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fast red violet salt (Sigma Chemical Co.) and incubated
at 37°C for 120 min. After the solution was removed by
washing, specimens were counterstained with hematox-
ylin and observed under light microscopy.

2.10. Computed tomography (CT) scanning images

Computed tomography (CT) data on harvested distal
femurs at 24 weeks was collected with a helical CT (GE
Yokogawa, Tokyo, Japan) and images were recon-
structed using 3-dimensional image reconstruction soft-
ware (Aze, Tokyo, Japan).

2.11. Statistical analysis

Student’s r-test was used to determine statistical
significance, with P<0.05 considered significant.

3. Results

3.1. Defect repair effect of rthBMP-2/PLA-DX-PEG)/ j3-
TCP (Study 1)

Representative radiology of bone defects at 2, 4, and 8
weeks after surgery (Fig. 2) demonstrated opaque
calcified shadows bridging both ends of defects as early
as 2 weeks in the group implanted with f-TCP combined
with thBMP-2 and polymer. Calcification became more
evident at 4 weeks, and newly formed bone connecting
both ends of defects appeared to have been remodeled
into cortical bone with a bone marrow cavity. The
BMP-loaded group showed a time-dependent increase in
callus of nearly 100% at 6 weeks, but the group with f3-
TCP and polymer without thBMP-2 showed only small
amounts of newly formed bone formationless than
20%. No bone formation was recognized in the control

group (Fig. 3).

B-TCP/ Polymer/ thBMP-2

2 weeks

4 weeks

8 weeks

B-TCP/ Polymer

3.2. Mechanical and remodeling properties of the
repaired bone by rhBMP-2/PLA-DX-PEG/f-TCP with
long-term observation (Study 2)

Femurs in this group were stable and enabled free
movement in caged animals until their sacrifice at 24
weeks. Radiology of femurs harvested 24 weeks after
surgery showed complete regeneration of the interca-
lated defect. The 3D CT image and frontal tomographic
image of regenerated femurs showed that normal femur
anatomy had been restored with cortical bone with no
residual evidence of implanted f-TCP cylinder blocks
(Fig. 4).

3.2.1. Dual-energy X-ray absorptiometry analysis

Bone mineral density of femurs regenerated by
biodegradable bone-inducing implants at 24 weeks was
350 mg/em?, essentially equal to control (normal) levels.
No significance was seen between experimental and
control groups.

3.2.2. Biomechanical properties of repaired bone

The 3-point bending test of femurs regenerated by
biodegradable bone-inducing implants at 8 weeks
showed significantly lower stiffness (160 N/m) than
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Fig. 3. BMP-loaded group promoting a time-dependent increase in
callus (nearly 100% at 6 weeks). The group of B-TCP and polymer
without thBMP-2 promoted only negligible new bone formation-—less
than 20%. No bone formed in the control group.

No implant

Fig. 2. Representative femur radiographs. From left, implanted with B-TCP with PLA-DX-PEG and rhBMP-2, B-TCP with PLA-DX-PEG without
rhBMP-2, and critical size bone defect without implantation (sham surgery). Sequential radiographs show bone repair at 2, 4, and 8 weeks after

implantation in the experimental group.
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Fig. 4. Soft X-ray and 3D CT images of femurs 24 weeks after surgery.
The repaired defect with biodegradable bone-inducing implants is
shown at right (L). Images at left are of the counterpart femur in the
control rabbit (R). The external fixator was removed 8 weeks after
surgery. Note that f-TCP was absorbed and cortical walls remodeled
anatomically with the marrow cavity.
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Fig. 5. Results of 3-point bending tests at 8§ and 24 weeks after surgery
(bar chart). (*: significant difference, p <0.001).

controls (400 N/m, nonsurgical femurs 24 weeks after
surgery). Stiffness increased at 24 weeks (370 N/m) and
was essentially equal to control (normal) levels (Fig. 5).

