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Table 3. Patients’ intrafraction isocenter motion discrepancy for repositioned sessions

Left-right Caudal-cranial Posterior-anterior
Mean Mean Mean
Patient Range magnitude  SD Range magnitade  SD Range magnitude  SD
(mm) (mm) (mm)
1 {-1.4to 4.4} 0.54 1.2 {-3.0to0 1.3} 0.83 1.1 {-3.0 t0 5.0} 2.00 2.1
2 {-0.2t0 2.4} 0.68 0.9 {-7.5t0 1.4} 222 3.1 {-4.9 t0 3.9} 2.50 32
3 {-1.9t0 0.2} 0.51 0.7 {-2.3t0 0.4} 1.17 1.1 {-1.3t02.1} 0.81 1.0
4 {-1.2t0 0.8} 0.58 0.7 {-0.6t0 2.1} 1.00 0.8 {-3.2t0 1.9} 1.31 1.7
5 {-1.4t0 1.2} 0.51 0.7 {-2.1to 1.6} 1.17 1.2 {-1.5t02.5} 1.12 1.3
6 {-0.4 t0 0.0} 0.20 0.2 {1.0to 1.1} 1.05 0.0 {0.5t00.7} 0.60 0.1
7 {-0.5t0 0.7} 0.38 0.4 {-2.7 t0 0.3} 1.43 0.9 {—2.0t0 1.1} 1.28 0.8
8 {-0.4 t0 0.7} 0.26 0.2 {—2.2t0 0.9} 0.66 0.7 {-2.0t0 0.9} 1.33 0.3
all {-19to 4.4} 0.45 0.7 {-7.5t02.1} 1.08 1.38 {-4.9 10 5.0} 1.45 1.7

Abbreviations: (mm) = millimeter; SD = standard deviation; negative range values indicating shifts to the left (X), inferior (Y), or

posterior (Z) directions. Range values are given in millimeters.

Intrafraction isocenter displacement frequency
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Fig. 3. Distribution of marker’s coordinate
shifts relative to prescribed isocenter position.
Values in brackets are given in millimeters
(mm); positive values and values with negative
sign (=) refer to a shift towards the right,
superior, and anterior for positive values, and
left, inferior, and posterior for negative
directions; “off-range” discrepancies in more
than one axis, as registered by the DFFP
system, are also plotted.

C-C, and A-P directions, respectively. Extreme
maximums (*directions) and mean absolute values of
discrepancy are presented in Table 3.

The overall mean magnitude of intrafraction marker
shifts +SD was 0.45+0.7 mm, 1.08+1.38 mm, and
1.45+1.7 mm in the R-L, C-C, and A-P directions,
respectively. The SD of target discrepancy ranged from
0.2 to 1.2 mm in the R-L direction, 0 to 3.1 mm in the
C-C direction, and 0.1 to 3.2 mm in the A-P direction.
The O-R marker shift frequency was found to be higher
towards the C-C and A-P directions, as seen in >90% of
repositioned fractions (Fig. 3). The frequency of O-R
marker shifts by axis was 9.52%, 42.85%, and 61.90%
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in the R-L, C-C, and A-P directions, respectively. These
results were derived from the registration of
simultaneous O-R shifts in more than one axis at the
same time (23%) for the repositioned fractions. The
lateral axis was found to be fairly stable during most of
the treatment sessions.

The actual marker discrepancy values [median
(range)] under which treatment was delivered were 0.1
mm (—1.2-0.7 mm), —-0.2 mm (-2.1-1.1 mm), and —0.2
mm (—1.7-2.0 mm) for the R-L,, C-C, and A-P directions,
respectively. As calculated regardless of the sign, the
mean absolute values were 0.3 mm, 0.4 mm, and 0.44
mm for the R-L, C-C, and A-P directions, respectively.
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Fig. 4. Comparison of distributions (mean with extremes) of the isocenter displacements by axis from the start of treatment to “off-
range” marker position, (¢, a) and the effect of the image-guided reposition protocol (>, b). The latter corresponds to the actual
organ motion under which radiation was delivered, including after last field marker distributions, for intratreatment repositioned

sessions. All dimensions are in millimeters.

The intrafraction “repositioning” method was used
only one time in >95% of fractions. None of the treatment
fractions required repositioning more than twice.

