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Chapter VIII

The Critical Role of Inflammatory
Cell Infiltration in Tumor
Angiogenesis: A Target for
Anti-Tumor Drug Development?
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Abstract

Inflammatory responses are often associated with acquisition of malignant characteristics
in various human tumors. In this article, we focus on the idea that inflammatory
angiogenesis is a critical component of tumor progression. Inflammatory angiogenesis

U may confer a specific microenvironment on each tumor, resulting in characteristic

formation of stroma in the tumor. In particular, we suggest a critical role of macrophage
infiltration in the tumor stroma in the development of angiogenesis by presenting
experimental angiogenesis models in response to IL-1B and other inflammatory
cytokines. We also discuss the anticancer therapeutic potential of molecular targets or
cells appearing during the inflammatory angiogenesis.

" Send correspondence to Michihiko Kuwano, M.D., Ph.D. Center for Innovative Cancer Therapy, Kurume
University, Kurume, Fukuoka, 830-0011, Japan; E-mail: michik@med.kurume-u.ac.jp.
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Introduction

Since the first proposal that cancer is chronic inflammation by Dr. Virchow in 1863, the
relationship between inflammation and cancer has often been disputed for almost one and half
centuries. The appearance of a single precancerous cell with a mutated oncogene/
oncosuppressor gene, together with proliferation of cancer cells alone does not provide
sufficient conditions to cause malignant tumor, because stroma components of cancer are
essential for malignant tumor progression [1]. Inflammation in the tumor microenvironment
enhances not only cell proliferation in the tissue injury during wound healing but also
progression of cancer, injury without healing [2, 3]. Plausible mechanisms underlying the
causal relationship between mflammation and cancer have recently been presented [1, 4].
Inflammation and tumor could be intercorrelated through hemangiogenesis [5] and
lymphangiogenesis [6] (Figure 1). The mechanism for lymphangiogenesis as well as
“hemangiogenesis is now being investigated at the molecular basis [6]. Here we seek to give
insight into the functional relationship between inflammation and cancer from the standpoint
of angiogenesis.

Tumor < > Inflammation

Inflammatory
cytokines

Angiogenic Chem ckines

Angiogenesis

Figure 1. Inflammatory responders including inflammatory cells, cytokines and chemokines closely
associated with angiogenesis greatly affect the stromal microenvironment in each malignant tumor. Cancer
cells that produce abundant pro-inflammatory cytokines can induce activation of stromal cells including
inflammatory cells to potentiate angiogenesis, resulting in the promotion of tumor growth and acquisition of
various malignant characteristics.

Inflammatory Cells are the Main
Components of Tumor Stroma
In the inflammatory response, wound healing is a self-limiting angiogenesis: neutrophils

are the first recruited effector cells, and monocytes/ macrophages next migrate to the site of
tissue injury in response to chemotactic cytokines. Once activated, monocytes produce

(0
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various proangiogenic cytokines such as vascular endothelial growth factor (VEGF), tumor
necrosis factor-a (TNF-a), interleukin-l1a/f (IL-1a/B), IL-6, as well as extracellular
matrices-degrading enzymes such as matrix metalloproteinases (MMPs) and plasminogen
activators (PAs), and switch on angiogenesis, resulting in healing the injury site. On the other
hand, during the inflammatory responses in malignant tumors, tumor cells produce various
cytokines and chemokines that attract leukocytes such as neutrophils, dendritic cells,
monocytes/ macrophages, eosinophils, mast cells and lymphocytes, which also produce
various cytokines, proteases, reactive oxygen species. Of these inflammatory components,
infiltration of monocytes/ macrophages appears to play key roles in the development of tumor
and its acquisition of malignant characteristics. Macrophage infiltration is often associated
with poor prognosis of cancer patients with breast cancer, cervical cancer, lung cancer,
bladder cancer, glioma and melanoma [7 - 10]. Monocytes recruited by monocyte
chemotactic protein-1 (MCP-1) are educated by the tumor environment, and these tumor
educated macrophages, called tumor-associated macrophages (TAMs), are-thought to support
tumor progression and metastasis [4]. TAMs produce VEGF-A, VEGF-C and VEGF-D, IL-8§,
TNF-o, IL-1a/p, transforming growth factor-f (TGF-8), arachidonate metabolites and
proteases, resulting in promotion of angiogenesis as well as lymphangiogenesis [11 - 13].

