knockout mice (our unpublished

IL-7R HIGH-EXPRESSING MUCOSAL T CELLS IN COLITIS

observation). Moreover, we successfully treated established, on-
going colitis in TCRa ™'~ mice with Ab-based therapy targeting
the IL-7R-dependent signaling pathway. We treated chronic colitis
in TCRa™"" mice by infusion of free and toxin-conjugated anti-
IL-7R mAb. Blockade of the IL-7R-dependent signaling pathway
by anti-IL-7R mAb partially abrogated established colitis (our un-
published observation). Importantly, selective elimination of IL-
TR™&" T cells by the administration of small amounts of saporin-
conjugated anti-IL-7R mAb completely ameliorated ongoing
colitis in TCRa™"~ mice. This saporin-conjugated anti-IL-7R
mAb did not inhibit the in vitro proliferation of CD4¥IL-7R*
spleen cells from normal mice, but did inhibit that of IL-7R™M&" T
cells from chronically inflamed mucosa of TCRe ™/~ -mice. This
observation indicated that small amounts of saporin-conjugated
anti-IL-7R mAb inhibited the proliferation or induced cell death of
T cells expressing IL-7R at a high level that infiltrated in the
chronic inflamed mucosa, but did not have an effect on cells ex-
pressing IL-7R at low or intermediate levels. This is explained by
the fact that the amount of saporin binding to our anti-IL-7R mAb
was extremely low. These results strongly confirmed that chronic
inflammation in the colonic mucosa is mediated by the dysregu-
lation of the mucosal IL-7/IL-7R signaling pathway. Treatment of
wild-type mice with the same amount of saporin-conjugated anti-
IL-7R mAb did not cause any change in the total cell number or a
phenotypic change in spleen cells or LPLs. Depletion of IL-7R ™" or
CD4™ cells was not observed even after six treatments with 10
pg/body of saporin-conjugated anti-IL-7R mAb. Therefore, a ther-
apy regulating LPLs expressing IL-7R at a high level is feasible in
the treatment of chronic colitis without the deletion of cells ex-
pressing IL-7R at low or intermediate levels.

The mechanism by which the elimination of IL-7R™" T cells
leads to the amelioration of ongoing colitis should be defined. Our
study showed that IL-7R™#" LPLs infiltrated in the lamina propria
of colonic mucosa were activated and produced Thi- and Th2-type
cytokines. Those activated IL-7R™&" mucosal T cells eventually
produce inflammatory and proinflammatory cytokines that trigger
a nonspecific inflammatory cascade. Therefore, it is not surprising
that elimination of LPLs expressing IL-7R at a high level leads to
the inhibition of ongoing colitis in chronic colitis mice.

Several clinical applications of IL-7 have been proposed, and
many have been tested in mice (1, 22, 23). The major areas in
which H.-7 appears to hold some clinical promise are antitumor
activity, enhancement of lymphopoiesis, promotion of stem cell
engraftment, and enhanced antimicrobial activity. However, only a
few clinical applications have been conducted targeting IL-7R-
bearing cells. Only a single trial was proposed for the therapy for
hematologic malignancies by toxin-based destruction of IL-7R-
bearing cells. Sweeney et al. (24) have constructed a recombinant
fusion protein, DAB389 IL-7, composed of the catalytic and trans-
membrane domains of diphtheria toxin, fused to IL-7. They dem-
onstrated that DAB389 IL-7 has a selective cytotoxic effect only
on cells bearing the IL-7R, and that entry into target cells was
mediated through the receptor. These results indicated that
DAB389 IL-7 may be a novel reagent that possesses potential as a
therapeutic agent against IL-7R-bearing cell-mediated disorders.
They have also constructed an IL-2 version of the diphtheria toxin-
based fusion toxin, DAB-IL-2, and applied this to the treatment of
cutancous T cell lymphoma (25). Preliminary studies using DAB-
IL-2 for the treatment of severe rheumatoid arthritis and severe
methotrexate-resistant psoriasis have also been reported (26, 27).
Therefore, DAB389 IL-7 may be promising in the treatment of
disorders other than hematological malignancies. All previous at-
tempts were conducted to eliminate every IL-7R-bearing cell. The
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present study was the first attempt to eliminate only T cells ex-
pressing IL-7R at a high level by toxin-based destruction of cells
for the treatment of nonmalignant disorders, and we are currently
investigating whether DAB389 IL-7 is effective in the treatment of
chronic colitis.