Post-treatment organ motion j

Overall distribution plots of the intrafractional error
and target location after repositioning was performed
during delivery are displayed in Fig. 4, with error bars
indicating maximum movement. At treatment
completion, O-R coordinates were seen in 29.9% of all
fractions (64/214); this included “non-repositioned”
fractions, where the majority of shifts were registered:
22.9%, compared with 7% for the repositioned ones.
The mean®SD of marker discrepancy for after last field
delivery relative to the system isocenter position was
0.02£0.44 mm, —0.14%0.55 mm, and —0.16%£0.53 mm
in the R-L, C-C, and A-P directions, respectively. All
isocenter shifts registered at post-treatment were seen
toward both directional components (£). Even though
displacements were encountered, they were small in
magnitude. Comparable distribution patterns were seen
for all patients in this study.

The overall fraction delivery time from setup start to
the last field delivered was calculated to be 15%3
minutes, with a tendency to decrease with the amount
of treatment experience of the patients and staff.

Discussion

This report presents the measurement and evaluation of
inter- and intrafraction organ motion based on a newly
developed on-board imaging system capable of KV
registration of GS, implanted as fiducial markers, into
the prostate. The accuracy of the system was sufficient
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to assess treatment location errors and allow error
corrections. This approach was clinically implemented
along with intensity modulated radiation therapy (a tool
that provides power to establish and manipulate
dissymmetric gradients). The seed implantation
procedure was determinant and clinically feasible
without any complication or toxicity. Similar methods
have been used and reported by Sandler er al.,* Murphy
et al.,** and Shipley.** ,

For over a decade, efforts to reproduce normal tissues,
bone anatomy, and artifact images (fiducial markers)
for precise guidance of beam alignment have been made
using MV imaging on flat panels and KV sources, the
latter having been integrated into the linear acceler-
ator.*?7 Research results of both approaches clearly
show superior performance of KV images in terms of
signal-to-noise ratio versus dose, on the flat panel
imager, as reported by Groh er al.*® Another advantage
is that less energy is required to visualize such structures.

The introduction of this on-board imaging system to
clinics was to substantially “abolish” systematic and
random error associated with daily positioning and
intratreatment. Our system integrates a flat panel detector
of 17.9x23.8 cm with dual x-ray sources capable of KV.
Previous studies have ascertained the accuracy and
stability of this system after software compensation.?®?
While technical considerations and QA/QC are strictly
controlled, the time exposure to X-rays is considered
limited and practically similar or less than other methods
used®* because of low time exposure. Recently, Jaffray
et al.*! integrated a larger-area flat panel detector on a
Linac for fluoroscopy, radiography and cone-beam
volumetric CT; this technology has been introduced into
clinical use, as outlined by Uematsu ef al.*
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It must be pointed out that image-guided radiation
therapy (IGRT) requires the selection of appropriate
target-volume margins and automatized documentation
software, among others.

We observed that the patient immobilization method
may have a positive impact on patient setup stability
and intrafraction motion task; the condition of rectum
and bladder filling also plays a protagonistic role that
needs to be considered because of its anatomical geo-
metric inconsistency. Nevertheless, this consideration
is less imperative when using on-line image-guided
technology.

Adequate tumor coverage will depend not only on
the immobilization of patients and large “safety” margins
used for PTV but also on the reproducibility of
intratreatment verification techniques, with the concept
of IGRT.

A variety of approaches has been used in regard to
the necessity of maintaining the prostate under the
desired prescribed dose. In a report of a study involving
772 prostate cancer patients, Teh ef al.** found that in
the postoperative pathological findings of the radial
distance of extracapsular extension, a 5 mm margin
would provide sufficient coverage of the tumor volume,
especially in the setting of IMRT treatment.

The patient’s daily setup and intrafractional positional
verification displacements relative to the system
isocenter can be corrected for optimal radiation treatment
complemented with a strict allowance for organ shift.
Innovative strategies tend to minimize variability in
organ motion through techniques implemented in linear
accelerators or in treatment rooms. Shimizu et al."” used
a set of four diagnostic x-ray sources and a TV system
as the prototype for tracking a GS implanted in 10
prostate tumors and five bladder tumors, intending to
remove all intrafractional dislocations. In that study
organ motion was found have median absolute values
of 0.6 mm, 0.85 mm, and 0.7 mm for the R-L,, C-C, and
A-P directions, respectively. In our present study, marker
coordinate registration, done after every field, showed
mean absolute values in the range of 0.45 mm, 1.45 mm,
and 1.08 mm in the R-L, C-C, and A-P directions,
respectively. Both studies showed larger organ shifts
towards the caudal direction. In our opinion, results
obtained by the intrafraction repositioning method
represent the most realistic parameters of organ motion.