O
Angiogenesis by Inflammatory Cytokines
through Augmentation of Potent Angiogenic

Factors and Cyclooxygenase-2

Of various inflammatory cytokines, IL-1a and 3, members of the IL-1 family, induce
their signals through interaction with type I and type II IL-1 receptor, and IL-1 receptor
antagonist (IL-1Ra) antagonizes (Figure 2). Expression of this signaling by IL-1 is often up-
regulated and associated with pathological conditions of rheumatoid arthritis, septic shock,
graft-versus-host disease, arteriosclerosis, asthma, adult T cell leukemia, multiple myeloma
and many other tumor types, and angiogenesis is also closely associated with pathological
conditions in these diseases. Concerning the direct involvement of IL-l1a/f in tumor
development, Voronov et al recently reported that IL-1o and P are required for development
of angiogenesis and tumor in an experimental animal model [14]. Angiogenesis is markedly
diminished in both IL-1la - and IL-1f -knockout mice, and tumor angiogenesis is much less

- abolished in IL-1B knockout mice than that in IL-loe knockout mice (Table 1). IL-1B
Q promotes growth and invasion of cancer as well as angiogenesis in animal models with
concomitant enhanced production of VEGF, IL-8§, MMPs and adhesion molecules [15, 16]
(see also Figure 3). IL-1a promotes angiogenesis in vitro as well as in vivo through up-
regulation of VEGF, IL-8 and other angiogenesis-related factors [7, 10]. Although IL-1a and
IL-1p share their receptor, type I IL-1 receptor, Song et al have recently proposed differential
effects of IL-1a and IL-10 on tumorigeniciy patterns, invasiveness and angiogenesis [18 - 20]
(Table 1). Acquisition of malignant characteristics of invasion, metastsis, and angiogenesis
thus appears to be mediated through these inflammatory cytokines, suggesting a close linkage
between cancer and inflammation. Overexpression of IL-1a in highly invasive fibrosarcoma
cells results in a marked loss of tumor development with activation of antitumor
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immunological effector mechanism whereas IL-18 overproduction in fibrosarcoma cells
results in enhancement of angiogenesis as well as enlargement, invasion and metastasis of

tumor [18]. IL-1c thus reduces tumorigenicity by inducing antitumor immunity together with
tumor suppression in the host, and IL-1B promotes invasiveness and angiogenesis of tumor.

Members of the IL-1 family
Receptors: Type I'IL-1R and type II IL-1R
Agonists: IL-1a and IL-18
Receptor antagonist: IL-1 receptor antagonist (IL-1Ra)

IL-lafg IL-IRa IL-1af IL-IRa
Type I receptor ] — ) Type II receptor
yp P : x x yp P
— - No signal '
X ()
Sign.a.l : NO signal

Figure 2. IL-1a and IL-1p induce their signaling through interaction with type I IL-1 receptor. The IL-1
family consists of IL-1 receptors type I (IL-1RI) and Type II (IL-1RII), receptor agonists IL-1o and IL-1p,
and IL-1 receptor antagonist (IL-1Ra). IL-1ct and IL-1B are produced as inactive precursors, pro-IL-la and
pro-IL-1B, respectively. Pro-IL-1a is cleaved by calpains and pro-IL-1p is cleaved by caspase-1 to generate
mature forms. The binding of IL-1a and IL-1B to IL-1RI transduces the signal whereas binding to IL-1RII
does not. IL-1Ra binds to both IL-1RI and IL-1RII without signal transduction and abrogates the association
of IL-1at and IL-1P to the receptor.

Inflammation induces up-regulation of various angiogenesis-related factors. Treatment
with TNF-a of vascular endothelial cells and cancer cells results in a marked induction of
VEGF, bFGF, IL-8 and PA through activation of Sp-1, AP-1, hypoxia response element, NF-
kB and other regulatory elements [21 - 23]. TNF-a or IL-1o also enhances production of
VEGF, IL-8, bFGF and MMPs from cancer cells and endothelial cells, resulting in a switch of
angiogenesis through autocrine/ paracrine controls [9, 12, 13] (Figure 3). On the other hand,

o4 integrins that are counter-receptors for VCAM-1 are expressed on the surface of vascular Y
endothelial cells [24], expression of 04 integrin and VCAM-1/ soluble VCAM-1 by TNF-o -~ -/
induces angiogenesis in the corneas of mice through p38 and FAK signaling pathways [25].
Expression of soluble VCAM-1 is also dramatically enhanced in vascular endothelial cells by
IL-4 or IL-13 derived from mast cells [26, 27]. In addition, Kaneko et al have recently
demonstrated that the binding of VEGF receptor to its ligand transduces signals through
integrin-linked kinase associated with the integrin § chain in human endothelial cells,
suggesting that integrin-mediated signals also cooperate with VEGF receptor in vascular
endothelial cells to induce angiogenesis [28]. Taken together, these facts suggest that
inflammatory cytokines-induced angiogenesis is mediated through enhanced production of
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angiogenesis regulatory factor and activation of various adhesion and integrin molecules by
the cytokines.