3.2.3. Histological findings

In histological sections from defect sites 2 weeks
postoperatively, fibrous tissue and a thin layer of bone
running parallel to the long axis and encasing implants
were seen in the experimental group. A femur from the
experimental group at 4 weeks with increased bone mass
connected to S-TCP implants and fibrous tissue was
observed. Regenerated cortical bone had united with
ends of the original cortex of the femur. In sections from
the experimental group 8 weeks postoperatively, bone
occupying defects had remodeled to where cortical bone
and hematopoietic marrow-like tissue were clearly
visible (Fig. 6). On the -TCP surface at 4 weeks, large
numbers of TRAP-positive multinucleated cells (osteo-
clasts) appeared (Fig. 7). In sections of regenerated
defects at 24 weeks, cortical bone was remodeled to
lamellar bone connected to original ends of the femur.
Marrow tissue was also completely restored and no
remnants of f-TCP implants were visible (Fig. 8).

4. Discussion

Our experimental results indicated successful regen-
eration of a critical intercalated bone defect in femur
implantation using porous f-TCP with rhBMP-2 and a
synthetic PLA-DX-PEG block copolymer as its delivery
system. This approach clearly demonstrated that com-
bining these synthetic materials and recombinant
protein repaired large defects. The osteogenic potential
of composite implants has yet to be compared critically,
however.

The rhBMP-2 dose and rhBMP-2 concentration in
polymer we used was determined based on previous
study of critical bone defect repair in rabbits in which
[.5cm of an intercalated bone defect in the humerus was

Fig. 6. Typical histological sections at 4 weeks (left, HE staining x 40) and 8 weeks (right, HE staining x 40). Abundant bone formed around -TCP
but not the outside of the femur in sections of specimens at 4 weeks. Cortical and bone marrow-like tissue clearly identified at 8 weeks.
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Fig. 7. Histological section of decalcified specimens harvested at 4 weeks and stained with HE (left, x 40) and tartrate-resistant acid phosphatase
(TRAP) (right, x40). 8-TCP blocks coated with PLA-DX-PEG and rhBMP-2 are surrounded by abundant TRAP-positive multinucleated

osteoclasts (arrows, stained red). (B = bone, T = -TCP).

Fig. 8. Images of sagittal histological section at 24 weeks. Cortical
walls were repaired completely. Arrowheads indicate fixator pin
insertion locations. Polarized magnified image of junction between
original and repaired bone (rectangle) (below). Randomly arrayed
collagen in the repaired cortical wall contrasts with the more ordered
layers of collagen in the original cortical wall.

successfully repaired by filling the defect with titanium
mesh cylinders impregnated with a delivery system
containing thBMP-2 [17]. Titanium cylinders were not
resorbed in repaired bone. Sustained permanent release
of metal ions from the implant could increase the
potential risk of allergic reactions or carcinogenesis,
especially in infants. For these reasons, we replaced
titanium in the present study with biodegradable
material. As expected, S-TCP was completely resorbed
and replaced by host bone within 24 weeks with no
apparent adverse events from resorbed f-TCP.

The successful regeneration of the critical bone defect
may be due in part to the porosity of -TCP cylinders
having 100-400 pm pores, which may enable thBMP to
accumulate locally within pores to where osteogenesis is
initiated [22-25]. An appropriate local thBMP concen-
tration in pores would in turn enable successful invasion
and ingrowth of mesenchymal cells in the implant and
subsequent differentiation into osteoblasts. Addition-
ally, the porosity of f-TCP appeared to be crucial to its
rapid degradation in host animals, facilitating contact
with host cells and resulting clearly in large numbers of
osteoclasts contacting f-TCP [26]. The ability of these
cells to permeate and resorb the S-TCP mass likely
contributed to the relatively rapid replacement of
implants by bone and marrow in our study. Although
the location of BMP receptors on the surface of
osteoclasts was reported previously [27], the effect of
rhBMP-2 on osteoclastic differentiation remains to be
clarified, requiring further study to determine the
potential action of BMP on osteoclasts to explain the
increased recruitment of osteoclasts in new bone
induced by rhBMP2. Biodegradable osteoconductive
p-TCP combined with a BMP delivery system is
replaced by fully integrated biomechanically competent
bone, eliminating one of the major limitations of other
osteoconductive biomaterials.

The newly formed bone repairing the defect was
remodeled to restore the normal anatomy of the original
bone with concurrent resorption of B-TCP in 8§ weeks.
This means that BMP-induced new bone could remodel
to adapt to the local biomechanical environment.
Osteoconductive material must disappear to generate
the physiological biomechanical environment and restore
the original anatomy. Our results suggest that absorb-
able f-TCP is suitable as an ideal bone graft substitute.