Another technique that has been suggested recently
is a US-based daily positional verification of prostate
gland position, as reported by different authors.!%!" 114
Morr et al.'? reported patient setup average adjustments
of 2.6£2.1 mm, 4.2+2.8 mm, and 4.7+2.7 mm in the
R-L, C-C, and A-P axis, respectively. A study from
Huang et al.'® involving 20 patients, showed an intra-
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fraction mean magnitude of shift (£SD) of 0.01+0.4
mm, 0.1+1.0 mm, and 0.2+ 1.3 mm in the R-L, C-C,
and A-P directions, respectively. A more recent study
using US-based daily prostate localization in 17 patients
showed an interfraction overall mean target shift of 0.5-
0.7 mm in all directions.'' Compared to our study, their
accuracy was limited to a set of conditions including
good bladder filling, radiotherapist experience, and the
amount of planner pressure against the patient’s
abdominal wall. As can be seen by comparing the motion
data from our study and the US study, organ motion in
our investigation was considerably less. Nederveen er
al.* reported a study of 10 prostate cancer patients’
intrafraction motion data using an implanted gold marker
in the prostate and registered by movie during each
fraction. Their findings differed from ours in that the
tendency of motion was to the posterior direction;
instead, our data pointed to a tendency to shift in the
caudal direction. Nevertheless, we cannot ignore the fact
that displacements in the posterior axis were registered
as well.

Motion error can be corrected satisfactorily, as
presented here, with actual translation ranges that are,
to our knowledge, among the lowest to have been
reported in this area of research.

The major shift concern relies on seed migration; we
studied the influence of seed migration and found it to
be present within a range of 0-1.2 mm as measured by
an algebraic calculation among distances between each
of the three GS’ coordinates (data not shown). Seed
migration has already been reported elsewhere' and
found to be about 1 mm. Nonetheless, some extra sources
of uncertainty could arise owing to differences in the
size, shape, or method of insertion of the fiducial
markers. :

A time-trend organ motion measurement study,
during the intrafractional period, showed higher shifts
to the caudal and posterior directions, with a tendency
to remain constant by the end of the treatment." In our
study, a similar pattern was seen for both the repositioned
and non-repositioned patients. We also found low
variation in mean isocenter shifts following the last
radiation field delivery (after Field V). Even though the
end of treatment involves certain systematic error
considerations like the influence of rectum and bladder
filing, the lesser motion seen could indicate an advantage
of the initial patient immobilization approach, the
hollow-volume condition considerations (rectum/
bladder), or the repositioning approach.

The influence of hollow organs on organ motion has
been reported through different imaging approaches,
some favoring the increase in translations of the
prostate® or showing low influence in motion.* Yeoh et
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al.*® found that a low systematic influence of rectum fill
on target translations was caused by incontinence
induced by the irradiation of rectal tissues. Our assump-
tion that a possible cause might be the patient’s sensing
the end of treatment has yet to be objectively analyzed.

We have shown that irradiation for moving targets,
like the prostate, highlights the need to use imaging tools,
like the DFFP system, to avoid inter- intrafraction-
induced geometrical target misses. We found that during
treatment, 60.7% of prostate organ motion was <X 1 mm
and in 3.5% >3 mm; thus, when using a repositioning
method, 99% of all treatment fractions (including those
after last field position) was delivered within 2 mm of
the planned high dose distribution area.

The management of treatment planning margins
(CTV/PTV) has been widely overlooked. In the case of
PTYV size (balance between permissible dose to OAR
and targeting accuracy), the probability of coverage
based on standard deviation calculation methods*’ and
other advanced methods incorporating the geometry of
tumors near beam edges*® or a combination of setup
systematic with random error,*-3! have been formulated
as “recipes” for sculpting these global margins. These
theoretical calculation methods can help to accomplish
treatment for advanced localized peripherally located
tumors or groups of patients with extreme prostate size.
With a generalized strategy, parts of critical structures
may be involved unnecessarily. For this reason, other
practical methods like our image-guiding system may
become suitable for better target coverage and the
reduction of interfraction or intrafraction organ motion.

