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this ratio (>20% tumor DNA), LOH was detected with
every SNP. Even at a 10% mixing ratio, LOH was still
detectable for 10 of 22 SNPs (46%). These results indicate
that the LOQUS assay can tolerate a mixed sample
contaminated with up to 80% noncancer DNA.

LOQUS ASSAY IN GLIOMA TISSUE SAMPLES

We performed the LOQUS assay with glioma tissue
samples. The result of examination of a GBM sample
(GB31), in which LOH of the entire 10q was detected, is
shown in Fig. 3A. This LOH was confirmed by both

microsatellite markers and fluorescence in situ hybridiza- -

tion analyses (see Fig. 1 in the online Data Supplement).
We could also detect LOH on 10q in samples for which
the V; values were in the range 0.7-0.8 (Fig. 3B). The
results obtained for an AA sample (AA24), in which a
microdeletion measuring <250 kbp was detected by nar-
rowing the region of analysis by use of densely located
SNPs, are shown in Fig. 4.

LOH PROFILES OF CHROMOSOME 10 IN GLIOMAS

We analyzed 56 glioma samples, and the mean number of
informative loci was 40.91 (42% of examined SNPs). LOH
.profiles of examined samples are shown in Fig. 3 of the
online Data Supplement. The majority of GBMs (68%) had
LOH at all informative loci, and were therefore inter-
preted to be a monosomy of chromosome 10. In contrast,
AAs and low-grade gliomas showed no such LOH pat-
tern, except for 1 AA sample. LOH on 10q was observed
in all of the AA cases, and their LOH regions included
multiple loci. On the other hand, all LOH on 10q observed
in DAs and grade I gliomas involved loss of a single
region. LOH on 10p was observed in 63% of DAs and
AAs, whereas none of the grade I gliomas had LOH in this
chromosome region. As for DAs, LOH on 10p included
multiple loci, in contrast to LOH on 10q.

IDENTIFICATION OF AN LOH HOT SPOT AT 10p13
Among the 56 gliomas, the LOH ratio (ratio of samples

with LOH to all informative samples) of 96 SNPs varied -

from 40% (rs724444 at chromosome position 77 558 207
bp) to 77.8% (rs726451 at chromosome position
122 403 971 bp). On the basis of the LOH ratio plot shown
in Fig. 5, we identified 3 LOH hot spots: 10p13-15, the
PTEN region at 10923, and 10q25-26. The latter 2 regions
were consistent with the previously reported commonly
deleted lesions in malignant gliomas (8, 11, 12). The first
deletion hot spot overlapped the commonly deleted re-
gion (10p14-15) reported in other studies (9, 10, 14), but
somewhat extended to the centromeric side. We therefore
focused on the 10p LOH samples. To identify the minimal
10p LOH region, we compared 40 samples with at least
one LOH locus on 10p: 30 GBMs, 5 AAs, and 5 DAs
(Fig. 6). We found that 2 samples (GB9 and DA23)
had an interstitial LOH localized at the centromeric
portion of 10p13, and all informative samples showed
LOH of rs1376690 at chromosome position 15 720 079 bp.
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Fig. 5. LOH data for the analyzed samples.

LOH fractions in 56 glioma samples are shown. @ indicate the rate of LOH for
each locus, and the horizontal lines indicate the moving average in 5 Mbp
windows. The vertical bars show the 3 common LOH regions: 10p13-15, 10g23,
and 10q25-26.

We are currently performing investigations to iden-
tify genes possibly involved in the development of glio-
mas.

Discussion

Traditionally, LOH has been estimated by detecting allelic
imbalance by use of microsatellite markers. The use of
SNP markers for LOH detection has the advantage of
much higher resolution because SNPs are available at an
overwhelmingly higher density. The results are also more
reliable because SNPs are more stable markers than
microsatellites in vivo and microsatellite instability dur-
ing tumor evolution or formation is avoided. Slippage
during PCR and the appearance of stutter peaks are
frequently encountered problems of microsatellite analy-
sis, which does not exist for SNP markers.

We demonstrated high reproducibility (CV = 5.7%) of
the signal intensity ratio of SNP alleles in the analysis of
DNA from samples heterozygous for the SNPs studied in
the LOQUS analysis. This reproducibility is comparable
to that of the bacterial artificial chromosome-based com-
parative genomic hybridization array (32, 33) and better
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dbSNP ID Chromosome DA DA DA GB AA DA AA AA CB
28 30 264 36 2

position

13750677 1253078
10p18.3 50683 1769 498
rs 1132173 3140 973
10p18.2 1517731 3811 561
1015 122275772 5799 807
r53818763 7 656 306
151887038 0890 229
10p14 rs913375 10 780 754
183750694 11837 764
15766254 13 008 00
10pt 152208112 15 052 541
151376600 15 720 079
151049632 16 836 925
10p12.33 — s oB08 17685 8201
10p12.32_ rs1570940 18 726 771
15718606 10 674 038
10p12.31 — 00 21453 31
10p12.2 152262484 24 323 198
(52270547 25313 094
10p124 153750440 26 486 318
12275752 27 463 750
151007406 29 284 944
10p11.23 ~ 152185724 30 356 214
15867992 31420 319
[52060002 33 568 69
10p11.22 — 3781127 34647 021
r52205417 35 662 016
10p11.21 __ rs315635 36 507 157
153730002 38 131 154

Fig. 6. Summary of 10p LOH regions in glioma samples.