IL-1c/p
Arachidonic acid l
— COX-2 VEGF, IL-8, bFGF, MMPs, PA, etc
activation
PGH2 > PGE2
i EP2, EP4 7
TXA2 > TXA2 receptorl”

Angiogenesis

Figure 3. Angiogenesis by IL-10/B is mediated through dual pathways: induction of angiogenesis-related
factors and COX-2 activation. IL-1 stimulates induction of angiogenesis-related factors such as VEGF, IL-8,
bFGF, MMPs and PA. from vascular endothelial cells and other cell types. These factors co-operatively
activate vascular endothelial cells resulting in angiogenesis. On the other hand, IL-1 induces angiogenesis
through the activation of COX-2 in vascular endothelial cells and other cell types. PGE2 and TXA?2 are
expected to induce angiogenesis autocrine control. Recent study also demonstrates that PGF2 and TXA2
stimulate production of some angiogenesis-related factors, resulting in angiogenesis.

Table 1. The specific roles of IL-1a and IL-1p in various malignant characteristics of
tumor including angiogenesis.

Experimental conditions Findings ‘ References
Tumor growth and angiogenesis = IL-1B is more closely associated with
by melanoma cells m IL-1a or IL-1B- turnor growth and turnor angiogenesis Voronov et al [14]
knockout mice than IL-1at
« Tumor growth and metastasis as well as
. . . : Yano et al [15]
Lung cancer cell line expressing IL-13 angiogenesis are markedly enhanced by "
Saijo et al [16]
L-1B
» IL-la reduces tumorigenicity by antitumor
Mouse fibrosarcoma cells expressing Immunity
S t al {1
IL-lat and IL-18 * IL-1B promotes mvasiveness and tumor ongetal 18]
angiogenesis
Hepatic metastasis by IL-1o. gene = IL-lo increases tumor cell adhesion to
transfection in melanoma cell and endothelial cell and VCAM-1 expression Anasagastietal [19]
effect of IL-1 receptor antagonist on ° IL-lo enhances melanoma hepatic Vidal-Vanaclocha et al [20]
tumor growth and metastasis metastasis

On the other hand, cyclooxygenases (COXs) play a key role in tumor angiogenesis [29],
probably in close association with inflammation. Of the two COXs, COX-1 and COX-2 that
convert arachidonic acid to prostaglandins, the COX-2 can be induced by a variety of pro-
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inflammatory cytokines and growth factors. In a model of human familiar adenomatous
polyps using mice with a targeted mutation in the APC tumor suppressor gene (Apc-knockout
mice), polyp formation is markedly reduced in Apc/COX-2-knockout mice [30], and Seno et
al have further reported that stromal expression of COX-2 is required for induction of VEGF
and tumor angiogenesis [31]. Tumor growth as well as angiogenesis can be suppressed by
COX-2 inhibitors when cancer cells express COX-2 [32]. The primary prostanoids,
prostaglandin E2 (PGE2), PGF2a, PGD2, PGI2 and thromboxane A2 (TXA2) mediate
angiogenesis, partly through modulation of VEGF levels in response to these prostanoids.
VEGF levels are markedly decreased in tumors in the COX-2-knock out mice, suggesting that
a close link between COX-2 and VEGF in tumor angiogenesis [33]. Concerning the possible
role of COX-2 in tumor angiogenesis, COX-2 expression is elevated not only in cancer cells
but also in microvasculatures, various infiltrating blood cell types and fibroblasts in the tumor
stroma [29]. COX-2-expressing cancer cells form larger tumors than cancer cells that lack
COX-2 expression [34]. However, it remains unclear whether COX-2 activity is directly
involved in the up-regulation of the VEGF gene. Chang et al have also reported up-regulation
of both VEGF and EPI, 2, 4 receptors in COX-2-transgenic mammary tissue, and PGE2
mostly stimulates expression of this potent angiogenic factor, VEGF, in mammary tumor
cells [35]. In the tumor angiogenesis, PGE2-EP3 signaling also regulates tumor-angiogenesis
and tumor growth [36].

