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Abstract

phase of functional electrical stimulation (FES) induced hemiplegic gait. The stimulation schedules were evaluated in controlling the hip,

This paper described a computer simulation test of six different stimulation schedules for the cycle-to-cycle control of swing

the knee and the ankle joint movements on the point of view of acceptable quality of the gait that was similar to the natural gait pattern.
Five stimulation schedules were knowledge-based stimulation schedules and one stimulation schedule was an EMG-based stimulation
schedule. Two acceptable stimulation schedules were found by the evaluation. Results of this study showed that combination of the timing
pattern of muscle activation and knowledge of joint movements and muscle function is necessary in design of stimulation schedule for FES
gait. Co-activation of the ilopsoas, the hamstrings and the vastus muscle at the beginning of swing phase and that of the tibialis anterior and

the soleus at the end of swing phase were found to be effective in controlling swing phase. The knowledge-based generation of stimulation

schedule would be effective and necessary in clinical application.

Key Words: FES, Cycle-to-cycle control, Hemiplegic gait, Stimulation schedule

1. Introduction

The cycle-to-cycle control is a control method of FES gait that
regulates stimulation burst duration of stimulation pulses of a
current cycle of gait based on the performance of previous cycles,
whereas pulse width, amplitude and frequency are fixed. The
target joint angles are some important points of the joint angle
during a particular gait phase (e.g., maximum joint angles and
joint angles at initial contact). In this method, parameter of the
stimulation pulses that has direct relationship to the achievement
of the target joint angle is the stimulation burst duration. Fixing of
the amplitude, the pulse width and the frequency of the stimulation
pulses is aimed to generate a stable muscle force. By regulating
the stimulation burst duration, the controlled joint angle is affected
to reach the target joint angle. Since the trajectory-based control
method does not show effectiveness in generating smooth joint
angle trajectories, the cycle-to-cycle control is expected to be an
alternative.

The cycle-to-cycle control showed capability to realize target

joint angle in single-joint control of gait induced by functional
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electrical stimulation (FES) |.z>. Since implementation of the
multi-joint control is essential for practical use of the cycle-to-
cycle control, we have implemented the cycle-to-cycle control
in fuzzy controllers and have found that it would be effective in
controlling multi-joint movements during swing phase of FES
gait ¥ Atest of the quality of FES-induced gait would be required
in the next stage for practical application of the cycle-to-cycle
control.

In the cycle-to-cycle control, sequence of the muscle
stimulation is arranged in a stimulation schedule, which is relevant
to quality of the FES gait. In our previous studies, the stimulation
schedule was created based on knowledge of joint movements
during a particular gait phase and muscle functions. As the other
method of creating stimulation schedule, the EMG pattern can be
used. In this paper, in order to test the concept of design of the
stimulation schedule, we tested six different stimulation schedules
for the cycle-to-cycle control for multi-joint control of swing
phase of FES-induced hemiplegic gait including an EMG-based
stimulation schedule. The other five stimulation schedules that
were knowledge-based stimulation schedules were included in
order to test effectiveness of the knowledge used in the design
of the previous stimulation schedule. The test was performed in
computer simulation using an electrically stimulated musculo-
skeletal model. Each stimulation schedule was evaluated by
comparing the estimated joint angle trajectories of FES control to

measured trajectories of the normal gait.
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Fig.1 Six different stimulation schedules for multi-joint control. *:
beginning of stimulation (maximum hip extension angle, maximum
knee extension angle, and maximum ankle dorsiflexion angle at
the end of stance phase). Control objective: 1: maximum ankle
plantar flexion angle, 2: maximum knee flexion angle, 3: maximum
hip flexion angle, 4: maximum ankle dorsiflexion angle, and 5:
maximum knee extension angle and hip and ankle angles at initial
contact. The underlined muscle name and filled stimulation timing in
the stimulation schedules B-E are the points to be tested according
to the stimulation schedule A. See text in detail.
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2. Methods
2.1 Stimulation Schedule

Fig.1 shows the six stimulation schedules for the cycle-to-cycle
control that were tested in this paper. Beginnings of the muscle
stimulation were at the maximum hip extension, maximum knee
extension or maximum ankle dorsiflexion angles at the end of
stance phase. In normal gait, those maximum joint angles usually
occur at different time in a cycle of gait. In order to facilitate the
computer simulation, we assumed these maximum joint angles
occurred simultaneously.