7T

GB GB AA DA GB
27 28 23 33 22 & 22 23 9

The Ward method (40) was used for hierarchical clustering of samples by use of JMP software. The samples with LOH at all informative loci, which were interpreted
to be a monosomy of chromosome 10, or retention of heterozygosity at all informative loci, were excluded. SNP markers are shown on the Jeft. Case numbers are
indicated at the top. B, LOH; [J, retention of heterozygosity; B, not informative (homozygous individual or not determined).

than the reproducibility of other methods such as multi-
plex ligation—-dependent probe amplification analysis
(34, 35), multiplex amplification and probe hybridization
analysis (36), and SYBR Green I-based real-time PCR
analysis (30).

Recently, oligonucleotide microarray analysis was ap-
plied to detect LOH at the SNP level (19,37). As an
advantage of this method, both LOH and the copy num-
ber abnormality profile can be determined by single-
platform analysis. Although oligonucleotide microarrays
allow high-throughput analysis, their use requires a rela-
tively high proportion of tumor DNA to detect LOH.

When contamination by noncancer DNA reaches 30%—
50% of the total, there is a significant loss of detection of
LOH by the microarray analysis (20). In contrast, the
reproducibility of the peak-height ratio for SNP alleles
obtained with the LOQUS method is high, as shown in
Fig. 1, and this method can tolerate a mixed sample with
up to 80% contamination by DNA from noncancerous
cells and still detect an allelic imbalance. For specimen
with a low percentage of tumor cells, further experiments,
e.g., microdissection to enrich tumor cells, should provide
more convincing results on the determination of LOH
status.
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Contamination by nontumor cells in tumor tissue sam-
ples is inevitable because contribution of ancillary cells
such as fibroblasts and endothelial cells is essential for
tumor maintenance, and they frequently infiltrate the
tissue (38). Although methods such as culturing or laser
capture microdissection have been used to enrich tumor
cell content, obtaining pure tumor cell populations re-
mains difficult. Furthermore, based on the clonal multi-
step tumor evolution theory, tumor cells do not have a
uniform genetic change in clinical tumor tissues (39). The

LOQUS assay also can detect the heterogeneity of tumor

cells, as shown in Fig. 3C, which revealed 2 distinct LOH
regions showing high and low V.. These results demon-
strate the robustness of our method in the examination of
clinically obtained tumor tissue samples, which are often
mixed with an excess of healthy cells or consist of a
heterogeneous population of 2 or more malignant cell
types. /

Other advantages of our method, as well as other
targeted methods such as multiplex ligation—depen-
dent probe amplification or multiplex amplification
and probe hybridization analysis, over microarray-
based genome-wide methods are flexibility of experi-

mental design and the cost of analysis. LOQUS an-

alysis requires only widely available instrumentation,
i.e., a conventional PCR instrument and capillary se-
quencer. The throughput of this system is low com-
pared with other methods, e.g., microarray-based tech-
niques. Use of the ABI Prism® 3100 genetic analyzer,
which is the most appropriate instrument for PLACE-
SSCP (27), enables analysis of 96 loci in 1 day, including
PCR steps. However, PLACE-SSCP has the advantage
of flexibility, e.g., additional high-density investiga-
tions could be done simply by selecting additional
SNPs from public databases and designing the ap-
propriate PCR primers. The recent enhancement of
public databases allows selection of SNPs with high
heterozygosity, which is essential for efficient analysis
of allelic imbalance using the present system.

The LOH profiles in the present study indicated the
following: (#) The majority of the GBMs had complete
LOH of chromosome 10. (b)) AAs frequently had partial
LOH on both 10p and 10q. (c) DAs also frequently had
10p LOH, but seldom had 10q LOH. The progression of
astrocytoma is associated with an increased loss of 10p
and 10q sequences, probably reflecting the increased
involvement of tumor suppressor genes (14). Our find-
ings are consistent with these observations and, in addi-
tion, suggest that 10p LOH has a less malignant effect
compared with 10q LOH in glioma formation or pro-
gression.

According to previous microsatellite analyses of
astrocytic gliomas with different malignancy grades,
10p LOH is frequently observed in a subpopulation of
tumor cells (9). Such subtle genetic abnormalities are
more reliably detected by a highly sensitive method
such as LOQUS. Moreover, the higher frequency of

10p LOH in DAs detected in this study (63%) com-
pared with previous reports (0%-35%) (9, 10, 14) might
be attributable to the high sensitivity of the present
method.

The reported regions on 10p commonly deleted in
gliomas are concentrated at 10p14-15 (9,10,14). We
identified an additional deletion hot spot at 10p13, how-
ever, suggesting that 10p13 is an additional putative area
that might harbor previously undiscovered tumor sup-
pressor genes. Further efforts are needed to identify genes
at deletion hot spots on chromosome 10, including 10p13,
to elucidate the significance of LOH in chromosome 10
regions in gliomas.
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