The physicochemical properties and degradation
profiles of polymer used in this study have been reported
elsewhere [13-15]. A detailed safety check for clinical use
of the polymer is currently in process. No systemic or
local adverse effects have been noted to date.
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The optimal content of rhBMP-2 in the carrier
required to elicit new bone formation depends on the
animal host [16-18], and a higher dose of thBMP-2 is
required in highly evolved animal species. Determining
the optimal clinical dose thus requires additional
experiments in primates.

5. Conclusion

A new absorbable bone graft substitute with osteo-
genic capacity was made by combining 3 artificial
materials—porous f-TCP, rhBMP-2, and a PLA-DX-
PEG delivery system. The capacity of this composite
implant to regenerate bone is satisfactory. The compo-
site implant was completely absorbed and replaced by
newly formed bone, then remodeled into the femur to
restore the matural anatomy. Although further safety
checks and clinical trials are required, the practical use
of this implant to promote bone regeneration is without
doubt a realistic possibility.
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Abstract

Recombinant human bone morphogenetic protein (thBMP) is viewed as a therapeutic cytokine because of its ability to induce bone. However,
the high doses of thBMP required for bone induction in humans remain a major hurdle for the therapeutic application of this protein. The
development of a methodology that would effectively overcome the weak responsiveness to human BMP is highly desired. In the present study,
we investigate the ability of a prostaglandin E EP4 receptor selective agonist (EP4A) to augment the bone-inducing ability of BMP in a
biodegradable delivery system. A block copolymer composed of poly-D,L-lactic acid with random insertion of p-dioxanone and polyethylene
glycol (PLA—-DX—-PEG, polymer) was used as the delivery system. Polymer discs containing thBMP-2 and EP4A were implanted into the left
dorsal muscle pouch of mice to examine the dose-dependent effects of EP4A. Fifty mice were divided into 5 groups based on the contents of
thBMP and EP4 in the polymer (group 1; BMP 5 ug EP4A 0 pg, group 2; BMP 5 pg EP4 3 pg, group 3; BMP 5 ug EP4 30 pg, group 4; BMP 5 ug
EP4 300 pg, group 5; BMP 0 ug EP4 30 pg, » = 10 each). All implants were harvested, examined radiologically, and processed for histological
analysis 3 weeks after surgery. On dual-energy X-ray absorptiometry (DXA) analysis, the bone mineral content (BMC) of the ossicles was 6.52 £
0.80 (mg), 9.36 £ 1.89, 14.21 +1.27, and 18.75 + 2.31 in groups 1, 2, 3, and 4 respectively. In terms of BMC, the values of groups 3 and 4 were
significantly higher than those of group 1. The mean BMC value of group 4 was approximately 3 times higher than that of group 1. No significant
difference in body weight was noted among the groups during the experimental period. In summary, the presence of a prostaglandin E EP4
receptor selective agonist in the carrier polymer enhanced the bone-inducing capacity of thBMP-2 with no apparent systemic adverse effects.
© 2005 Elsevier Inc. All rights reserved.
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Introduction ectopic cartilage and bone formation via an endochondral

cascade when implanted in experimental animals [1].

Bone has an inherent regenerating potential, and damaged
bone or fractures are repaired by local new bone (callus)
formation in a period of several weeks after an injury. The
regenerating potential of bone has been attributed to factors
or molecules with the biological capacity to induce
mesenchymal cells to differentiate into bone- or cartilage-
forming cells (osteoblasts and chondrocytes) and thereby
form the callus. Bone morphogenetic proteins (BMPs) were
originally isolated on the basis of their ability to induce

* Corresponding author. Fax: +81 6 6646 6260.
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Because of the specific biological activity of BMPs and
the successful generation of synthetic BMPs by DNA
recombination, there is tremendous interest in using these
proteins for bone repair and reconstructive surgery in a
clinical setting [2]. However, 2 problems need to be
addressed before we can witness the widespread clinical
use of thBMPs. One issue involves the use of a carrier
material that has adequate safety and efficacy for BMP
delivery. Currently, bovine collagen is used clinically as a
carrier for rhBMPs, but use of this material comes with the
risk of contracting bovine spongiform encephalopathy (BSE)
or Creutzfeldt—Jacob disease (CJD). These diseases are
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potentially transmitted by prion proteins through cattle-
derived foods and implant materials. Another problem is the
high dose of thBMP required for clinical efficacy in human
patients. For example, to achieve a single level of spinal
fusion, several to 10 mg of thBMP are required. This results
in the high cost and limited use of BMP as a substitute for
bone autograft. Large doses of BMP may also increase the
risk of potential adverse events in patients [3—6].