The stimulation schedule A was designed in the previous
study " Stimulation of the iliopsoas, the hasmtrings (the
biceps femoris long head and the biceps femoris short head)
and the quadriceps (the rectus femoris and the vastus muscles)
was to produce the joint movements reaching the targets of
maximum hip flexion angle, maximum knee flexion angle, and
maximum knee extension angle, respectively. Stimulation of
the gastrocnemius medialis and the tibialis anterior muscles
was to produce ankle joint movements reaching the targets
of maximum ankle plantar flexion angle and maximum
ankle dorsifiexion angle, respectively. The stimulation of the
hamstrings formed co-activation of the biceps femoris long
head and the iliopsoas, which was aimed to avoid excessive hip
flexion at the beginning of swing phase. In order to keep the hip
joint in flexion and reaching the target of hip joint angle at initial
contact, the iliopsoas was stimulated again after the hip joint
reached the target maximum hip flexion angle. The co-activation
of the tibialis anterior and the soleus was to prevent unstable
movements of the ankle joint at the end of swing phase.

The following five stimulation schedules were designed in
order to test design concept in the stimulation schedule A. In the
stimulation schedule B, the hamstrings were stimulated after the
ankle joint angle reached the target of maximum plantar flexion,
in order to reduce excessive knee flexion caused by simultaneous
stimulation of the hamstrings and the gastrocnemius medialis as
seen in movement developed by the stimulation schedule A Y,
We also omitted the co-activation of the tibialis anterior and the
soleus in order to test the significance of that. The stimulation
C was aimed at testing of effect of omitting the stimulation of
the gastrocnemius medialis at the beginning of control on knee
flexion. Effect of the co-activation of the vastus muscles with
the hamstrings in the knee flexion at the beginning of swing
phase was tested in the stimulation schedule D. The stimulation
schedule E was to test effect of the stimulation schedule D when
the stimulation of the soleus substituted for the gastrocnemius
medialis in inducing the ankle plantar flexion. Possibility of using
stimulation schedule based on EMG data " was tested in the

stimulation schedule F.
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2.2 Computer Simulation

We designed musculo-skeletal model for hemiplegic FES galt The
model consisted of the electrically stimulated muscle model  and
the skeletal system model. The skeletal system model consisted
of a paralysed leg and a normal leg. The paralysed leg model was
activated by the electrically stimulated muscle. Movements of the
normal leg model were simulated using the joint angle trajectories
measured from a normal subject. Parameters values of musculo-
skeletal model were obtained from literature K

Computer simulation test of the designed stimulation schedules
was performed using a set of fuzzy controllers m‘ In this test, the
cycle-to-cycle control was initiated with zero burst durations of
stimulation pulses for 200-cycles stimulation courses of swing
gait. The burst duration of the vastus muscles at the beginning
of control of stimulation (co-activation with the hamstings) of
the stimulation schedule D was determined by a ratio of it to
the stimulation burst duration of the hamstrings. We tested the
stimulation schedule D using five different burst durations of the
stimulation of the vastus muscles: 0.1, 0.2, 0.3, 0.4 and 0.5 of the

burst duration ratio. The controlled joint angles of each stimulation
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Fig.2 Trajectories of the controlled joint angles of each stimulation
schedule generated by model simulation. The measured joint angle
trajectories of the normal gait are also shown in each figure. Hip
flexion, knee flexion and ankle dorsiflexion are towards positive
angles. Hip extension, knee extension and ankle plantar flexion are
shown by negative values.
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schedule were obtained under the condition that all the controlled
joint angles reached the target joint angles (the well-controlled
gait). In case the well-controlled gait could not be reached, the
joint angles were obtained in the 200th cycle.

The controlled joint angle trajectories were evaluated by
comparing them to the joint angle trajectories of the normal gait.
Criteria of evaluation of the stimulation schedules were root-mean-
squared (RMS) error, stride length and minimum foot clearance.
The RMS error was the RMS value of difference between the
controlled joint angle generated in computer simulation and the
joint angle measured from normal subjects. The stride length was
defined as distance of horizontal displacement of the heel from the
beginning of the swing gait to the end of that. The minimum foot
clearance was defined as the minimum height of the toe during the

swing phase.