For a dose-escalation protocol using the IMRT
approach, accounting accurately for motion errors
through automatic image-processing tools, would avoid
the use of wide PTV margins since the markers used are
easily registered and target repositions can be made at
any time during the treatment course.

In general, prostate treatment encompasses many
sources of geographical target misses and, even with
new planning technologies (requiring numerous steps)
or sophisticated imaging tools, solutions for all motion
errors have yet to be found.

CoNCLUSION

Sources of motion uncertainty during high dose radiation
therapy for localized prostate cancer were considerably
diminished in this study as a result of the use of a
promising new technology that has been clinically
implemented on a daily basis. Positional corrections of
intra-organ GS is feasible, and traditional wider margins
for PTV may be unnecessary. This implies potential
advancement for safer escalation of doses and better
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quality of life owing to the possibility of fewer radiation
complications. In addition, long-term toxicities, clinical
outcomes, and effects from time exposure to radiation
need to be clearly established.
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VARIATIONS IN VOLUME AND SPATIAL DISTRIBUTION OF CONTOUR
DELINEATION ON GTV AMONG DIFFERENT FACILITIES

Satoshi SEKT*!, Hossain M DELOAR™ *2, Etsuo KUNIEDA™, Kunihiko TATEOKA™,
Masato HAREYAMA™, Kenji TAKAYAMA™, Tomoki KIMURA™®,
Takafumi KOMIYAMA™, Yuzuru NIBE™, Katsuyuki KARASAWA™, Atsushi KUBO™

(Received 2, December 2004, accepted 24 February 2005)

Abstract: Purpose: To verify operator-based contour delineation on GTV (Gross Tumor Volume) among
different facilities using radiotherapy planning systems (RTPS), and to compare their results in terms of
volume and spatial distribution. '

Method: GTV outlines were delineated for two pulmonary carcinoma (T1NOMO) cases in six radiation therapy
facilities using the Radiotherapy Treatment Planning System (RTPS) capability of each facility. Image sizes
and resolutions were different among each facility. Therefore, helped by anatomical landmarks, the tumor
and surrounding regions were excised using sequential CT images in order to standardize all of the images to
equal size (500X 500 pixels) and position. Image magnifications (pixels/mm) was calculated from the image
scale shown on the RTPS. A summation of the GTV areas for each section were calculated and multiplied by
the slice thickness to obtain the calculated-value of GTV (GTVe). GTV images were analyzed to study
differences in GTV among the various facilities. The mean and variance of the GTV images for all the
facilities were obtained.

Result: The GTVc values were 7.00.7 ml (case 1) and 12.31.8 ml (case 2). The values obtained directly
from RTPS (GTVr) were 7.00.7 ml and 12.121.7 ml, respectively. Differences were seen among the
volumes and spatial distributions of GTV. Variation of the image in case 2 indicated that GTV differences
were large where the bronchus and the vessels were close to the tumor.

Conclusion: Image areas that overlap vascular structures tend to indicate relatively large variations in GTV.

BMUERRE T Jpn Soc Ther Radiol. Oncol 17; 25-30. 2005

Key words: Lung cancer, Stereatactic radiotherapy, Delineation, Inter-clinician variability
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Fig. 1a Ajustment of image size.

From the image of RTP the region in the tumor is cut out based on an anatomical
index, then adjusted the size of the image becomes equal.

.
Volume = Z Aix T

=]

Volume: GTV volume calculated from the GTV images.
Ai : the area of the GTV image at CT-slice 1",
Ti : the thickness of the GTV image at CT slice 4"

Fig. 1b

The volume of GTV was calculated from the area of sequential GTV images.
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GTVIERERE D AT Wzt L. % nEN Fig. 2a Comparison of GTV volumes (GTVr, GTVc) among institutions.
OEERF LT R GTVr: GTV volume obtained from RTPS
GTVe: GTV volume calculated from the GTV images
1 & |
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N =
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Case 1 Mean Image Case 1 Variation Image

Fig. 3 Mean and Variation image (case 1).