A recent study by Kuwano et al demonstrated a close association of COX-2 activity with
inflammatory cytokine IL-1B-induced angiogenesis in vitro and in vivo [37]. In their study,
EP2, 4 agonists and TXA2 receptor agonist themselves induce angiogenesis in mouse
corneas, and IL-1B-induced angiogenesis is inhibited by an EP4 antagonists and a TXA2
receptor antagonist. Moreover, IL-1B-induced angiogenesis is markedly abrogated in COX-2-
knockout mice, and this angiogenesis was only partly blocked by co-administration of a
VEGF receptor tyrosine kinase inhibitor [37]. From these findings, one can expect that
inflammatory cytokine-induced angiogenesis is mediated through dual pathways: up-

regulation of angiogenesis-regulated factors and also prostanoids produced by COX-2 (Figure
3).

Inflammatory Angiogenesis and Macrophage
Infiltration are Essential for Development of
Malignant Tumors Including Multiple Myeloma

Tumor growth and metastasis of solid tumor are dependent on hemangiogenesis and
lymphangiogenesis [6,38]. Angiogenesis also appears to play a critical role during
development of multiple myeloma [39]. Concerning the development of multiple myeloma,
the bone marrow microenvironment includes both cytokines and growth factor, and also
physical interaction with stroma cells and extracellular matrices. In this microenvironment,
the interaction of multiple myeloma cells with various stromal cells types plays a key role in
the pathogenesis of multiple myeloma [40]. Born marrow-related angiogenesis increases in
multiple myeloma with malignancy progression [41, 42]. Bone marrow-related angiogenesis
is thus expected to promote expansion of the multiple myeloma mass by inducing plasma cell
proliferation. Moreover, high bone marrow angiogenesis is an adverse prognostic factor in
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multiple myeloma [43, 44]. Multiple myeloma cells produce and secrete potent angiogenic
factors, MMPs and PAs in their microenvironment with a concomitant appearance of
cytokines recruiting inflammatory cells such as mast cells, monocytes/ macrophages and
neutrophils [39]. Formation of a network system by multiple myeloma cells and various
stroma cells might promote angiogenesis in the multiple myeloma environment. Moreover,

‘IL-6, a key enzyme for tumor growth for multiple myeloma cells, affects production of the

potent angiogenic factor VEGF [45]. Other cytokines, TNF-o. and IL-1, also stimulate
expression of VEGF and other angiogenesis-related factors such as IL-8, bFGF in various cell
types [10, 22, 23], and VEGF production by multiple myeloma cells is also elevated by these
inflammatory cytokines [46, 47]. Thus, angiogenesis is expected to play a key role in
acquirement of pathological characteristics during tumor progression in multiple myeloma
cells [37] as well as in other solid tumor types [38, 48]. Inflammatory cytokines are thus
expected to be implicated in angiogenesis not only during solid tumor development but also
during multiple myeloma development (Figure 4). This inflammatory network systems
operating in multiple myeloma are also expected to function in other solid tumor types.

Angiogenic
factors

o ~

Multiplemyelom a cell

Inflamm atory
cytokines

Recruit

A Vascular endothelial cell
o Extrecellul ar
Macroph ag matrix

Figure 4. Multiple myeloma form a network near bone marrow through interaction with various
inflammatory cell types. Angiogenesis plays a critical role in sttoma formation for multiple myeloma through
interaction of multiple myeloma cells with various stroma cell fypes and cytokines.

Monocytes and macrophages are expected to play critical roles in malignant tumor
progression [1, 4]. In various inflammatory responses, macrophages play a key role in
providing an environment that stimulates cell migration, survival and proliferation of cancer
cells and various stromal cell types by producing .angiogenic factors, growth factors,
cytokines and proteases [1, 4]. In particular TAMs are a significant component of
inflammatory infiltrates in tumors, and TAMs derived from monocytes are mainly recruited
in response to MCP-1 and other chemokines resulting in tumor progression. Since the first
clinical evidence indicating an association of macrophage infiltration with invasive breast
cancer [7], many other studies also demonstrate that infiltration of TAMs is often closely
associated with survival or prognosis in many tumor types, suggesting a role of TAMSs in