3. Results
The trajectories of the controlled joint angles of each stimulation
schedule obtained from the computer simulations are shown in

Fig.2 comparing to the joint angles measured from the normal

Normal gait pattern
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FES gait pattern
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Fig.3 Stick picture of the controlled gait pattern generated by each stimulation
schedule. The black leg in the simulated FES gait is the controlled
paralyzed swing leg and the grey leg is the normal stance leg.
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Table 1 Performance evaluation of stimulation schedule

Stimulation RMS error (deg) Stride Min foot Timing of
Schedul - - - lengih  clearance min foot
Hip Koee Akl Touwl (cn) {em) clearance (%)
angle  angle  angle
A 9.7 29 74 400 1203 20 59.4
B 19.3 6.8 11.} 312 120.3 6.0 19.0
¢ 8.1 241 8.0 40.2 120.3 0.1 39.6
D 10.2 19.4 86 38.2 120.7 2.2 381
I 6.2 16.7 10.3 33.2 1193 0.3 624
|4 274 28.8 12.2 68.1 67.3 -6.9 13.1

gait. Time was normalized to the duration of the swing gait.
Result of performance evaluation of the stimulation schedules was
summarized in Table 1. Stick pictures shown in Fig.3 represents
pattern of the FES-induced gait of each stimulation schedule and
the normal gait.

Stimulation of the hamstrings and the gastrocnemius medialis
in the stimulation schedule A caused beginning of knee flexion
earlier than the normal gait in the normalized time. However, the
stick picture in Fig.3 shows that the controlled gait pattern was not
absolutely different from the normal gait pattern. The stimulation
schedule B resulted in the gait pattern that was different from the
normal gait (Fig.3). The stimulation schedule C caused longer
stimulation of the hamstrings resulting in an early flexion of the
knee joint as shown in Fig.2 (c). Additionally, the target joint angle
of the maximum ankle plantar flexion was not realized as shown
in Fig.2 (c) and the minimum foot clearance was very small (Table
1). In case of stimulation schedule D, when the burst duration was
greater than 0.3, the number of cycle required to reach the well-
controlled gait increased. In case the burst duration ratio was 0.3
(Fig.2 (d)), the RMS error of the knee joint angle was smaller
than that of the stimulation schedule A (Table 1). The stimulation
of the soleus to induce ankle plantar flexion at the beginning of
swing phase of the stimulation schedule E resulted in very small
minimum foot clearance (Table 1). The stimulation schedule F
resulted in beginning of flexion of the hip joint earlier than the
normal gait. The knee could not reach the target of maximum knee
flexion angle (Fig.2 (f)). The gait pattern was obviously different
from the normal gait pattern (Fig.3).

4. Discussion

Considering the values of evaluation criteria, the stimulation
schedule D is preferable to other stimulation schedules. The
stimulation schedule A may also be accepted in clinical use.
The total RMS errors of both stimulation schedules were not
significantly different. The values of minimum foot clearance of
the both stimulation schedules were close to the average value
of the normal gait (2.19cm)7), If the controlled joint angles that
are highly similar to the angles of the normal gait are desirable,
modulation of stimulation pulse intensity is considered to be
an alternative. Although the gait patterns of the stimulation

schedules C and E in Fig.3 were not so far from the normal gait
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pattern, these stimulation schedules should not be used in clinical
application because the values of the minimum foot clearance
were very small. Control of FES-induced gait is not a single-
solution problem. Assessment of the controlled FES gait on the
point of view of the quality of the gait performed in this study is
one of method in evaluating the design of the stimulation schedule
for FES gait control. Two acceptable stimulation schedules were
found by the evaluation. Appropriate stimulation schedule for each
patient should be determined in clinical tests.