Case 2 Mean Image Case 2 Variation Image

Fig. 4 Mean and Variation Image (case 2).

Case 1 CT image Case 2 GTV Variation Image
Variation of GTV is large in the position of the bronchus in Case 2.

Fig. 5 GTV counter and Variation Imgae.
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Small Lung Tumors:
Long-Scan-Time CT for
Planning of Hypofractionated
Stereotactic Radiation

T herapy—lnitial Findings"

PURPOSE: To prospectrvely use long-scan tlme
,vrsuahze the trajectory of tumor movements or the 1nternal targe volume

: board Written mformed consent was obtained from partncrpants after t e
the role of procedures were explamed fully Dunng the plannmg _of_stere acti
& woman; mean ade, year:
‘range, 69-89 years) with: small Iung tumors mean volume, 9.0 ¢
3. 6~24 9 cm?3), fluoroscopic imaging, Iong-scan-tlme:CT
performed The tumor and the partial-volume- averaging effect, that
tumor moverment were dehneated on each section at long-scan-ti
during the . pat|ents steady ‘breathing with scan t me ‘of 8.
‘Visualized internal target volume was defined. by integrating th
model was examined for estxmatmg internal: target volume on the basis 0 espira
“toty motion and gross target v voluime delineated on th , ] is
ized internal target volume and estimated mternvalrtarget volume e G
quantitatively and : graphrcally The Mann-Whit NS d Q. an"
relation between gross. farget: volume dehneated onth (
ratro of wsuahzed mternal targe 'Volume to the def'ned C

‘RESULTS The correlation coeﬁlcrent betWeen sualizeo

- “estimated internal target volume was r = 0.98 ( 01
standard deviation was 1.9% *+.19. 0 (range; —11 0% 0 5

" with-an irregularly shaped tumor (56.4%), the mean relative el
pattents with small turmors (deﬁned gross target volu
-vistalized internal target volume to the defined.gross tumor
larger than that in patients with Iarger tumors (1 2f2.0 vs .
cases in which marglnal splculatlon deprcted on thin: ectron !

longsscan-time CT rmages the blurred area was err"" [<1 sly exc,
VOIume S

CONCLUSION ln most cases values formsua,rze_ I
estimated internal target volume were. SImllar and long:scan-time CT de
vrrtually the entire tumor tra;ectory
@RSNA 2005: ey s S

Stereotactic radiosurgery performed by delivering a hi gh dose of concentrated gamma rays
or x-rays is one of the major strategies for treating intracranial lesions, and favorable results
with fractionated stereotactic radiation therapy have been reported for some malignant
and benign tumors (1,2). Hypofractionated stereotactic radiation therapy (ie, radiation
therapy administered in a small number of dose fractions) has been applied to treat
extracranial lesions as well (3-7). In a preliminary report (7), excellent results were
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reported, including a local control rate of
94% and a 3-year cause-specific survival
of 88%, after body stereotactic radiation
therapy with a dose of 50 Gy adminis-
tered in five fractions in patients with
early-stage primary lung cancer.

For successful treatment with stereo-
tactic radiation therapy, it is crucial to
obtain accurate information about the
tumor position and potential range of
movement, since a concentration of
beams from several different directions
delivers a very high dose to the target
volume, whereas there is a steep decrease
in dose at the margins of the targeted
area (8). Stereotactic radiation therapy
for lung lesions, unlike stereotactic irra-
diatjon for intracranial lesions, entails in-
evitable problems, such as movement of
the target because of respiratory and car-
diac motion. In particular, respiration-re-
lated movement, which is often greater
than 1 oam, is clinically important for
lung stereotactic radiation therapy, since
the diameter of lung lesions treated with
this method is typically less than 4 cm.

The conventional method for plan-
ning radiation therapy of small lung tu-
mors usually involves the use of CT and,
if required, fluoroscopy to visualize the
respiration-related movement of the le-

sion. More specifically, we convention-’

ally obtain the gross tumor volume mea-
surements with CT while the patient per-
forms breath holding after inhalation, a
method that does not allow tumor move-
ment to be taken into account. Tumor
movement in the cranjocaudal direction
during breathing is observed with fluo-
roscopy in the anteroposterior view, and,
finally, the degree of tumor movement is
added as an internal margin to the gross
tumor volume to obtain the internal tat-
get volume.