To address the issue of finding a suitable carrier, we have
developed new biodegradable synthetic polymers that work
effectively to deliver thBMP and elicit new bone formation
consistently at the implanted sites. The combination of
thBMP-2 and the polymers has enabled the successful
regeneration of critical-size bone defects in experimental
animals [7-10].

To improve the performance of thBMP, we have sought
agents to reinforce the bone-inducing activity of the protein
and increase the induced bone mass. To this end, we have
examined phosphodiesterase (PDE) inhibitors (pentoxifyl-
line, rolipram) and a compound (ONQ-4819), which is a
prostaglandin (PG) EP4 receptor selective agonist (EP4A)
[11-13]. PGE produced by cells of the osteoblastic lincage
has been implicated as a regulator of bone metabolism
through stimulation of either bone formation or resorption
[14-16]. Exogenously applied PGE, either systemically or
locally, also has enhanced bone formation in in vivo
experimental models [17—19]. These biological effects of
PGE are mediated through PGE receptors, which have been
classified into 4 sub-types, EP1 through EP4. These EP
receptors are encoded by distinct genes and are expressed in a
tissue-specific manner [20—25]. In general, PGE mediated
via EP1 increases intracellular Ca>* concentration, EP2 and
EP4 increase cAMP, and EP3 reduces cAMP and modulates
down-stream signaling [25]. Knockout mouse studies have
revealed that EP4 is the major receptor that mediates the
PGE,-induced anabolic action in bone [26-30]. Systemic
administration of an EP4 agonist (ONO-4819) enhanced new
bone formation in mice, and an EP4 antagonist suppressed
the increase in trabecular bone volume induced by PGE,
[13,30-33]. In our previous study, the systemic adminis-
tration of these drugs by daily injection for 1 week during the
initial phase of BMP-induced bone formation led to a
significant augmentation of ossicle mass [13]. These results
suggest that the efficient local release of these activators for
BMPs could induce augmented bone formation without
adverse effects due to high dose and long-term administra-
tion. Therefore, we examined the effects of adding a low dose
of ONO-4819 to the BMP delivery system on new bone
formation.

Materials and methods
Drugs/chemicals/materials

The prostanoid receptor EP4-selective agonist (ONO-
4819), methyl 7-[(1R,2R,3R)-3-hydroxy-2-[(E)-(35)-3-
hydroxy-4-(m-methoxymethylphenyl)-1-butenyl]-5-oxocy-
clopentyl]-5-thiaheptanoate (Patent Cooperation Treaty
publish No. WO 00/03980), was obtained from Ono Pharma-
ceutical (Osaka, Japan) and dissolved in phosphate-buffered
saline prior to use.

rthBMP-2 was produced by the Genetics Institute (Cam-
bridge, MA) and donated to us through Yamanouchi
Pharmaceutical Co. (Tokyo, Japan). The rhBMP-2 was
supplied in a buffer solution (5 mmol/l glutamic acid,
2.5% glycine, 0.5% sucrose, and 0.01% Tween-80) at a
concentration of 1 pg/ul after filter sterilization.

Poly-D,L-lactic acid—p-dioxanone—polyethylene glycol
block copolymer (PLA-DX~PEG) (MW; 9800, PLA/DX/
PEG molar ratio; LA/Dx/EO = 43/14/43) was synthesized
and provided to us by Taki Chemicals Co. (Kakogawa,
Japan). The structural formula of the polymer is shown in
Fig. 1. The polymer has a sticky gel-like character at room
temperature and turns into a soft gel at 50°C. The
physicochemical characteristics and the efficacy of this
polymer as a carrier material for thBMP-2 have been
described by our group in previous reports [9,10]. The
minimal optimal content of thBMP-2 required to induce
new bone formation was approximately 1 pg in 20 mg of
the polymer (0.005%) in mice, 0.02% in rabbits, and
0.04% in dogs based on our previous experimental data
[8,10,34].

