1993). In SMCs, TGF-B is known to inhibit proliferation induced by growth
factors (Owens et al. 1988). As described above, TGF-B also shows a potent
matrix-depositing activity in the vascular wall. These biological properties of
TGF-B seem to affect each step of atherogenesis in a favorable manner to give a
stable plaque phenotype rich in matrix with limited accumulation of
inflammatory cells.

In wvivo experimental results support the anti-atherogenic or
plaque-stabilizing function of TGF-B. Mice heterozygous for TGF-Bl gene
showed endothelial activation and lipid lesion formation, when fed on high fat
diet (Grainger et al. 2000). Inactivation of TGF-f signal by systemic
administration of neutralizing antibody or soluble TR-II in
atherosclerosis-prone apoE-knockout mice resulted in vascular lesions with a
higher ratio of inflammatory cells and reduced fibrosis compared to the controls
“(Lutgens E et al. 2002, Mallat et al. 2001). Conversely, treatment with an
anti-estrogen tamoxifen increased serum TGF- B levels and suppressed the
formation of aortic lesions in mice (Grainger et al. 1995b). More recently, it was
shown that dominant-negative T BR-II specifically expressed in T-cells to
abrogate TGF-p signaling gave “unstable-like” plaque phenotype in both apoE-
and LDL receptor-knockout mice (Gojova et al. 2003, Robertson et al. 2003). The
results indicate the prominent role of TGF-p function in T-cells for its
anti-atherosclerotic activity.

These findings are in line with clinical observations that low blood levels
of active TGF- B associates with the severity of vascular disease, suggesting a
protective effect of TGF- B against atherosclerosis in human (Grainger et al.

1995a, Stefoni et al. 2002). Altogether, TGF-B seems to have plaque-stabilizing
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potential in general. But when excessively activated, such as upon vascular
injury, it may facilitate restenosis through accumulation of matrix and

constrictive remodeling.

Disruption of Smad3-dependent TGF-f signal enhances neointimal
hyperplasia with reduced matrix deposition upon vascular injury

In contrast to the accumulating knowledge on the role of TGF-§ in restenosis
and atherosclerosis, the precise function of individual signaling molecules for
TGF-B in vascular disease remains unclear. Therefore, we examined the mice
null for Smad3 in vivo and in vitro to clarify the function of Smad3-dependent
signaling in vascular response to injury (Kobayashi et al. 2005).

Femoral arteries of Smad3-null mice showed significant enhancement of
neointimal hyperplasia compared to those of wild-type mice (Fig 34, B) upon
endothelial injury by photochemically-induced thrombosis method.
Immunohistochemical examination revealed that neointima was exclusively
composed of SMCs. Transplantation of Smad3-null bone marrow to wild-type
mice did not enhance neointimal thickening, suggesting that vascular cells in
situ play a major role in the response. Smad3-null neointima compared to
wild-type showed a higher cell density with increased proliferative activity of
SMCs. On the other hand, Masson’s trichrome staining revealed significantly
reduced extracellular collagen accumulation relative to total intimal area in
Smad3-null artery (Fig.3C, D). These findings suggest that Smad3-deficiency
causes neointimal lesions rich in SMC but scarce in matrix upon vascular injury.

In vitro, TGF-B inhibited serum-stimulated DNA synthesis of wild-type

aortic SMCs with the maximal inhibition of 70%. However, growth of
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Smad3-null SMCs was only weakly inhibited by TGF-B, indicating an essential
role of Smad3 in TGF-p-mediated growth inhibition of vascular SMCs as
reported in other cell types (Ashcroft et al. 1999, Datto et al. 1999). Unexpectedly,
Smad3-null SMCs dose-dependently migrated towards TGF-B at least to a
similar extent as wild-type cells, suggesting that non-Smad3 signal mediates
TGF-B-induced chemotaxis in murine vascular SMCs. The finding differs from
the previous report demonstrating an indispensable role of Smad3 in migration
of monocytes and neutrophils towards TGF-Bby (Aschcroft et al. 1999). In
terms of matrix regulation, TGF- B increased the transcript levels of a2 type I
collagen and tissue inhibitor of metalloproteinases-1, but suppressed expression
and activity of MMPs in wild-type SMCs. In Smad3-null SMCs, TGF-p was
inefficient in inducing collagen or suppressing MMPs giving a possible

explanation for reduced extracellular matrix in Smad3-null neointima in vivo.

Role of endogenous Smad3 in vascular homeostasis: limiting neointiméxl
hyperplasia?