This study provides a basis for practical application of therapy
targeting T cells expressing IL-7R at a high level for the treatment
of chronic intestinal inflammation in human inflammatory bowel
disease. Human inflammatory bowel disease is thought to result
from an inappropriate activation of the mucosal immune system
driven by luminal flora (28). The activation of key immune cell
populations is eventually accompanied by the production of a wide
variety of nonspecific mediators of inflammation, including vari-
ous other inflammatory and proinflammatory cytokines, chemo-
kines, and growth factors. We suggest that T cells expressing
IL-7R at a high level are one such key immune cell population.
Therefore, therapeutic approaches targeting mucosal T cells ex-
pressing IL-7R at a high level may be feasible for the therapy of
human inflammatory bowel disease.
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Abstract. We examined whether antibody isotype responses to paramyosin (PM), a vaccine
candidate for schistosomiasis, are associated with age-dependent resistance and pathology in
liver fibrosis using human sera collected from139 individuals infected with Schistosoma

Japonicum in Leyte, the Philippines. Here, we report that [gA and IgG3 responses to PM
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showed a positive correlation with age and that the epitopes responsible were localized
predominantly within the N-terminal half of PM. In addition, the IgG3 response to PM was
assoclated with serum level of procollagen-IlI-peptide (P-III-P), an indicator of progression
of liver fibrosis. These results imply that IgG3 against PM may not only provoke
age-dependent resistance to S. japonicum infection but also enhance granuloma formation. In
contrast, levels of IgE to PM and to multiple PM fragments showed a negative correlation
with P-III-P level. Thus, in contrast to IgG3, increases in PM-specific IgE may contribute to

suppression of liver pathogenesis in schistosomiasis.
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INTRODUCTION

A number of epidemiological studies have suggested the occurrence of age-dependent,
acquired resistance to reinfection with Schistosoma mansoni,' S. haematobium,” and S,
Japonicum.>* Age-dependent resistance is correlated with specific antibody isotype responses
to the schistosome antigens, especially IgE responses to adult worm antigens (AWA).>™® In
addition, IgA specific to parasite antigens was shown to be associated with resistance.”'°
Thus, IgE and IgA may play a role in mediating protective immunity. On the other hand, IgM,
IgG2, and 1gG4 have been suggested to block killing by antibody-dependent éellttla1'
cytotoxicity (ADCC) of the parasites, acting as a “blocking antibody”.>!' Nevertheless, the
responses of various isotypes are controversial in their ability to provoke an immune effector
mechanism.

Paramyosin (PM) is an invertebrate myofibrillar protein and is one of six candidate
vaccines against schistosomiasis.'? Vaccination with recombinant PM induced a significant
reduction in worm recovery after challenge infection with S. japonicum in mice, pigs, and
water buffaloes as experimental animal models.'*'* Immunohistochemical and
immunoelectron microscopic analyses indicated that PM is localized on the surface of
cercaria, schistosomula, and adult S. japonicum, as well as in the muscle layers, suggesting
that the surface PM could evoke ADCC."'® Indeed, passive transfer of PM-specific
monoclonal IgE in mice at an early stage of challenge infection resulted in reduction of worm
burden."’

In humans, antibody isotype responses against S. japonicum PM have been reported.
A study in the Philippines showed that IgA titers to AWA are correlated with age and the
major target of [gA was PM, suggesting a role of anti-PM IgA in acquired immunity.’ In

contrast, antibody responses to PM were not correlated with susceptibility in another study in

L2
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China.'® These discrepancies niay have been due to geographical differences of both hurnan
and parasite populations and differences in the PM epitopes recognized by the specific
antibody isotypes, some of which would be protective with others acting as blocking
antibodies.