Animals

One hundred and ten closed colony male ICR mice
(4-weeks old; Nippon SLC, Hamamatsu, Japan) were
housed and acclimated in cages with free access to food
and water for 1 week. Experiments were carried out in
strict accordance with the Institutional Guidelines for the
Care and Use of Laboratory Animals of Osaka City
University.

Preparation of PLA-DX-PEG polymer implants
containing vhBMP-2 and ONO-4819

To prepare a single implant, 30 mg of the PLA-DX—-
PEG polymer was softened by heating to 37°C, mixed
with an aliquot of either the rhBMP-2 solution (0.5 pg/5

H~-0-CH(CH,}-00-),{-0-CH,~CH,,~O~CH,-00-),-0~(~OH,~ON,~0-), (-0 ~CH,~0-CH,-CH,~0-),{-OC-CH(CH,) ~0-) H

PLA-DX Random polymer segment

PEG Segment

PLA-DX Random polymer segment

Fig. 1. Structural formula of PLA-DX~PEG polymer. Structural formula of the poly-D, L-lactic acid with random insertion of p-dioxanone and polyethylene
glycol block copolymer (PLA~DX—PEG). The subscripts m, n, o, p, and q represent variable numbers of these units.
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ul or 5 ug/5 ul) or thBMP-2 and ONO-4819 solution (3
ug/3 ul, 30 pg/3 ul, 300 ug/3 pl) and then fabricated into
a disc (6 mm diameter, Fig. 2). In summary, 0, 3, 30, or
300 pg of ONO-4819 was mixed with the polymer plus 5
pg of thBMP-2 and implanted into mice in each group (5
mice in each group and 1 implant/mouse). To examine
the effects of ONO-4819 alone, 30 pg/8 ul was added to
the polymer without rhBMP-2. All procedures were
carried out under sterile conditions. The implants were
stored at —40°C in a freezer until required for implanta-
tion.

Experimental design

To examine the dose-dependent effects of the EP4
receptor agonist on ectopically induced bone formation by
thBMP-2, 50 mice were divided into 5 groups (10 mice
per group). The mice were anesthetized by diethyl-ether
gas inhalation, and the PLA-DX-PEG polymer discs
prepared as described above were surgically implanted into
the left dorsal muscle pouches (one pellet per animal) of
the mice. In group 5, polymer discs containing 30 pg of
ONO-4819, but no thBMP-2, were implanted in the same
manner.

1. 5 ug of thBMP-2 per animal

2. 5 pg of rhBMP-2 and 3 pg ONO-4819 per animal

3. 5 pg of thBMP-2 and 30 pg of ONO-4819 per animal

4.5 pg of thBMP-2 and 300 pg of ONO-4819 per
animal

5. 30 ug of ONO-4819 per animal

At 1, 2, and 3 weeks after surgery, the body weight
of each mouse was measured and recorded. Three
weeks after surgery, the mice were sacrificed, and the
implants were harvested and processed for histological
analysis following morphological and radiological
examination.

Radiological and histological analyses for rhBMP-2
induced ectopic bone

All harvested tissues were radiographed with a soft X-
ray apparatus (Sofron Co., Ltd., Tokyo, Japan). The bone
mineral content (BMC) (milligrams per ossicle) of each
ossicle was measured by dual-energy X-ray absorptiometry
(DXA) using a bone mineral analyzer (DCS-600EX, Aloka
Co., Tokyo). The ossicles or tissue mass from each group
was then fixed in neutralized 10% formalin, decalcified
with K-CX (Fujisawa Pharmaceutical Co., Ltd. Japan),
dehydrated in gradient ethanol series, and embedded in
paraffin wax. Sections of 3 pum thickness were cut, stained
with hematoxylin—eosin, and observed under a light
microscope.