Fig. 4 illustrates the possible mechanism underlying the enhanced neointimal
hyperplasia in Smad3-null mice. Upon endothelial injury in the wild-type
artery, endogenous Smad3 allows TGF- to elicit growth inhibitory effect on
intimal SMCs and to promote extracellular matrix accumulation, resulting in
“healing” of vascular lesions with modest intimal thickening (Fig. 4A). When
Smad3 is absent (Fig. 4B), SMCs are largely resistant to growth mhibitory
control by TGF-B and thus undergo increased proliferation. On the other hand,
impaired collagen synthesis as well as overall upregulation of matrix-degrading

activity by TGF-B leads to reduced amount of matrix in the intima of



Smad3-null arteries. Degradation of matrix scaffold by MMPs enables cell
movement and tissue reorganization (Lijnen et al. 1999, Galis and Khatri 2002).
As mentioned earlier, the migratory capacity towards TGF-p is preserved in
Smad3-null SMCs. Therefore, inability of TGF-p to suppress MMPs in null cells
may facilitate migration from media to intima in vivo allowing further
accumulation SMCs in intima. Moreover, since Smad3 is known to mediate
anti-inflammatory activity of TGF-B in SMCs (Feinberg et al. 2004), activation of
inflammatory genes in Smad3-null SMCs may also contribute to the accelerated
neointimal formation.

Taken the results together, endogenous Smad3 is likely to have an effect to
to limit the extent of neointimal hyperplasia through modulation of SMC

functions in the process of restenotic vascular response.

Future perspectives
As described earlier, TGE-p ligand itself promotes intimal thickening in balloon
injury models. Our findings that targeted deletion of Smad3, a major signal
mediator of TGF-B, accelerates neointimal formation appear inconsistent with
those observation on TGF-B. A possible explanation would be that our model
differs from any other previous ones in the point it lacks Smad3 but not other
TGE-p signal components. Non-Smad3 signals, such as MAP kinases, may act
promotive on the lesion formation in vascular injury model (Fig. 5A). Although
unlikely, difference in the method of endothelial injury, either balloon or
thrombotic, should also be considered.

Finally, mice in which both the Smad3 and ApoE genes have been deleted

show marked enhancement of atheromatous lesion resembling “unstable



plaque” compared to single ApoE knockout mice (Kobayashi et al. unpublished
observation). Therefore, in this hypercholesterolemia model of atherosclerosis,
Smad3 seems to at least in part mediate protective function of TGF-f (Fig. 5B).
Asjudged from the results of Smad3-null mice, Smad3 plays a protective role in
both injury/restenosis and hypercholesterolemia/atherosclerosis models. From a
therapeutic point of view, it is of interest to know whether specific potentiation
of Smad3 activity in the vascular wall leads to amelioration of neointimal

hyperplasia and atheromatous lesions.
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Figure Legends

Figure 1. Schematic illustration of intracellular signal transduction pathways by
TGF-B. Upon ligand-induced heteromeric complex formation and activation of
type I and type II receptors, cytoplasmic signal transducers Smad2 and Smad3,
classified as so-called receptor-activated Smads (R-Smad) are phosphorylated
and heteroligomerize with Smad4, a common mediator Smad. The complex
then translocate into to the nucleus, where it regulates expression of target
genes. Smad? binds to type I receptor, interferes with the phosphorylation of
R-Smad and results in suppression of the signaling. Non-Smad signaling
pathways, indicated as a broken arrow, are also reported. P indicates

phosphorylated serine/threonine residues.

- Figure 2. Major steps in atherosclerotic lesion formation and the putative effects
of TGF-B on the each step. Both in vitro and in vivo evidence suggests that TGF-3
inhibits activation of endothelial cells and intimal accumulation of
inflammatory cells and smooth muscle cells. On the other hand, TGF-8

promotes deposition of extracellular matrix.

Figure 3. Enhanced neointimal hyperplasia and reduced matrix deposition in
the arteries of Smad3-null mice upon injury. Photomicrographs showing
representative cross sections of hematoxylin/eosin-stained (A, B) and Masson’s
trichrome-stained (C, D) femoral arteries from wild-type (A, C) and Smad3-null
(B, D) mice 3 weeks after endothelial injury by photochemically-induced

thrombosis method. L, vascular lumen. Arrows indicate the positions of the

N
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internal elastic lamina. Original magnification x200; bar = 50pm. (Reproduced
with permission from Kobayashi et al. 2005, pp. 906 and 909, Copyright 2005,

Lippincott Williams & Wilkins.)

Figure 4. Possible mechanism of enhanced intimal hyperplasia in the artery of
Smad3-null mice after injury. In the presence of endogenous Smad3 (A), TGF-3
inhibits intimal smooth muscle cell growth and induces deposition of matrix,
modestly limiting the intimal thickening. In lack of Smad3 (B), intimal smooth
muscle cells are resistant to growth inhibition by TGF-f. Increased proliferation
of smooth muscle cells leads to enhanced intimal hyperplasia. Reduced matrix
scaffold may also facilitate migration of smooth muscle cells from the medial

layer.

Figure 5. Putative role of Smad3 in two distinct models of vascular disease.

A, In endothelial injury model, Smad3 has an inhibitory effect on formation of
neointimal hyperplasia. The effect of TGF-B to promote neointimal hyperplasia
is likely to be mediated by non-Smad3 signal. B, In hypercholesterolemia model,

Smad3 at least in part mediates the anti-atherogenic function of TGF-p.
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