Combination of the information of timing pattern of muscle
activation and the knowledge about joint movements and muscle
function will be necessary in design of the stimulation schedule
for FES gait. Although the stimulation schedule F was based
on timing pattern of the EMG, the gait pattern generated by the
stimulation schedule F was far from the normal gait pattern. The
timing patterns of several muscles can be easily captured from
EMG. However, in current state of the cycle-to-cycle control,
the electrical stimulation was in fixed intensity. Furthermore, the
EMG-based stimulation schedule requires several corrections.
Kobetic and Marsolais Y reported that an initial stimulation pattern
based on the EMG pattern could not generate appropriate joint
angle trajectories. The stimulation pattern was refined through
several manual corrections during experiment. The manual
correction of the stimulation pattern during the experiment would
be burden to the patient. Although a final stimulation pattern of
one patient can be generated, the manual correction is required
when it is applied to other patient.

The co-activation of the iliopsoas, the hamstrings and the vastus
muscles was found to be effective in controlling swing phase.
Although change of timing of the stimulation of the hamstrings
in the stimulation schedule B improved the knee joint angle
trajectory, the omitted co-activation of the biceps femoris long
head and the iliopsoas at the beginning of the swing control caused
excessive hip flexion as seen in Fig.2 (b). The co-activation of the
vastus muscles and the hamstrings in the stimulation schedule D
could improve knee joint angle trajectory as seen in decreasing
of the RMS error. The stimulation of the gastrocnemius medialis
induced the ankle joint reaching the target of the maximum ankle
plantar flexion angle. However, significance of the gastrocnemius
stimulation in swing phase control is not clear yet. The results
showed that absence of the gastrocnemius medialis stimulation
and replacement of the gastrocnemius medialis stimulation with
the soleus generated the trajectory of the ankle joint that was not
significantly different from the normal gait trajectory. The absence
of the gastrocnemius medialis stimulation would not become
a severe problem in swing phase control. The co-activation of
the tibialis anterior and the soleus was found to be effective in
controlling the ankle joint at the end of the swing phase because it

increased the ankle joint stiffness. Without the co-activation of the
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tibialis anterior and the soleus in the stimulation schedules B and F,
the ankle joint angle was influenced by the hip and the knee joint
movements as seen in Figs 2 (b) and 2 (f), respectively.
Generation of the stimulation schedule for the cycle-to-cycle
control based on qualitative knowledge about the joint movements
and muscle functions is easier than the generation of stimulation
pattern through an optimization method. Yamaguchi and Zajac
? generated stimulation pattern for FES gait by a dynamic
optimization method. The optimized stimulation pattern was
tested through a computer simulation. The joint angle trajectories
generated by the optimized stimulation pattern was claimed to be
similar to the joint angle trajectories of the normal gait. However,
because of the complexity of the skeletal system model, the
optimization method for generation of the stimulation pattern for
FES gait was difficult. Additionally, the optimized stimulation
pattern would be impractical for implementing closed-loop control.
In the point of view of the simplicity of design and practicality in
the closed-loop control scheme, the knowledge based stimulation

schedule in this study is preferable.

5. Conclusions

We tested six different stimulation schedules for the cycle-to-
cycle control of swing phase of FES-induced hemiplegic gait in
the point of view of the quality of gait by computer simulation.
The acceptable stimulation schedules were found by considering
the evaluation criteria. The results showed that combination of
the information of timing pattern of muscle activation and the
knowledge about joint movements and muscle function would
be necessary in design of the stimulation schedule for FES gait.
The co-activation of the iliopsoas, the hamstrings and the vastus
muscles at the beginning of swing phase and that of the tibialis
anterior and the soleus at the end of swing phase were found to be
effective in swing phase control. Future study will be addressed
to clinical test of the acceptable stimulation schedules concluded

from the present study.
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1. Introduction

Human movements arc produced by contractions of muscles that develop cnough forces to move limbs
against the external loads. The normal muscle function requires intact connections among the CNS (central
nervous system), the spinal cord, and the muscle. Damage of the brain or spinal cord injury (SCI) interrupts the
command signal to reach the muscle. People with brain damage or SCI may have loss of motor control resulting
in loss of the functional movements in daily life such as standing, locomotion, and reaching.