Bone metabolic markers in mice

To investigate the anabolic effects of ONO-4819 on
systemic bone metabolism, an additional 60 mice were
divided into 3 groups as follows: sham-operated mice that
received sham operation and lacking implants (10 mice per
group), group 1: 5 pug of thBMP-2 per animal (5 mice per
group) and group 3; 5 pg of thBMP-2 and 30 pg of ONO-
4819 per animal (5 mice per group). Blood samples were
collected from mice of each group at 1, 2, and 3 weeks. The
samples were stored at —80°C until biochemical analysis.
Serum osteocalcin was measured by immunoradiometric
assay (IRMA) using a commercial kit (Immutopics, Inc.
San Clemente, CA) according to the manufacturer’s
instructions. Total alkaline phosphatase (ALP) activity,
calcium (Ca), and phosphate (P) in serum were also
measured in each group with commercially available kits.

Statistical analysis

Data are presented as mean + SE. The degree of
significance was determined by post hoc testing using the

Fig. 2. PLA—DX-PEG polymer disc. Photograph of 6-mm-diameter PLA—DX—PEG polymer disc. The polymer has a hard sticky gel-like property at room

temperature and softens when heated to 50°C.



558 H. Toyoda et al. / Bone 37 (2005) 555562

Bonferroni method. An associated probability (P value) of
<0.05 was considered significant.

Results
Body weight changes in animals

In our previous experiments, mice that received systemic
injection of an excessive dose (100 pg/kg) of ONO-4819
every 8 h for 3 weeks showed a significant decline in body
weight gain. In the current experiments, no significant
difference in body weight gain was noted among the groups
that received implants with or without local release of ONO-
4819 (Fig. 3).

Radiological and histological evaluations

Pieces of hard tissue were harvested from the implantation
sites of mice from groups 1, 2, 3, and 4 at 3 weeks after
implantation. In group 5 (ONO-4819, 30 pg without BMP-2),
no evidence of hard tissue formation was found at the
implantation sites. On soft X-ray radiograms, the calcified
samples retrieved from the mice revealed a trabecular
network encased within a shell-shaped bone layer (Fig. 4).
Histological sections of these samples showed normal
characteristics of bone with trabeculae and hematopoietic
marrow in the inter-trabecular space, findings that were also
common to ossicles from groups 1, 2, 3, and 4. (Fig. 5)
Radiological images indicated that the ossicles from group 3
(thBMP-2, 5 ug+ONO-4819, 30 pug) and 4 (thBMP-2, 5 pg +
ONO-4819, 300 pg) were larger than those observed from
control group 1 (thBMP-2, 5 ug without ONO-4819).

On DXA analysis, the bone mineral content (BMC) of
the ossicles containing ONO-4819 increased in a dose-
dependent manner (3, 30, and 300 pg groups were 9.36 +
1.89 mg, 1421 + 1.27 mg, and 18.75 * 2.31 mg,
respectively) Ossicles from group 1 mice (without ONO-
4819) had a BMC of 6.52 + 0.80 mg. In terms of BMC, the
values of groups 3 and 4 were significantly higher than
those of group 1. The mean BMC value of group 4 (BMP-2,
5 pg + ONO-4819, 300 pug) ossicles was approximately 3
times higher than that of the control group (Fig. 6).
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Fig. 3. Body weight. No significant difference in body weight was noted
among the groups with implants with or without ONO-4819.

Group 1

Group 2

Group 3

Group 4

Fig. 4. Radiographic findings. Soft X-ray photograph of the ossicles
harvested at 3 weeks after implantation (bar = 5 mm). A typical implant
from each group is shown (groups 1, 2, 3, and 4). Both the radio-opaque
areas and radiological densities of the ossicles on the radiogram were larger
in groups 3 and 4 than in control group 1.

Serum osteocalcin and ALP activity assay

At 1 week, both serum osteocalcin (299.8 + 24.4 ng/ml)
and ALP activity (495.2 £ 32.0 TU/1) levels significantly
increased in group 3 compared to the sham-operated
animals (osteocalcin 208.6 + 25.6 ng/ml, ALP activity
356.0 £ 39.8 IU/L). At 2 weeks, serum ALP activity (439.0 +
76.8 IU/I) levels had increased significantly when compared
to the sham-operated animals (ALP activity 313.2 + 12.1 TU/
1) (Fig. 7A). However, there were no significant differences
among the groups at 3 weeks after implantation (Fig. 7B). In
addition, there was no significant increase in serum calcium
and phosphate level among them at any time point (data not
shown). No significant changes in serum osteocalcin and
ALP levels from the baseline were recorded in the groups
that received implants containing ONO-4819,