The addition of the internal margin to
the gross tumor volume is difficult, how-
ever, because the internal margin is not
visible on CT images obtained with
breath holding. If too narrow an internal
margin is applied so as to reduce the ad-
verse effects of radiation therapy, the
dose distribution might be too restricted
to compensate for tumor movemennt.
Equally, if too wide a margin is used, the
increased size of the target volume might
result in an increased risk for radiation-
induced injury to normal tissue. More-
over, it is virtually impossible to evaluate
three-dimensional movement of the tu-
mor with fluoroscopy.

To visualize the internal target volume
for planning of stereotactic radiation
therapy in lung tumors, we therefore
used Jong-scan-time CT. Our hypothesis
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was that it would be possible to use long-
scan-time CT to demonstrate a major
part of the trajectory of tumor movement
due to respiration and other factors. This
hypothesis was based on the longer du-
ration of scanning with this method, in
comparison with scan time at conven-
tional CT. If our hypothesis was correct,
the internal target volume would be de-
picted by using long-scan-time CT, and
we expected this method to facilitate the
strajightforward delineation of the plan-
ning target volume by adding an ade-
quate macgin to the visualized internal
target volume (Fig 1).

Thus, the purpose of our study was to
prospectively use long-scan-time CT to
define the trajectory of tumor move-
ment, or the internal target volume.

MATERIALS AND METHODS

Patients

Ten patients with small lung tumors
(<4 om in diameter) were recruited for
the study between December 2001 and
July 2002. Nine men and one woman
with a mean age of 77 years (range,
69-89 years) were included. The tumors
consisted of eight primary lung cancers
and two solitary pulmonary metastases.
Patients with primary lung cancer had no
evidence of metastasis to regional lymph
nodes or of distant metastasis. Those
with pulmonary metastasis had no evi-
dence of other metastases, and the pri-
mary lesions were controlled. The mean
tumor volume was 9.0 cm?® (range, 3.6~
24.9 cm?). A diagram of tumor locations
in the lung of individual patients is
shown in Figure 2. The study was ap-
proved by the institutional review board.
Written informed consent was obtained
from each participant after the study and
role of the procedures had been fully ex-
plained.

Fluoroscopic Measurement and CT
Imaging

An integrated radiation therapy simu-
lator equipped with a fluoroscopic unit
(KX0O-50 N; Toshiba, Tokyo, Japan), and
a single-detector row CT scanner (X Vi-
gour; Toshiba), were used in this study.
Patients were instructed to breathe shal-
lowly and evenly when undergoing fluo-
roscopic imaging and long-scan-time CT.
If breathing-related tumor movement on
anteroposterior fluoroscopic scout im-
ages was greater than 1 cm, a corset was
used to restrict the patient’s abdomen
and reduce diaphragmatic movement.
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Figure 1. Left: Diagram of standard treat-
ment planning method based on gross tumor
volume (GTV) defined with breath-hold thin-
section CT. With this method, the range of
tumor motion is depicted only in the cranio-
caudal direction, and the internal margin (M)
is used to define the internal target volume
(ITV). Right: Diagram of alternative planning
method in which the internal target volume,
including the internal margin, is determined
directly with long-scan-time CT. The setup
margin (SM) is added to the internal tacget
volume in order to define the planning target
volume (PTV).

Figure 2. Diagram shows location of lung tu-
mor in each patient. Circled numbers repre-
sent the patient numbers (Table).

Then fluoroscopy was performed with a
source-to-tumor distance of 100 cm, and
breathing-associated tumor movement
in the craniocaudal direction was mea-
sured by a radiation oncologist (A.T.) us-
ing a ruler installed on the fluoroscopic
unit. All the tumors were depicted at flu-
oroscopy.

Long-scan-time CT was performed to
enable visualization of the tumor within
its entire trajectory during breathing-re-
lated movement (scan length, approxi-
mately 20 mum). A section thickness of 2
mm (120 kVp, 400 mAs) and scan time of
8 seconds per section were used; this pe-
riod exceeded the duration of one respi-
ratory cycle in all patients. Conventional
thin-section CT was performed with pa-
tient breath holding, section thickness of
2 mm (pitch of 1, 120 kVp, 200 mAs),
and scan time of 1 second per section.
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