In a person with paralysis. the loss of command signal from the CNS can be substituted by an artificial
electrical stimulation on the peripheral nervous system or the muscle. This clectrical stimulation acts in the same
way as electrical impulse from the CNS, resulting in muscle contractions and causing movements or sensations.
This method is called Functional Electrical Stimulation (FES), and its aim is to provide muscular contraction
and produce a functionality of useful movement [1}.

FES is an effective method for the restoration of paralyzed motor functions. Current clinical FES system in
Japan has adopted open-loop control that uses multichannel stimulation data. The stimulation data are created
from electromyogram (EMG) signal measured from neurologically intact subjects. This method is an effective
and practical method for clinical applications. The multichannel open-loop control system, however, is desired
to be improved in stability and safety of FES induced motions.

The human movements induced by FES require the appropriate control method that can restore the desired
functional movements. However, controlling the FES-induced human movements is difficult and complex due
to the non-linearity of neuro-muscular system response, variability of response of the stimulated muscle,
significant time delay, and muscle fatigue.

Research work on development of FES controller or control method is usually performed with neurologically
intact subjects and/or motor disabled patients in order to examine the controlier or the control method. However,
the burden to the subjects and low reproducibility arc common problems of these FES studies.

In our research group, a musculoskeletal model of the upper limb was constructed for the purpose of using in
FES research work. Fig.1 shows the outline of the musculoskeletal model. The muscle model consists of the Hill
type contractile element and a passive viscoclastic clement. Nonlinear characteristics such as recruitment
property, length-force relationship, velocity-force relationship and moment arm were described in the model.
This model was examined by comparing computer simulation results of closed-loop control of the wrist joint
with those on neurologically intact subjects. The simulation results were found to be similar to experimental
results in many ways.

The problems on developing FES controller can be partially solved by using a musculoskeletal model. We are
developing the computer simulation tool including musculoskeletal model, especially for development of more
effective controller for upper limb movement.

2. Problems in current computer simulation study

The musculoskeletal model constructed in our group can be usetul tool to study FES control method.
However, it is necessary to set parameter values of muscle propertics, joint characteristics and cxperimental
conditions for numerical computation. Using the musculoskeletal model, activation torque and viscoelastic
torque arc calculated, and then the motion equation is solved. Only the numerical data that indicate joint angles
as response to stimulation are obtained by the current simulation system. Therefore it is required 10 plot a graph
of joint angles as the function of time or stimulation intensity. Parameters of the muscuioskeletal model and FES
controller are modified based on simulation results. Then, the computer simulation program is run again. This is
inefficient and laborious work.

Additionally, the current simulation system has motion equation for only 4 degrees of freedom of movement.
It simulates flexion/extension of the clbow joint, pronation/supination of the forearm, radial/ulnar flexion and
palmar/dorsi flexion of the wrist joint. But it makes no account of internal/external rotation of the humerus,
flexion/extension and adduction/abduction of the shoulder joint. There is no problem for simulation in case of
control of 2 degrees of freedom of movement for wrist joint. However, the motion equation for 7 degrees of
freedom of movement is required il it is needed to simulate control of movement including the elbow joint.



4. Development of computer simulation tools

In order to overcome above problems, we improved computer simulation program by including GUI
(graphical user interface) and the motion equation for 7 degrees of freedom of movement. This simulation tool
can simulate movement of shoulder joint and it doesn’t outputs only numerical data, but also graphic views.
Fig.2 indicates an example of the screen image of simulation tool. As shown in this figure, the simulation tool
solves the motion equation drawing graphs of joint angles as the function of stimulation intensity. Therefore we
can get image of joint angle trajectory easily. Additionally, model parameter values can be changed easily by
using the developed GUI in real-time. This function makes it casy to perform various conditions of model
simulation eliminating repeated trials for manual parameter tuning.

Furthermore, this simulation tool was modified to calculate angles of rotation of the humerus, extension/
flexion and adduction/abduction of the shoulder joint by using motion equation for 7 degrees of freedom of
movement. It is very important to study control method of movement of multi degrees of freedom including
movement of the elbow joint.

5. Future directions

Using the previous musculoskeletal model, applications of the feedback error learning (FEL) and fuzzy
control to FES control have also been discussed [2][3]. These controllers will be examined to develop a
controller for 4 degrees of freedom of movements in computer simulations with the developed simulation tool.
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