Discussion

Based on these data, EP4A was examined for its ability to
enhance BMP-induced bone formation and improve
thBMP-2 performance. In our previous study, Systemic
subcutaneous injections of the EP4A (ONO-4819) for 3
weeks increased bone mass induced by rhBMP-2 and
caused a decline in body weight gain in the experimental
animals [13]. To achieve the anabolic action and avoid the
systemic adverse effect, low doses of the drug were added to
the degradable polymer carrying the rhBMP-2 and
implanted into the host mice. In this study, in a very
encouraging response, ONO-4819 significantly increased
the BMP-induced bone mass in dose-dependent manner
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Fig. 5. Histology. Histological sections of the ossicles at 3 weeks after implantation are shown (hematoxylin—eosin stain; original magnification x40). (A)
group 1: 5 pug of thBMP-2, (B) group 2: 5 pg of thBMP-2 and 3 pg of ONO-4819, (C) group 3: 5 g of thBMP-2 and 30 ng of ONO-4819, (D) group 4: 5 ng of
thBMP-2 and 300 pg of ONO-4819. New bone formation with hematopoietic marrow and bony trabeculae was visible in the rthBMP-2-induced ossicles. In
groups 3 and 4, there were visible increases in the number and thickness of bony trabeculae when compared to the ossicles from group 1.

without significant body weight loss. The total dose of
ONO-4819 required for a doubling of the BMP-induced
bone mass was reduced when compared to the dose required
using consecutive systemic administration (3 injections/day
for 3 weeks) of the drug.

Enhanced bone formation by systemic administration of
the EP4A over an experimental period of 3 weeks was
essentially reproduced by the local release of the agent over
the first week following implantation. This is the period
when young mesenchymal cells most likely migrate,
proliferate, and infiltrate the BMP/polymer composite
implants before new bone formation gets underway

25

20 -

BMC (mg)

Group 1 Group 2 Group 3 Group 4

Fig. 6. Bone mineral content. The bone mineral content (BMC) of the
ossicles at 3 weeks after implantation. BMC of ossicles was dose-
dependently higher in groups 2, 3, and 4 than those in the group I. Data
expressed as mean * SE. *Significantly different from controls (2 < 0.05).

[7,9,10]. It is possible that these young mesenchymal cells
were responsible for the bone formation enhanced by EP4A.
Therefore, a low dose of the EP4A, ONO-4819, delivered
locally and concurrently with thBMP enhanced new bone
formation and significantly increased bone mass. The
effective period of local release of the EP4A is not greater
than 2 weeks based on the degradation rate of the polymer
[9,10]. Therefore, one possible explanation for the bone
mass increased by EP4A is that EP4A works first in
osteoblast precursors with a potential for chondro-osseous
differentiation in the early phase of the bone-forming
reaction. In the previous study, due to identifying the time
phase when ONO-4819 exerts its pharmacological effects,
EP4A was systemically administered for 1 week over pre
(—1-0 week), initial (0—1 week), middle (12 week), or
late (2~3 week) phase, respectively. The anabolic effects
of EP4A were seen in mice that received EP4A exclusively
in the initial phase. This result might also indicate that
EP4A and BMP work cooperatively to stimulate osteo-
blastic differentiation in its ecarly stage at the interface to
the BMP-retaining pellets. Previous in vitro studies support
our consideration. Suda et al. reported that EP2/EP4 seems
to be involved in osteoblastic differentiation, and EP1/EP3
is likely to be associated with their proliferation [35].
Weinreb et al. described that PGE, stimulates osteoblastic
differentiation through an anabolic effect in rat bone
marrow cultures mediated by activation of EP4, probably
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Fig. 7. Serum osteocalcin and ALP. Serum osteocalcin and ALP levels. (A) Serum osteocalcin and total ALP activity from group 3 with thBMP-2 and ONO-
4819 pellets were significantly increased compared to the sham group at 1 week. Total ALP activity from group 3 with thBMP-2 and ONO-4819 pellets was
significantly increased compared to the sham group at 2 weeks. (B) There were no significant differences in serum osteocalcin and ALP levels among the

groups at 3 weeks after implantation.