The major etiology of schistosomiasis is periportal fibrosis, which is a consequence
of prolonged granuloma formation surrounding the deposited parasite eggs in the liver. From
the practical view of vaccine development, schistosome vaccines are required not only to
reduce worm burden but also to improve liver fibrosis. With regard to the roles of isotype
responses to parasite antigens in fibrosis, analyses of IgE-deficient mice infeéted with either S.
Japonicum or S. mansoni indicated that IgE induces granuloma formation.'*? In addition,
increased levels of 1g(G4 to parasite egg antigens in schistosomiasis mansoni patients with
liver fibrosis have been demonstrated.®' Interestingly, PM has been suggested to be involved
in granuloma formation in mice infected with S. mansoni.”** Thus, it is important to
examine the role of isotype responses to PM in liver fibrosis for schistosome vaccine
development.

The present study was performed to determine whether isotype responses against
PM are involved in age-dependent resistance and liver fibrosis in human S. japonicum
infection. We demonstrate that IgG3 and IgA against PM were correlated positively with
aging, while the epitopes recognized varied among isotypes. In addition, we observed a
positive correlation between IgG3 responses to PM and serum level of
procollagen-IlI-peptide (P-III-P), an indicator of progression of liver fibrosis. Surprisingly,
IgE specific to PM showed negative correlation negatively with P-III-P level, suggesting the
involvement of IgE-PM interactions in liver fibrosis. The possibility of using PM as a

schistosome vaccine is also discussed.
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MATERIALS AND METHODS

Study design and evaluation of liver fibrosis. The study was carried out in villages on
Leyte, the Philippines, in which schistosomiasis japonica is endemic. In this area, mass
screening by stool examination followed by treatment with praziquantel against S. japonicum
infection was conducted from 1981 to 1999, as part of the National Schistosomiasis Control
Program of the Philippines. In July and August 1999, outpatients from Schistosomiasis
Research Hospital, who were diagnosed as having S. japonicum infection by ;tool
examination, were enrolled in the present study. The purpose and protocols of the study were
explained to and written consent obtained from all the patients. All enrolled patients
underwent serological and ultrasonographic (US) examinations. Patients positive for hepatitis
B surface antigen on radioimmunoassay (RIA; cut off index > 2.0) and/or anti-HCV antibody
(second generation) and alcoholics with bright liver on ultrasonography (US; alcohol
consumption > 80 ml/d for 5 yrs or more) were excluded from the study.

A total of 139 patients were selected for further analyses. The degree of liver
fibrosis was estimated by US and classified into four stages (Type 0: normal pattern; Type 1:
linear pattern; Type 2: tubular pattern; Type 3: Network pattern) as described.*** Serum
levels of procollagen-IIl-peptide (P-III-P), type-IV collagen (Type-1V), and total bile acids
(TBA) were measured in only 133 of the 139 blood specimens, the other six specimens
having been lost during analyses. Eight control sera were collected from healthy adult
volunteers who lived in Japan and were free from S. japonicum infection.
Schistosome antigens and recombinant paramyosins. The soluble adult worm antigens
(AWA) were extracted from adult worms of the Yamanashi strain of S. japonicum by repeated