by recruiting noncommitted osteogenic precursors [36,37].
Yoshida et al. described that PGE, induced the expression
of core-binding factor alpha-1 (Runx2/Cbfal) and
enhanced the formation of mineralized nodules in a culture
of bone marrow cells from wild-type mice, both of which
were absent in a culture of cells from EP4 knockout mice.
EP4 activation increased the number of Runx2 positive
cells [30]. EP4 exerts this effect by inducing osteoblast
differentiation. On the other hand, several studies indicate
that EP4 is essential for PGE,-induced bone resorption.
Suzawa et al. described that, in mouse calvaria cultures,
EP4A markedly stimulated bone resorption, and in calvaria
culture from EP4 knockout mouse, a marked reduction in
bone resorption to PGE, was found. EP4A induced cAMP
production and the expression of osteoclast differentiation
factor mRNA in osteoblastic cells [27]. Stimulation of
osteoclastogenesis in cocultures of osteoblasts and spleen
cells in response to PGE, is markedly decreased when the
osteoblasts are derived from cells lacking the EP4 receptor
[26—29]. These in vitro studies indicate that PGE,-EP4
signaling works first in osteoblast precursors to induce
osteoblast for bone formation and then works in mature
osteoblasts to induce osteoclasts on newly formed bone.
Further studies are required to elucidate the detailed
mechanism of action of the EP4 receptor agonist in in
vitro systems using less differentiated osteogenic cells.
The anabolic effect of PGE, on bone was exhibited
through the activation of EP2 or EP4 and consequent
elevation of intracellular cAMP level [23]. In this respect,
the action of an EP4 agonist may be similar to that of PTH,

PDE-4, which also promotes bone formation and inter-
cellular cAMP accumulation. Daily subcutaneous injection
of parathyroid hormones (PTH) is known to enhance
systemic bone formation, and daily systemic injection of
phosphodiesterase-4 (PDE-4)-selective inhibitor, rolipram,
can enhance BMP-2-dependent ectopic new bone forma-
tion in mice [11,38]. Although the detailed mechanisms of
cAMP signal on bone formation have been unclear, these
results might indicate that cAMP functionally has a key
role in the regulation of the BMP action in osteoblast
differentiation, and further studies are required.

Another possible mechanism of the anabolic effect of
EP4A on the BMP-induced bone formation comes from
studies involving cyclooxygenase-2 (COX-2). Zhang et
al. showed the complementary effect of BMP-2 in a bone
marrow cell culture from COX-2 knockout mice and
suggested that BMP-2 is a target gene for PGE,-induced
bone formation [39]. Chikazu et al. reported that BMP-2
transcriptionally induces COX-2 expression, which in turn
regulates, via the Runx2 binding site, production of PGE,
and promotion of osteoblastic differentiation [40]. These
results indicate that BMP and PGE, might have
complementary or cooperative anabolic effects on mes-
enchymal cells to stimulate the early phase of osteoblastic
differentiation.

Potent bone anabolic activity of EP4A is expected from
clinical application for fractures and bone defects in
patients. Development of a more effective way of exposing
responding cells and tissues to EP4A is likely to be needed
for cost effectiveness, clinical efficacy, and long-term safety.
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In cases with a longer fracture healing time, such as in
humans, a carrier might be necessary for the sustained
release of EP4A to be effective. The property of this
polymer would allow retention of thBMP-2 for a period that
is significant to elicit new bone formation and thereby
provide a scaffold for further bone growth. Retention of the
proteins at the implantation site for a sufficient period to
promote progenitor cell migration and cell proliferation has
been shown to enhance osteoinductive activity. Our results
show that local administration of ONO-4819 using PLA-
DX-PEG polymer can mimic the local bone anabolic effect
of PGE, without an excessive dose. The ability to deliver a
molecule so that it will induce a specific biologic effect is
critical to the success of pharmacological agent therapy.

In conclusion, a new EP4 receptor agonist compound
(ONO-4819) can enhance the bone-inducing activity of
rhBMP-2 when administered using a local polymer-based
carrier with no apparent systemic adverse effects. This
compound may be a useful tool for enhancing the perform-
ance of thBMP-2. This could have a significant impact on
the costs associated with using this therapeutic cytokine for
bone regeneration and repair in clinical practice. Further
safety checks are required before ONO-4819 can be used for
this purpose.
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