freezing and thawing.'” After centrifugation at 10,000 g for 30 min at 4°C, the supernatant
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was recovered and cryopreserved at —~80°C until use. Full-length S. japonicum PM and six
truncated forms were designated as PM (1--866 amino acids), PM1 (1--164 amino acids),
PM2 (157--302 amino acids), PM3 (297--451 amino acids), PM4 (447--602 amino acids),
PMS (597--742 amino acids), and PM6 (734--866 amino acids). The PM cDNAs were
amplified by PCR using the S. japonicum PM cDNA' as a template and the following
primers: PM, 5'-CGGGATCCCATATGATGAATCACGATACAG-3' and
5-GCGGATCCTACATCATACTTGTTGC-3"; PM1,
5'-CGGGATCCCATATGATGAATCACGATACAG-3' and
5'—CGGGATCCCCGGGTACCGAGCTCGACTTTTGATTCAGCTGATTG-S': PM2,
5'-CGGGATCCATATGGTCGACGAATTCGCTAAGCAATCAGCTGAATC-3' and
5'-CGGGATCCCTCGAGAAGCTTGAATTCCTCTGTTTTACTC-3"; PM3,
5'-CGGGATCCGAGTAAAACAGAGGAATTC-3' and
5'-CGGGATCCCAGCTTCTAATTGAGACCA-3'"; PM4,
5'-CGGGATCCGTCTCAATTAGAAGCTGAA-3' and
5-CGGGATCCCAACTTCATTTGCCAGCTG-3". The amplified cDNAs were digested with
Ndel/BamHI (PM, PM1, and PM2) or BamHI (PM3 and PM4) and subcloned into the
expression vector, pET14b. cDNA for PM5 was derived by Pvull/EcoRI digestion of the PM
cDNA, end-filled, and subcloned into the EcoRYV site of the pT7Blue-T vector (Novagen Inc.,
Madison, WI). The Ndel/BamHI fragment carrying the PM5 ¢cDNA was subcloned into
pET14b. The cDNA of PM6 was derived by Pstl/BamHI digestion of the PM ¢cDNA,
end-filled, and subcloned into the end-filled XAol site of pET 14b. Transformation of bacteria,
induction of expression, and purification of recombinant PMs with an N-terminal His6-tag
were carried out as described.”* PM was found to contain many degraded forms and was
purified further using sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE) followed by electro-elution. Finally, the recombinant PMs were stored in a
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solution of 10 mM sodium phosphate (pH 7.2), I M NaCl, and 4 M urea at —80°C until use.
Measurement of antibody titer specific to the schistosome antigens in human sera.
Enzyme-linked immunosorbent assay (ELISA) was carried out using SWA, the full-length
PM, and a series of recombinant PMs. Briefly, 96-well microtiter plates were coated with 5
pg/ml of SWAP or 1 pg/ml of PMs. After washing out the unbound antigens 3 times with
PBS containing 0.05% Tween 20 (PBST), the plates were blocked with blocking solution
containing 0.5% bovine serum albumin (fraction V; Sigma Chemical Co., St. Louis, MO) in
PBST for 30 min at room temperature. The plates were further washed 3 times with PBST.
The human sera were diluted 1:100 with blocking solution for detection of Igé, IgGl, IgG2,
and [gG3, and to 1:50 for IgG4, IgE, and IgA, and then incubated overnight at 4°C. The
plates were washed 5 times with PBST and incubated with HRP-conjugated anti-human IgG1,
[gG2, 1gG3, IgG4, IgA (anti-IgG: EY Laboratories, Inc., San Mateo, CA; IgG1, 1gG2, 1gG3,
and IgG4: Southern Biotechnology Associates Inc., Birmingham, AL; IgA: ICN Biomedicals,
Costa Mesa, CA), or biotinylated anti-human IgE (Vector Laboratories, Inc., Burlingame,
CA)at 1:1000 for 1 hr at room temperature. The plates were then washed 5 times with PBST.
For detection of IgE, the plates were further treated with a VECTASTAIN® Elite ABC
standard kit under the conditions recommended by the manufacturer (Vector Laboratories.)j
The assays were developed with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and the
optical density was measured at 405 nm using a microplate reader (Model MTP-22, Corona
Electrics Co., Ltd., Ibaraki, Japan) with reference at 492 nm.

Statistical analysis. StatView'" version 4.0 (Abacus Concepts Inc., Berkeley, CA) was used
for all data analyses. Optical densities of serum concentrations of P-III-P and Type-IV and the
antibody titers were log transformed before analyses. We used Student’s f-test to evaluate
differences between log-transformed means and Pearson’s correlation coefficient to quantify

associations between age, ultrasonographic evaluation, and log transformed data for P-III-P,
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